Positive Energy Districts in the Swedish Energy System
Authors: Vartan Ahrens Kayayan, Mattias Gustafsson, Erik Dotzauer
Abstract:
The European Union is introducing the positive energy district concept, which has the goal to reduce overall carbon dioxide emissions. The Swedish energy system is unique compared to others in Europe, due to the implementation of low-carbon electricity and heat energy sources and high uptake of district heating. The goal for this paper is to start the discussion about how the concept of positive energy districts can best be applied to the Swedish context and meet their mitigation goals. To explore how these differences impact the formation of positive energy districts, two cases were analyzed for their methods and how these integrate into the Swedish energy system: a district in Uppsala with a focus on energy and another in Helsingborg with a focus on climate. The case in Uppsala uses primary energy calculations which can be criticized but take a virtual border that allows for its surrounding system to be considered. The district in Helsingborg has a complex methodology for considering the life cycle emissions of the neighborhood. It is successful in considering the energy balance on a monthly basis, but it can be problematized in terms of creating sub-optimized systems due to setting tight geographical constraints. The discussion of shaping the definitions and methodologies for positive energy districts is taking place in Europe and Sweden. We identify three pitfalls that must be avoided so that positive energy districts meet their mitigation goals in the Swedish context. The goal of pushing out fossil fuels is not relevant in the current energy system, the mismatch between summer electricity production and winter energy demands should be addressed, and further implementations should consider collaboration with the established district heating grid.
Keywords: Positive energy districts, energy system, renewable energy, European Union.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88References:
[1] IPCC, “Climate Change 2022 Mitigation of Climate Change,” 2022.
[2] D. Connolly et al., “Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system,” Energy Policy, vol. 65, pp. 475–489, Feb. 2014, doi: 10.1016/j.enpol.2013.10.035.
[3] “Electricity - Fuels & Technologies,” IEA. https://www.iea.org/fuels-and-technologies/electricity (accessed Jun. 20, 2023).
[4] “Energiläget 2020,” Statens Energimyndighet, ET 2020:1, 2023.
[5] “Värmemarknaden utvecklas för att lösa nya utmaningar,” Profu, 2023.
[6] Klara Larsson and Susanne Enmalm, “Electricity supply, district heating and supply of natural gas 2020. Final statistics.,” 1654–3661.
[7] SETIS, “Positive Energy Districts,” SETIS, 2023. https://setis.ec.europa.eu/implementing-actions/positive-energy-districts_en (accessed Apr. 13, 2023).
[8] S. S., D. Paci, and P. Bertoldi, Enabling positive energy districts across Europe: energy efficiency couples renewable energy. LU: European Commission. Joint Research Centre., 2020. Accessed: Mar. 29, 2023. Online. Available: https://data.europa.eu/doi/10.2760/452028
[9] J. Brozovsky, A. Gustavsen, and N. Gaitani, “Zero emission neighbourhoods and positive energy districts – A state-of-the-art review,” Sustain. Cities Soc., vol. 72, p. 103013, Sep. 2021, doi: 10.1016/j.scs.2021.103013.
[10] S. Bossi, C. Gollner, and S. Theierling, “Towards 100 Positive Energy Districts in Europe: Preliminary Data Analysis of 61 European Cases,” Energies, vol. 13, no. 22, p. 6083, Nov. 2020, doi: 10.3390/en13226083.
[11] H.-G. Schwarz, S. Meyer, M. Noll, C. Gollner, and R. Hinterberger, “Reference Framework for Positive Energy Districts and Neighbourhoods: Key lessons from national consultations.” 2020. Online. Available: https://jpi-urbaneurope.eu/ped/
[12] O. Lindholm, H. ur Rehman, and F. Reda, “Positioning Positive Energy Districts in European Cities,” Buildings, vol. 11, no. 1, p. 19, Jan. 2021, doi: 10.3390/buildings11010019.
[13] J. L. de Oliveira, J. N. da Silva, E. Graciosa Pereira, D. Oliveira Filho, and D. Rizzo Carvalho, “Characterization and mapping of waste from coffee and eucalyptus production in Brazil for thermochemical conversion of energy via gasification,” Renew. Sustain. Energy Rev., vol. 21, pp. 52–58, May 2013.
[14] C. Rampinelli et al., “Holistic assessment and innovative stakeholder involvement process for identification of Positive‐Energy‐Districts,” PED-ID, D 5.1, Jun. 2022.
[15] C. Rampinelli and G. Hofer, “Criteria catalogue for Positive-Energy-Districts,” PED-ID, Apr. 2022. Online. Available: https://sustainableinnovation.se/app/uploads/2022/05/PED-ID_D4.1_PEDcriteria_V5_220415.pdf
[16] M. Formolli, T. Kleiven, and G. Lobaccaro, “Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters,” Renew. Sustain. Energy Rev., vol. 177, p. 113231, May 2023, doi: 10.1016/j.rser.2023.113231.
[17] C. S. Good, G. Lobaccaro, and S. Hårklau, “Optimization of Solar Energy Potential for Buildings in Urban Areas – A Norwegian Case Study,” Energy Procedia, vol. 58, pp. 166–171, 2014, doi: 10.1016/j.egypro.2014.10.424.
[18] J. Widén, E. Wäckelgård, and P. D. Lund, “Options for improving the load matching capability of distributed photovoltaics: Methodology and application to high-latitude data,” Sol. Energy, vol. 83, no. 11, pp. 1953–1966, Nov. 2009, doi: 10.1016/j.solener.2009.07.007.
[19] L.-L. Larsson Kolessar and C. Rampinelli, “Holistic Stakeholder Model for early PEDs,” D2.2, Apr. 2022.
[20] Skanska, “Framtidens byggande är eldrivet,” skanska.se, Apr. 21, 2023. https://www.skanska.se/om-skanska/press/nyheter/elektrifiering-nyckeln-till-utslappsfritt-byggande/ (accessed Apr. 21, 2023).
[21] Skanska, “Urban development in Ljusekulla, Helsingborg,” skanska.se, 2023. https://www.skanska.se/en-us/about-skanska/sustainability/h22/ljusekulla/ (accessed Apr. 13, 2023).
[22] Tomorrow, “Electricity Map.” 2018. Online. Available: https://www.electricitymap.org/
[23] M. Di Somma et al., “Operation optimization of a distributed energy system considering energy costs and exergy efficiency,” Energy Convers. Manag., vol. 103, pp. 739–751, Oct. 2015, doi: 10.1016/j.enconman.2015.07.009.
[24] M. Gong and G. Wall, “Exergy Analysis of the Supply of Energy and Material Resources in the Swedish Society,” Energies, vol. 9, no. 9, p. 707, Sep. 2016, doi: 10.3390/en9090707.
[25] Boverket, “Boverkets föreskrifter om ändring i Boverkets byggregler (2011:6) - föreskrifter och allmänna råd,” 2020. Online. Available: https://rinfo.boverket.se/BFS2011-6/pdf/BFS2020-4.pdf
[26] Boverket, “Konsekvensutredning BFS 2020:4,” 3.2.1 6664/2017, 2020.
[27] M. Gustafsson, R. Thygesen, B. Karlsson, and L. Ödlund, “Rev-Changes in Primary Energy Use and CO2 Emissions—An Impact Assessment for a Building with Focus on the Swedish Proposal for Nearly Zero Energy Buildings,” Energies, vol. 10, no. 7, p. 978, Jul. 2017, doi: 10.3390/en10070978.
[28] Å. Wahlström and M.-L. Maripuu, “Additional requirement to the Swedish nearly zero energy requirements,” E3S Web Conf., vol. 246, p. 14002, 2021, doi: 10.1051/e3sconf/202124614002.
[29] M. Swing Gustafsson, M. Gustafsson, J. A. Myhren, and E. Dotzauer, “Primary energy use in buildings in a Swedish perspective,” Energy Build., vol. 130, pp. 202–209, Oct. 2016, doi: 10.1016/j.enbuild.2016.08.026.
[30] M. Swing Gustafsson, J. A. Myhren, and E. Dotzauer, “Potential for district heating to lower peak electricity demand in a medium-size municipality in Sweden,” J. Clean. Prod., vol. 186, pp. 1–9, Jun. 2018, doi: 10.1016/j.jclepro.2018.03.038.
[31] “IDA-ICE.” Equa AB.
[32] “System Advisor Model.” National Renewable Energy Laboratory, Golden, CO. Accessed: May 04, 2023. Online. Available: https://sam.nrel.gov/
[33] ENTSOE, “Winter Outlook 2022-2023,” 2022. Online. Available: https://www.entsoe.eu/Documents/SDC%20documents/seasonal/WOR2022/Winter%20Outlook%202022-2023_Report.pdf
[34] SVK, “Kraftbalansen på den svenska elmarknaden,” Svenska Kraftnät, 2022/879, May 2022.
[35] “ISO 14064-2:2019(en), Greenhouse gases — Part 2: Specification with guidance at the project level for quantification, monitoring and reporting of greenhouse gas emission reductions or removal enhancements,” International Organization for Standardization, 2019. Accessed: Apr. 17, 2023. Online. Available: https://www.iso.org/obp/ui/#iso:std:iso:14064:-2:ed-2:v1:en
[36] “ISO/TR 14069:2013(en), Greenhouse gases — Quantification and reporting of greenhouse gas emissions for organizations — Guidance for the application of ISO 14064-1,” International Organization for Standardization, 2013. Accessed: Apr. 17, 2023. Online. Available: https://www.iso.org/obp/ui/#iso:std:iso:tr:14069:ed-1:v1:en
[37] World Business Council for Sustainable Development and World Resources Institute, Eds., The greenhouse gas protocol: a corporate accounting and reporting standard, Rev. ed. Geneva, Switzerland: Washington, DC: World Business Council for Sustainable Development; World Resources Institute, 2004.
[38] C. M. Ouellet-Plamondon et al., “Carbon footprint assessment of a wood multi-residential building considering biogenic carbon,” J. Clean. Prod., vol. 404, p. 136834, Jun. 2023, doi: 10.1016/j.jclepro.2023.136834.
[39] SGBC, “BREEAM-SE New Construction v6.0 Technical Manual,” Sweden Green Building Council, Apr. 2023.
[40] E. S. Azzi, E. Karltun, and C. Sundberg, “Prospective Life Cycle Assessment of Large-Scale Biochar Production and Use for Negative Emissions in Stockholm,” Environ. Sci. Technol., vol. 53, no. 14, pp. 8466–8476, Jul. 2019, doi: 10.1021/acs.est.9b01615.
[41] J. Lehmann, M. C. Rillig, J. Thies, C. A. Masiello, W. C. Hockaday, and D. Crowley, “Biochar effects on soil biota – A review,” Soil Biol. Biochem., vol. 43, no. 9, pp. 1812–1836, Sep. 2011, doi: 10.1016/j.soilbio.2011.04.022.
[42] D. Woolf, J. E. Amonette, F. A. Street-Perrott, J. Lehmann, and S. Joseph, “Sustainable biochar to mitigate global climate change,” Nat. Commun., vol. 1, no. 1, p. 56, Aug. 2010, doi: 10.1038/ncomms1053.
[43] “NSR bygger biokolsanläggning,” NSR AB (Nordvästra Skånes Renhållnings AB), Apr. 17, 2023. https://nsr.se/om-nsr/projekt/projektbanken/anlaggning-for-produktion-av-biokol/ (accessed Apr. 13, 2023).