Search results for: DWDM systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4377

Search results for: DWDM systems

327 Region Segmentation based on Gaussian Dirichlet Process Mixture Model and its Application to 3D Geometric Stricture Detection

Authors: Jonghyun Park, Soonyoung Park, Sanggyun Kim, Wanhyun Cho, Sunworl Kim

Abstract:

In general, image-based 3D scenes can now be found in many popular vision systems, computer games and virtual reality tours. So, It is important to segment ROI (region of interest) from input scenes as a preprocessing step for geometric stricture detection in 3D scene. In this paper, we propose a method for segmenting ROI based on tensor voting and Dirichlet process mixture model. In particular, to estimate geometric structure information for 3D scene from a single outdoor image, we apply the tensor voting and Dirichlet process mixture model to a image segmentation. The tensor voting is used based on the fact that homogeneous region in an image are usually close together on a smooth region and therefore the tokens corresponding to centers of these regions have high saliency values. The proposed approach is a novel nonparametric Bayesian segmentation method using Gaussian Dirichlet process mixture model to automatically segment various natural scenes. Finally, our method can label regions of the input image into coarse categories: “ground", “sky", and “vertical" for 3D application. The experimental results show that our method successfully segments coarse regions in many complex natural scene images for 3D.

Keywords: Region segmentation, tensor voting, image-based 3D, geometric structure, Gaussian Dirichlet process mixture model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
326 Applications of Support Vector Machines on Smart Phone Systems for Emotional Speech Recognition

Authors: Wernhuar Tarng, Yuan-Yuan Chen, Chien-Lung Li, Kun-Rong Hsie, Mingteh Chen

Abstract:

An emotional speech recognition system for the applications on smart phones was proposed in this study to combine with 3G mobile communications and social networks to provide users and their groups with more interaction and care. This study developed a mechanism using the support vector machines (SVM) to recognize the emotions of speech such as happiness, anger, sadness and normal. The mechanism uses a hierarchical classifier to adjust the weights of acoustic features and divides various parameters into the categories of energy and frequency for training. In this study, 28 commonly used acoustic features including pitch and volume were proposed for training. In addition, a time-frequency parameter obtained by continuous wavelet transforms was also used to identify the accent and intonation in a sentence during the recognition process. The Berlin Database of Emotional Speech was used by dividing the speech into male and female data sets for training. According to the experimental results, the accuracies of male and female test sets were increased by 4.6% and 5.2% respectively after using the time-frequency parameter for classifying happy and angry emotions. For the classification of all emotions, the average accuracy, including male and female data, was 63.5% for the test set and 90.9% for the whole data set.

Keywords: Smart phones, emotional speech recognition, socialnetworks, support vector machines, time-frequency parameter, Mel-scale frequency cepstral coefficients (MFCC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
325 Detecting Cavitation in a Vertical Sea water Centrifugal Lift Pump Related to Iran Oil Industry Cooling Water Circulation System

Authors: Omid A. Zargar

Abstract:

Cavitation is one of the most well-known process faults that may occur in different industrial equipment especially centrifugal pumps. Cavitation also may happen in water pumps and turbines. Sometimes cavitation has been severe enough to wear holes in the impeller and damage the vanes to such a degree that the impeller becomes very ineffective. More commonly, the pump efficiency will decrease significantly during cavitation and continue to decrease as damage to the impeller increases. Typically, when cavitation occurs, an audible sound similar to ‘marbles’ or ‘crackling’ is reported to be emitted from the pump. In this paper, the most effective monitoring items and techniques in detecting cavitation discussed in details. Besides, some successful solutions for solving this problem for sea water vertical Centrifugal lift Pump discussed through a case history related to Iran oil industry. Furthermore, balance line modification, strainer choking and random resonance in sea water pumps discussed. In addition, a new Method for diagnosing mechanical conditions of sea water vertical Centrifugal lift Pumps introduced. This method involves disaggregating bus current by device into disaggregated currents having correspondences with operating currents in response to measured bus current. Moreover, some new patents and innovations in mechanical sea water pumping and cooling systems discussed in this paper.

Keywords: Cavitation, Vibration Analysis, Centrifugal Pump, Vertical Pump, Sea Water Pump, Balance Line, Strainer, Time Wave Form (TWF), Fast Fourier Transform (FFT)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4162
324 Authentication Protocol for Wireless Sensor Networks

Authors: Sunil Gupta, Harsh Kumar Verma, AL Sangal

Abstract:

Wireless sensor networks can be used to measure and monitor many challenging problems and typically involve in monitoring, tracking and controlling areas such as battlefield monitoring, object tracking, habitat monitoring and home sentry systems. However, wireless sensor networks pose unique security challenges including forgery of sensor data, eavesdropping, denial of service attacks, and the physical compromise of sensor nodes. Node in a sensor networks may be vanished due to power exhaustion or malicious attacks. To expand the life span of the sensor network, a new node deployment is needed. In military scenarios, intruder may directly organize malicious nodes or manipulate existing nodes to set up malicious new nodes through many kinds of attacks. To avoid malicious nodes from joining the sensor network, a security is required in the design of sensor network protocols. In this paper, we proposed a security framework to provide a complete security solution against the known attacks in wireless sensor networks. Our framework accomplishes node authentication for new nodes with recognition of a malicious node. When deployed as a framework, a high degree of security is reachable compared with the conventional sensor network security solutions. A proposed framework can protect against most of the notorious attacks in sensor networks, and attain better computation and communication performance. This is different from conventional authentication methods based on the node identity. It includes identity of nodes and the node security time stamp into the authentication procedure. Hence security protocols not only see the identity of each node but also distinguish between new nodes and old nodes.

Keywords: Authentication, Key management, Wireless Sensornetwork, Elliptic curve cryptography (ECC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3824
323 Fuel Economy and Stability Enhancement of the Hybrid Vehicles by Using Electrical Machines on Non-Driven Wheels

Authors: P. Naderi, S.M.T. Bathaee, R. Hoseinnezhad, R. Chini

Abstract:

Using electrical machine in conventional vehicles, also called hybrid vehicles, has become a promising control scheme that enables some manners for fuel economy and driver assist for better stability. In this paper, vehicle stability control, fuel economy and Driving/Regeneration braking for a 4WD hybrid vehicle is investigated by using an electrical machine on each non-driven wheels. In front wheels driven vehicles, fuel economy and regenerative braking can be obtained by summing torques applied on rear wheels. On the other hand, unequal torques applied to rear wheels provides enhanced safety and path correction in steering. In this paper, a model with fourteen degrees of freedom is considered for vehicle body, tires and, suspension systems. Thereafter, powertrain subsystems are modeled. Considering an electrical machine on each rear wheel, a fuzzy controller is designed for each driving, braking, and stability conditions. Another fuzzy controller recognizes the vehicle requirements between the driving/regeneration and stability modes. Intelligent vehicle control to multi objective operation and forward simulation are the paper advantages. For reaching to these aims, power management control and yaw moment control will be done by three fuzzy controllers. Also, the above mentioned goals are weighted by another fuzzy sub-controller base on vehicle dynamic. Finally, Simulations performed in MATLAB/SIMULINK environment show that the proposed structure can enhance the vehicle performance in different modes effectively.

Keywords: Hybrid, pitch, roll, regeneration, yaw.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
322 A Non-Linear Eddy Viscosity Model for Turbulent Natural Convection in Geophysical Flows

Authors: J. P. Panda, K. Sasmal, H. V. Warrior

Abstract:

Eddy viscosity models in turbulence modeling can be mainly classified as linear and nonlinear models. Linear formulations are simple and require less computational resources but have the disadvantage that they cannot predict actual flow pattern in complex geophysical flows where streamline curvature and swirling motion are predominant. A constitutive equation of Reynolds stress anisotropy is adopted for the formulation of eddy viscosity including all the possible higher order terms quadratic in the mean velocity gradients, and a simplified model is developed for actual oceanic flows where only the vertical velocity gradients are important. The new model is incorporated into the one dimensional General Ocean Turbulence Model (GOTM). Two realistic oceanic test cases (OWS Papa and FLEX' 76) have been investigated. The new model predictions match well with the observational data and are better in comparison to the predictions of the two equation k-epsilon model. The proposed model can be easily incorporated in the three dimensional Princeton Ocean Model (POM) to simulate a wide range of oceanic processes. Practically, this model can be implemented in the coastal regions where trasverse shear induces higher vorticity, and for prediction of flow in estuaries and lakes, where depth is comparatively less. The model predictions of marine turbulence and other related data (e.g. Sea surface temperature, Surface heat flux and vertical temperature profile) can be utilized in short term ocean and climate forecasting and warning systems.

Keywords: Eddy viscosity, turbulence modeling, GOTM, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 955
321 A Theoretical Analysis of Air Cooling System Using Thermal Ejector under Variable Generator Pressure

Authors: Mohamed Ouzzane, Mahmoud Bady

Abstract:

Due to energy and environment context, research is looking for the use of clean and energy efficient system in cooling industry. In this regard, the ejector represents one of the promising solutions. The thermal ejector is a passive component used for thermal compression in refrigeration and cooling systems, usually activated by heat either waste or solar. The present study introduces a theoretical analysis of the cooling system which uses a gas ejector thermal compression. A theoretical model is developed and applied for the design and simulation of the ejector, as well as the whole cooling system. Besides the conservation equations of mass, energy and momentum, the gas dynamic equations, state equations, isentropic relations as well as some appropriate assumptions are applied to simulate the flow and mixing in the ejector. This model coupled with the equations of the other components (condenser, evaporator, pump, and generator) is used to analyze profiles of pressure and velocity (Mach number), as well as evaluation of the cycle cooling capacity. A FORTRAN program is developed to carry out the investigation. Properties of refrigerant R134a are calculated using real gas equations. Among many parameters, it is thought that the generator pressure is the cornerstone in the cycle, and hence considered as the key parameter in this investigation. Results show that the generator pressure has a great effect on the ejector and on the whole cooling system. At high generator pressures, strong shock waves inside the ejector are created, which lead to significant condenser pressure at the ejector exit. Additionally, at higher generator pressures, the designed system can deliver cooling capacity for high condensing pressure (hot season).

Keywords: Air cooling system, refrigeration, thermal ejector, thermal compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601
320 Structural Damage Detection via Incomplete Modal Data Using Output Data Only

Authors: Ahmed Noor Al-Qayyim, Barlas Ozden Caglayan

Abstract:

Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on to obtain very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. The study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using ‘Two Points Condensation (TPC) technique’. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices obtain from optimization the equation of motion using the measured test data. The current stiffness matrices compare with original (undamaged) stiffness matrices. The large percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element, where two cases consider. The method detects the damage and determines its location accurately in both cases. In addition, the results illustrate these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can be used also for big structures.

Keywords: Damage detection, two points–condensation, structural health monitoring, signals processing, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699
319 Lessons to Management from the Control Loop Phenomenon

Authors: Raied Salman, Nazar Younis

Abstract:

In a none-super-competitive environment the concepts of closed system, management control remains to be the dominant guiding concept to management. The merits of closed loop have been the sources of most of the management literature and culture for many decades. It is a useful exercise to investigate and poke into the dynamics of the control loop phenomenon and draws some lessons to use for refining the practice of management. This paper examines the multitude of lessons abstracted from the behavior of the Input /output /feedback control loop model, which is the core of control theory. There are numerous lessons that can be learned from the insights this model would provide and how it parallels the management dynamics of the organization. It is assumed that an organization is basically a living system that interacts with the internal and external variables. A viable control loop is the one that reacts to the variation in the environment and provide or exert a corrective action. In managing organizations this is reflected in organizational structure and management control practices. This paper will report findings that were a result of examining several abstract scenarios that are exhibited in the design, operation, and dynamics of the control loop and how they are projected on the functioning of the organization. Valuable lessons are drawn in trying to find parallels and new paradigms, and how the control theory science is reflected in the design of the organizational structure and management practices. The paper is structured in a logical and perceptive format. Further research is needed to extend these findings.

Keywords: Management theory, control theory, feed back, input/output, strategy, change, information technology, informationsystems, IS, organizational environment, organizations, opensystems, closed systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
318 A Concept of Rational Water Management at Local Utilities – The Use of RO for Water Supply and Wastewater Treatment/Reuse

Authors: N. Matveev, A. Pervov

Abstract:

Local utilities often face problems of local industrial wastes, storm water disposal due to existing strict regulations. For many local industries, the problem of wastewater treatment and discharge into surface reservoirs can’t be solved through the use of conventional biological treatment techniques. Current discharge standards require very strict removal of a number of impurities such as ammonia, nitrates, phosphate, etc. To reach this level of removal, expensive reagents and sorbents are used. The modern concept of rational water resources management requires the development of new efficient techniques that provide wastewater treatment and reuse. As RO membranes simultaneously reject all dissolved impurities such as BOD, TDS, ammonia, phosphates etc., they become very attractive for the direct treatment of wastewater without biological stage. To treat wastewater, specially designed membrane "open channel" modules are used that do not possess "dead areas" that cause fouling or require pretreatment. A solution to RO concentrate disposal problem is presented that consists of reducing of initial wastewater volume by 100 times. Concentrate is withdrawn from membrane unit as sludge moisture. The efficient use of membrane RO techniques is connected with a salt balance in water system. Thus, to provide high ecological efficiency of developed techniques, all components of water supply and wastewater discharge systems should be accounted for.

Keywords: Reverse osmosis, stormwater treatment, openchannel module, wastewater reuse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
317 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient, but not the magnitude. A neural network with two hidden layers was then used to learn the coefficient magnitudes, along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: Quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192
316 A Study on the Performance Characteristics of Variable Valve for Reverse Continuous Damper

Authors: Se Kyung Oh, Young Hwan Yoon, Ary Bachtiar Krishna

Abstract:

Nowadays, a passenger car suspension must has high performance criteria with light weight, low cost, and low energy consumption. Pilot controlled proportional valve is designed and analyzed to get small pressure change rate after blow-off, and to get a fast response of the damper, a reverse damping mechanism is adapted. The reverse continuous variable damper is designed as a HS-SH damper which offers good body control with reduced transferred input force from the tire, compared with any other type of suspension system. The damper structure is designed, so that rebound and compression damping forces can be tuned independently, of which the variable valve is placed externally. The rate of pressure change with respect to the flow rate after blow-off becomes smooth when the fixed orifice size increases, which means that the blow-off slope is controllable using the fixed orifice size. Damping forces are measured with the change of the solenoid current at the different piston velocities to confirm the maximum hysteresis of 20 N, linearity, and variance of damping force. The damping force variance is wide and continuous, and is controlled by the spool opening, of which scheme is usually adapted in proportional valves. The reverse continuous variable damper developed in this study is expected to be utilized in the semi-active suspension systems in passenger cars after its performance and simplicity of the design is confirmed through a real car test.

Keywords: Blow-off, damping force, pilot controlledproportional valve, reverse continuous damper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2441
315 An Assessment of Water Pollution of the Beshar River Aquatic Ecosystems

Authors: Amir Eghbal Khajeh Rahimi, Fardin Boustani, Omid Tabiee, Masoud Hashemi

Abstract:

The Beshar River is one of the most important aquatic ecosystems in the upstream of the Karun watershed in south of Iran which is affected by point and non point pollutant sources . This study was done in order to evaluate the effects of pollutants activities on the water quality of the Beshar river and its aquatic ecosystems. This river is approximately 190 km in length and situated at the geographical positions of 51° 20´ to 51° 48´ E and 30° 18´ to 30° 52´ N it is one of the most important aquatic ecosystems of Kohkiloye and Boyerahmad province in south-west Iran. In this research project, five study stations were selected to examine water pollution in the Beshar River systems. Human activity is now one of the most important factors affecting on hydrology and water quality of the Beshar river. Humans use large amounts of resources to sustain various standards of living, although measures of sustainability are highly variable depending on how sustainability is defined. The Beshar river ecosystems are particularly sensitive and vulnerable to human activities. Therefore, to determine the impact of human activities on the Beshar River, the most important water quality parameters such as pH, dissolve oxygen (DO), Biological Oxygen Demand (BOD5), Total Dissolve Solids (TDS), Nitrates (NO3-N) and Phosphates (PO4) were estimated at the five stations. As the results show, the most important pollution index parameters such as BOD5, NO3 and PO4 increase and DO and pH decrease according to human activities (P<0.05). However, due to pollutant degradation and dilution, pollution index parameters improve downstream sampling stations.

Keywords: Human activities, Water pollution, Beshar River, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
314 A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines

Authors: Riccardo Fratini, Riccardo Santini, Jacopo Serafini, Massimo Gennaretti, Stefano Panzieri

Abstract:

This paper presents a nonlinear differential model, for a three-bladed horizontal axis wind turbine (HAWT) suited for control applications. It is based on a 8-dofs, lumped parameters structural dynamics coupled with a quasi-steady sectional aerodynamics. In particular, using the Euler-Lagrange Equation (Energetic Variation approach), the authors derive, and successively validate, such model. For the derivation of the aerodynamic model, the Greenbergs theory, an extension of the theory proposed by Theodorsen to the case of thin airfoils undergoing pulsating flows, is used. Specifically, in this work, the authors restricted that theory under the hypothesis of low perturbation reduced frequency k, which causes the lift deficiency function C(k) to be real and equal to 1. Furthermore, the expressions of the aerodynamic loads are obtained using the quasi-steady strip theory (Hodges and Ormiston), as a function of the chordwise and normal components of relative velocity between flow and airfoil Ut, Up, their derivatives, and section angular velocity ε˙. For the validation of the proposed model, the authors carried out open and closed-loop simulations of a 5 MW HAWT, characterized by radius R =61.5 m and by mean chord c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec. The first analysis performed is the steady state solution, where a uniform wind Vw = 11.4 m/s is considered and a collective pitch angle θ = 0.88◦ is imposed. During this step, the authors noticed that the proposed model is intrinsically periodic due to the effect of the wind and of the gravitational force. In order to reject this periodic trend in the model dynamics, the authors propose a collective repetitive control algorithm coupled with a PD controller. In particular, when the reference command to be tracked and/or the disturbance to be rejected are periodic signals with a fixed period, the repetitive control strategies can be applied due to their high precision, simple implementation and little performance dependency on system parameters. The functional scheme of a repetitive controller is quite simple and, given a periodic reference command, is composed of a control block Crc(s) usually added to an existing feedback control system. The control block contains and a free time-delay system eτs in a positive feedback loop, and a low-pass filter q(s). It should be noticed that, while the time delay term reduces the stability margin, on the other hand the low pass filter is added to ensure stability. It is worth noting that, in this work, the authors propose a phase shifting for the controller and the delay system has been modified as e^(−(T−γk)), where T is the period of the signal and γk is a phase shifting of k samples of the same periodic signal. It should be noticed that, the phase shifting technique is particularly useful in non-minimum phase systems, such as flexible structures. In fact, using the phase shifting, the iterative algorithm could reach the convergence also at high frequencies. Notice that, in our case study, the shifting of k samples depends both on the rotor angular velocity Ω and on the rotor azimuth angle Ψ: we refer to this controller as a spatial repetitive controller. The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades. The performance of the spatial repetitive controller is compared with an industrial PI controller. In particular, starting from wind speed velocity Vw = 11.4 m/s the controller is asked to maintain the nominal angular velocity Ωn = 1.266rad/s after an instantaneous increase of wind speed (Vw = 15 m/s). Then, a purely periodic external disturbance is introduced in order to stress the capabilities of the repetitive controller. The results of the simulations show that, contrary to a simple PI controller, the spatial repetitive-PD controller has the capability to reject both external disturbances and periodic trend in the model dynamics. Finally, the nominal value of the angular velocity is reached, in accordance with results obtained with commercial software for a turbine of the same type.

Keywords: Wind turbines, aeroelasticity, repetitive control, periodic systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
313 Tailoring of ECSS Standard for Space Qualification Test of CubeSat Nano-Satellite

Authors: B. Tiseo, V. Quaranta, G. Bruno, G. Sisinni

Abstract:

There is an increasing demand of nano-satellite development among universities, small companies, and emerging countries. Low-cost and fast-delivery are the main advantages of such class of satellites achieved by the extensive use of commercial-off-the-shelf components. On the other side, the loss of reliability and the poor success rate are limiting the use of nano-satellite to educational and technology demonstration and not to the commercial purpose. Standardization of nano-satellite environmental testing by tailoring the existing test standard for medium/large satellites is then a crucial step for their market growth. Thus, it is fundamental to find the right trade-off between the improvement of reliability and the need to keep their low-cost/fast-delivery advantages. This is particularly even more essential for satellites of CubeSat family. Such miniaturized and standardized satellites have 10 cm cubic form and mass no more than 1.33 kilograms per 1 unit (1U). For this class of nano-satellites, the qualification process is mandatory to reduce the risk of failure during a space mission. This paper reports the description and results of the space qualification test campaign performed on Endurosat’s CubeSat nano-satellite and modules. Mechanical and environmental tests have been carried out step by step: from the testing of the single subsystem up to the assembled CubeSat nano-satellite. Functional tests have been performed during all the test campaign to verify the functionalities of the systems. The test duration and levels have been selected by tailoring the European Space Agency standard ECSS-E-ST-10-03C and GEVS: GSFC-STD-7000A.

Keywords: CubeSat, Nano-satellite, shock, testing, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
312 Budget Optimization for Maintenance of Bridges in Egypt

Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham

Abstract:

Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.

Keywords: Bridge Management Systems (BMS), cost optimization condition assessment, fund allocation, Markov chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
311 The Evaluation and the Comparison of the Effect of Without Engine Power and Power Mechanical Systems on Rice Weed

Authors: F. E. Cherati, T. Naij , A. Amraei, Y. Hosseinpor

Abstract:

In order to study the influence of different methods of controlling weeds such as mechanical weeding and mechanical weeder efficiency analysis in mechanical cultivation conditions, in farming year of 2011 an experiment was done in a farm in coupling and development of technology center in Haraz,Iran. The treatments consisted of (I) control treatment: where no weeding was done, (II) use of mechanical weeding without engine and (III) power mechanical weeding. Results showed that experimental treatments had significantly different effects (p=0.05) on yield traits and number of filled grains per panicle, while treatments had the significant effects on grain weight and dry weight of weeds in the first, second and third weeding methods at 1% of confidence level. Treatment (II) had its most significant effect on number of filled grains per panicle and yield performance standpoint, which was 3705.97 kg ha-1 in its highest peak. Treatment (III) was ranked as second influential with 3559.8 kg ha-1. In addition, under (I) treatments, 2364.73 kg ha-1 of yield produced. The minimum dry weights of weeds in all weeding methods were related to the treatment (II), (III) and (I), respectively. The correlation coefficient analysis showed that total yield had a significant positive correlation with the panicle grain yield per plant (r= 0.55*) and the number of grains per panicle-1 (r= 0.57*) and the number of filled grains (r= 0.63*). Total rice yield also had negative correlation of r= -0. 64* with weed dry weight at second weed sampling time (17 DAT). The weed dry weight at third and fourth sampling times (24 and 40 DAT) had negative correlations of -0.65** and r=-0.61* with rice yield, respectively.

Keywords: Dry weight, without engine mechanical weeder, power mechanical weeder, yield rice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
310 Positive Energy Districts in the Swedish Energy System

Authors: Vartan Ahrens Kayayan, Mattias Gustafsson, Erik Dotzauer

Abstract:

The European Union is introducing the positive energy district concept, which has the goal to reduce overall carbon dioxide emissions. The Swedish energy system is unique compared to others in Europe, due to the implementation of low-carbon electricity and heat energy sources and high uptake of district heating. The goal for this paper is to start the discussion about how the concept of positive energy districts can best be applied to the Swedish context and meet their mitigation goals. To explore how these differences impact the formation of positive energy districts, two cases were analyzed for their methods and how these integrate into the Swedish energy system: a district in Uppsala with a focus on energy and another in Helsingborg with a focus on climate. The case in Uppsala uses primary energy calculations which can be criticized but take a virtual border that allows for its surrounding system to be considered. The district in Helsingborg has a complex methodology for considering the life cycle emissions of the neighborhood. It is successful in considering the energy balance on a monthly basis, but it can be problematized in terms of creating sub-optimized systems due to setting tight geographical constraints. The discussion of shaping the definitions and methodologies for positive energy districts is taking place in Europe and Sweden. We identify three pitfalls that must be avoided so that positive energy districts meet their mitigation goals in the Swedish context. The goal of pushing out fossil fuels is not relevant in the current energy system, the mismatch between summer electricity production and winter energy demands should be addressed, and further implementations should consider collaboration with the established district heating grid.

Keywords: Positive energy districts, energy system, renewable energy, European Union.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 76
309 Turbine Compressor Vibration Analysis and Rotor Movement Evaluation by Shaft Center Line Method (The Case History Related to Main Turbine Compressor of an Olefin Plant in Iran Oil Industries)

Authors: Omid A. Zargar

Abstract:

Vibration monitoring methods of most critical equipment like main turbine and compressors always plays important role in preventive maintenance and management consideration in big industrial plants. There are a number of traditional methods like monitoring the overall vibration data from Bently Nevada panel and the time wave form (TWF) or fast Fourier transform (FFT) monitoring. Besides, Shaft centerline monitoring method developed too much in recent years. There are a number of arguments both in favor of and against this method between people who work in preventive maintenance and condition monitoring systems (vibration analysts). In this paper basic principal of Turbine compressor vibration analysis and rotor movement evaluation by shaft centerline method discussed in details through a case history. This case history is related to main turbine compressor of an olefin plant in Iran oil industry. In addition, some common mistakes that may occur by vibration analyst during the process discussed in details. It is worthy to know that, these mistakes may one of the reasons that sometimes this method seems to be not effective. Furthermore, recent patent and innovation in shaft position and movement evaluation are discussed in this paper.

Keywords: Shaft centerline position, attitude angle, journal bearing, sleeve bearing, tilting pad, steam turbine, main compressor, multistage compressor, condition monitoring, non-contact probe

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7127
308 Effects of Boundary Conditions on the Dynamic Values of Solid Structures

Authors: F. Kadioglu, M. Z. Polat, A. R. Gunay

Abstract:

Correct measurement of a structural damping value is an important issue for the reliable design of the components exposed to vibratory and noise conditions. As far as a vibrating beam technique is concerned, the specimens under the test somehow are interacted with measuring and exciting devices, and also with boundary conditions of the test set-up. The aim of this study is to propose a vibrating beam method that offers a non-contact dynamic measurement of solid beam specimens. To evaluate the possible effects of the clamped portion of the specimens with clamped-free ends on the dynamic values (damping and the elastic modulus), the same measuring devices were used, and the results were compared to those with the free-free ends. First, the governing equations of beam specimens related to the free-free and clamped-free boundary conditions were expressed to be able to find their natural frequencies, flexural modulus and damping values. To get a clear idea of the sensitivity of the boundary conditions to the damping values at low, medium and high levels, representative materials were subjected to the tests. The results show that the specimens with low damping values are especially sensitive to the boundary conditions and that the most reliable structural damping values are obtained for the specimens with free-free ends. For the damping values at the low levels, a deviation of about 368% was obtained between the specimens with free-free and clamped-free ends, yet, for those having high inherent damping values, comparable results were obtained. It was obvious that the set-up with clamped-free boundary conditions was not able to produce correct/reliable damping values for the specimens with low inherent damping. 

Keywords: Boundary conditions, damping, dynamic values, non-contact measuring systems, vibrating beam technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 470
307 On the Mathematical Structure and Algorithmic Implementation of Biochemical Network Models

Authors: Paola Lecca

Abstract:

Modeling and simulation of biochemical reactions is of great interest in the context of system biology. The central dogma of this re-emerging area states that it is system dynamics and organizing principles of complex biological phenomena that give rise to functioning and function of cells. Cell functions, such as growth, division, differentiation and apoptosis are temporal processes, that can be understood if they are treated as dynamic systems. System biology focuses on an understanding of functional activity from a system-wide perspective and, consequently, it is defined by two hey questions: (i) how do the components within a cell interact, so as to bring about its structure and functioning? (ii) How do cells interact, so as to develop and maintain higher levels of organization and functions? In recent years, wet-lab biologists embraced mathematical modeling and simulation as two essential means toward answering the above questions. The credo of dynamics system theory is that the behavior of a biological system is given by the temporal evolution of its state. Our understanding of the time behavior of a biological system can be measured by the extent to which a simulation mimics the real behavior of that system. Deviations of a simulation indicate either limitations or errors in our knowledge. The aim of this paper is to summarize and review the main conceptual frameworks in which models of biochemical networks can be developed. In particular, we review the stochastic molecular modelling approaches, by reporting the principal conceptualizations suggested by A. A. Markov, P. Langevin, A. Fokker, M. Planck, D. T. Gillespie, N. G. van Kampfen, and recently by D. Wilkinson, O. Wolkenhauer, P. S. Jöberg and by the author.

Keywords: Mathematical structure, algorithmic implementation, biochemical network models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
306 Development of a Roadmap for Assessment the Sustainability of Buildings in Saudi Arabia Using Building Information Modeling

Authors: Ibrahim A. Al-Sulaihi, Khalid S. Al-Gahtani, Abdullah M. Al-Sugair, Aref A. Abadel

Abstract:

Achieving environmental sustainability is one of the important issues considered in many countries’ vision. Green/Sustainable building is widely used terminology for describing a friendly environmental construction. Applying sustainable practices has a significant importance in various fields, including construction field that consumes an enormous amount of resource and causes a considerable amount of waste. The need for sustainability is increased in the regions that suffering from the limitation of natural resource and extreme weather conditions such as Saudi Arabia. Since buildings designs are getting sophisticated, the need for tools, which support decision-making for sustainability issues, is increasing, especially in the design and preconstruction stages. In this context, Building Information Modeling (BIM) can aid in performing complex building performance analyses to ensure an optimized sustainable building design. Accordingly, this paper introduces a roadmap towards developing a systematic approach for presenting the sustainability of buildings using BIM. The approach includes set of main processes including; identifying the sustainability parameters that can be used for sustainability assessment in Saudi Arabia, developing sustainability assessment method that fits the special circumstances in the Kingdom, identifying the sustainability requirements and BIM functions that can be used for satisfying these requirements, and integrating these requirements with identified functions. As a result, the sustainability-BIM approach can be developed which helps designers in assessing the sustainability and exploring different design alternatives at the early stage of the construction project.

Keywords: Green buildings, sustainability, BIM, rating systems, environment, Saudi Arabia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879
305 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: Artificial neural networks, breast cancer, cancer dataset, classifiers, cervical cancer, F-score, logistic regression, machine learning, precision, recall, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
304 Modeling of PZ in Haunch Connections Systems

Authors: Peyman Shadman Heidari, Roohollah Ahmady Jazany, Mahmood Reza Mehran, Pouya Shadman Heidari, Mohammad khorasani

Abstract:

Modeling of Panel Zone (PZ) seismic behavior, because of its role in overall ductility and lateral stiffness of steel moment frames, has been considered a challenge for years. There are some studies regarding the effects of different doubler plates thicknesses and geometric properties of PZ on its seismic behavior. However, there is not much investigation on the effects of number of provided continuity plates in case of presence of one triangular haunch, two triangular haunches and rectangular haunch (T shape haunches) for exterior columns. In this research first detailed finite element models of 12tested connection of SAC joint venture were created and analyzed then obtained cyclic behavior backbone curves of these models besides other FE models for similar tests were used for neural network training. Then seismic behavior of these data is categorized according to continuity plate-s arrangements and differences in type of haunches. PZ with one-sided haunches have little plastic rotation. As the number of continuity plates increases due to presence of two triangular haunches (four continuity plate), there will be no plastic rotation, in other words PZ behaves in its elastic range. In the case of rectangular haunch, PZ show more plastic rotation in comparison with one-sided triangular haunch and especially double-sided triangular haunches. Moreover, the models that will be presented in case of triangular one-sided and double- sided haunches and rectangular haunches as a result of this study seem to have a proper estimation of PZ seismic behavior.

Keywords: Continuity plate, FE models, Neural network, Panel zone, Plastic rotation, Rectangular haunch, Seismic behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008
303 Comparative Analysis between Different Proposed Responsive Façade Designs for Reducing the Solar Radiation on the West Façade in the Hot Arid Region

Authors: Merna H. Ibrahim

Abstract:

Designing buildings which are sustainable and can control and reduce the solar radiation penetrated from the building facades is such an architectural turn. One of the most important methods of saving energy in a building is carefully designing its facade. Building’s facade is one of the most significant contributors to the energy budget as well as the comfort parameters of a building. Responsive architecture adapts to the surrounding environment causing alteration in the envelope configuration to perform in a more effectively way. One of the objectives of the responsive facades is to protect the building’s users from the external environment and achieving comfortable indoor environment. Solar radiation is one of the aspects that affects the comfortable indoor environment, as well as affects the energy consumption consumed by the HVAC systems for maintaining the indoor comfortable conditions. The aim of the paper is introducing and comparing between four different proposed responsive façade designs in terms of solar radiation reduction on the west façade of a building located in the hot arid region. In addition, the paper highlights the reducing amount of the solar radiation for each proposed responsive facades on the west façade. At the end of the paper, a proposal is introduced which combines the four different axis of movements which reduces the solar radiation the most. Moreover, the paper highlights the definition and aim of the responsive architecture, as well as the focusing on the solar radiation aspect in the hot arid zones. Besides, the paper analyzes an international responsive façade building in Essen, Germany, focusing on the type of responsive facades, angle of rotation, mechanism of movement and the effect of the responsive facades on the building’s performance.

Keywords: kinetic facades, mechanism of movement, responsive architecture, solar radiation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819
302 Hierarchies Based On the Number of Cooperating Systems of Finite Automata on Four-Dimensional Input Tapes

Authors: Makoto Sakamoto, Yasuo Uchida, Makoto Nagatomo, Takao Ito, Tsunehiro Yoshinaga, Satoshi Ikeda, Masahiro Yokomichi, Hiroshi Furutani

Abstract:

In theoretical computer science, the Turing machine has played a number of important roles in understanding and exploiting basic concepts and mechanisms in computing and information processing [20]. It is a simple mathematical model of computers [9]. After that, M.Blum and C.Hewitt first proposed two-dimensional automata as a computational model of two-dimensional pattern processing, and investigated their pattern recognition abilities in 1967 [7]. Since then, a lot of researchers in this field have been investigating many properties about automata on a two- or three-dimensional tape. On the other hand, the question of whether processing fourdimensional digital patterns is much more difficult than two- or threedimensional ones is of great interest from the theoretical and practical standpoints. Thus, the study of four-dimensional automata as a computasional model of four-dimensional pattern processing has been meaningful [8]-[19],[21]. This paper introduces a cooperating system of four-dimensional finite automata as one model of four-dimensional automata. A cooperating system of four-dimensional finite automata consists of a finite number of four-dimensional finite automata and a four-dimensional input tape where these finite automata work independently (in parallel). Those finite automata whose input heads scan the same cell of the input tape can communicate with each other, that is, every finite automaton is allowed to know the internal states of other finite automata on the same cell it is scanning at the moment. In this paper, we mainly investigate some accepting powers of a cooperating system of eight- or seven-way four-dimensional finite automata. The seven-way four-dimensional finite automaton is an eight-way four-dimensional finite automaton whose input head can move east, west, south, north, up, down, or in the fu-ture, but not in the past on a four-dimensional input tape.

Keywords: computational complexity, cooperating system, finite automaton, four-dimension, hierarchy, multihead.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
301 The DAQ Debugger for iFDAQ of the COMPASS Experiment

Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius

Abstract:

In general, state-of-the-art Data Acquisition Systems (DAQ) in high energy physics experiments must satisfy high requirements in terms of reliability, efficiency and data rate capability. This paper presents the development and deployment of a debugging tool named DAQ Debugger for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. Utilizing a hardware event builder, the iFDAQ is designed to be able to readout data at the average maximum rate of 1.5 GB/s of the experiment. In complex softwares, such as the iFDAQ, having thousands of lines of code, the debugging process is absolutely essential to reveal all software issues. Unfortunately, conventional debugging of the iFDAQ is not possible during the real data taking. The DAQ Debugger is a tool for identifying a problem, isolating the source of the problem, and then either correcting the problem or determining a way to work around it. It provides the layer for an easy integration to any process and has no impact on the process performance. Based on handling of system signals, the DAQ Debugger represents an alternative to conventional debuggers provided by most integrated development environments. Whenever problem occurs, it generates reports containing all necessary information important for a deeper investigation and analysis. The DAQ Debugger was fully incorporated to all processes in the iFDAQ during the run 2016. It helped to reveal remaining software issues and improved significantly the stability of the system in comparison with the previous run. In the paper, we present the DAQ Debugger from several insights and discuss it in a detailed way.

Keywords: DAQ debugger, data acquisition system, FPGA, system signals, Qt framework.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894
300 Investigating the Effect of Using Capacitors in the Pumping Station on the Harmonic Contents (Case Study: Kafr El - Shikh Governorate, Egypt)

Authors: Khaled M. Fetyan

Abstract:

Power Factor (PF) is one of the most important parameters in the electrical systems, especially in the water pumping station. The low power factor value of the water pumping stations causes penalty for the electrical bill. There are many methods use for power factor improvement. Each one of them uses a capacitor on the electrical power network. The position of the capacitors is varied depends on many factors such as; voltage level and capacitors rating. Adding capacitors on the motor terminals increase the supply power factor from 0.8 to more than 0.9 but these capacitors cause some problems for the electrical grid network, such as increasing the harmonic contents of the grid line voltage. In this paper the effects of using capacitors in the water pumping stations to improve the power factor value on the harmonic contents of the electrical grid network are studied. One of large water pumping stations in Kafr El-Shikh Governorate in Egypt was used, as a case study. The effect of capacitors on the line voltage harmonic contents is measured. The station uses capacitors to improve the PF values at the 1 lkv grid network. The power supply harmonics values are measured by a power quality analyzer at different loading conditions. The results showed that; the capacitors improved the power factor value of the feeder and its value increased than 0.9. But the THD values are increased by adding these capacitors. The harmonic analysis showed that; the 13th, 17th, and 19th harmonics orders are increased also by adding the capacitors.

Keywords: Water pumping stations, power factor improvement, total harmonic distortions (THD), power quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2739
299 FACTS Based Stabilization for Smart Grid Applications

Authors: Adel M. Sharaf, Foad H. Gandoman

Abstract:

Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PVhybrid- Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid- Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6- pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.

Keywords: AC FACTS, Smart grid, Stabilization, PV-Battery Storage, Switched Filter-Compensation (SFC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3247
298 Degradation of Heating, Ventilation, and Air Conditioning Components across Locations

Authors: Timothy E. Frank, Josh R. Aldred, Sophie B. Boulware, Michelle K. Cabonce, Justin H. White

Abstract:

Materials degrade at different rates in different environments depending on factors such as temperature, aridity, salinity, and solar radiation. Therefore, predicting asset longevity depends, in part, on the environmental conditions to which the asset is exposed. Heating, ventilation, and air conditioning (HVAC) systems are critical to building operations yet are responsible for a significant proportion of their energy consumption. HVAC energy use increases substantially with slight operational inefficiencies. Understanding the environmental influences on HVAC degradation in detail will inform maintenance schedules and capital investment, reduce energy use, and increase lifecycle management efficiency. HVAC inspection records spanning 14 years from 21 locations across the United States were compiled and associated with the climate conditions to which they were exposed. Three environmental features were explored in this study: average high temperature, average low temperature, and annual precipitation, as well as four non-environmental features. Initial insights showed no correlations between individual features and the rate of HVAC component degradation. Using neighborhood component analysis, however, the most critical features related to degradation were identified. Two models were considered, and results varied between them. However, longitude and latitude emerged as potentially the best predictors of average HVAC component degradation. Further research is needed to evaluate additional environmental features, increase the resolution of the environmental data, and develop more robust models to achieve more conclusive results.

Keywords: Climate, infrastructure degradation, HVAC, neighborhood component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176