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Abstract—In general, image-based 3D scenes can now be foundri@mote sensing to medical diagnosis, and retrieval in large
many popular vision systems, computer games and virtual realimage database. In general, various segmentation approaches

tours. So, Itis important to segment ROI (region of interest) from inpkye been proposed. These can be largely categorized into four

scenes as a preprocessing step for geometric stricture detection inC ses: threshold-based edge or boundary-based

scene. In this paper, we propose a method for segmenting ROl based .
on tensor voting and Dirichlet process mixture model. In particular, {gglon-based, and model-based techniques [5-6].

estimate geometric structure information for 3D scene from a singleHere, we have mainly an interest with a segmentation
outdoor image, we apply the tensor voting and Dirichlet proce$8€thod using model-based technigues. One of these methods

mixture model to a image segmentation. The tensor voting is usedpresses the probability density for the whole data set as a
based on the fact that homogeneous region in an image are usuiijte mixture model, in case that the mixtures can be

close together on a smooth region and therefore the tokegsnstructed with any types of components, but more commonly
corresponding to centers of these regions have high saliency valyggitivariate Gaussian densities are used. However, most of
The proposed approach is a novel nonparametric Bayes'ggse algorithms require the analyst to specify the number of

segmentation method using Gaussian Dirichlet process mixture mo . -
to automatically segment various natural scenes. Finally, our meth fjisses based either on a priori knowledge or on an educated

can label regions of the input image into coarse categories: “groun@’€SS- It is obvious that the quality of resulting segmentation is
“sky”, and “vertical” for 3D application. The experimental resultdargely dependent on the exact estimation of mixture
show that our method successfully segments coarse regions in mgagnponents. Hence, we have to determine the optimal number
complex natural scene images for 3D. of clusters before analyzing a given data. To solve this problem,
various criteria have been proposed in the literature. These
Keywords—Region segmentation, tensor voting, image-based 3@riteria are Akaike’s information criterion (AIC), Bayesian

geometric structure, Gaussian Dirichlet process mixture model information criterion (BIC), minimum description length
(MDL), cross validation information criterion (CVIC), and
[. INTRODUCTION covariance inflation criterion (CIC). Nevertheless, these

I N general, image-based rendering during the past decade ghods are not able to determine automatically the number of

advanced the commercial production of virtual models froffPMPonents when we segment a given image into several

: : ns.
photographs a reality. Image based 3D modeling can be fOJﬁ@flg rsesolve these optional issues, a relatively new tool

in many popular computer games and virtual reality tours,. . ;
However, the generation of 3D scene from 2D natural sce%é”cmet. process mixture (DPM) models have been proposed
In"machine learning literature. DPM models have emerged as a

remains a compllcatgd and time-consuming process, Oftﬁgnparametric alternative to finite mixture models with
requiring specgl equipment, a large number of F?hOtogr""pqﬁeoretically a countable infinite number of mixture
manual interaction, or all of them. So, it has given to thg,nhonents. Eventually, as part of the model-fitting procedure,
professionals and ignored by the general public. In order Qs nonparametric Bayesian inference scheme induced by the
solve problems of 3D modeling, various researches have bggBpm model yields a posterior distribution on the proper
performed Image-based 3D modeling methods by [1,2,3,4]. number of model component densities, rather than selecting a
To this work, we consider to dealing with outdoor scenes afifed number of mixture components. Hence, the obtained
assume that a scene is consisted in a single ground plafgaparametric Bayesian formulation eliminates the need for
piece-wise planar objects sticking out of the ground at righibing inferences about the number of mixture components
angles, and the sky. First of all, we perform simple feature sudyquired for representing the modeled data.
as pixel colors and filter responses. So, we find uniform regiodnder this motivation, we propose a novel nonparametric
called ‘superpixels” in the input scene [13]. To fine superpixeBayesian segmentation method using Gaussian Dirichlet
in this work, we segment uniform region based on Gaussignocess mixture model, to automatically segment various color
Dirichlet process mixture model. The goal of scenémages. This method incorporates both Dirichlet process
segmentation is to classification a given input image intmixture model as the prior distribution for mixture components
homogeneous regions, or pattern classes. The work canapel the multivariate Gaussian distribution as the likelihood
applied to a multitude of important computer visiorfunction of observed data. We have also described an efficient
applications, ranging from vision guided autonomous roboticsariational Bayesian inference algorithm newly proposed
recently to learning the proposed model. And we apply it to a
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Il. DIRICHLET PROCESSMIIXTURE BASED ONGAUSSIAN

A.Dirichlet Process

The Dirichlet process, denoted BB(a, G,), is a random
measure on measures and is parameterized by theaition
parameten and a base distributidi, [7,8]. That is, for any
finite measurable partitioifA, A,, -+, A,) of a measurable
space® , the random vecto(G(A,),G(Ay),:-,G(AL)) is
distributed as a finite-dimensional Dirichlet distrtion with
parameterg(aGg(A;), aGy(A,), *+, 0Go(AL)) :

(G(A1), G(Az), -+, G(A)~(aGo(A1), aGo(A2), -+, aGo(Ar)).-

A first interpretation on the Dirichlet procesgi®vided by the
Polya urn scheme due to Blackwell and MacQueen3jLIhe
Polya urn scheme shows that not only are draws fiioen
Dirichlet process discrete, but also that they leitlai clustering
property. Assume we randomly draw a sample digiobuG
from aDP(q, Gy), and subsequently, we independently dNaw
random variableg, ¢,, -, ¢y fromG

G| (a, GO) ~ DP(0, Go)
¢,1G~G, n=1,-,N.

Integrating outG, the joint distribution of the variables
9,9, 1,9y can be shown to exhibit a cluster effect
Specifically, given the firstN—1 samples of G ,
0,9, ", Py_,, it can be shown that a new samp|eis either
drawn from the base distributidly with probabilitya+;_1 or
selected from the existing draws, according to dtinramial
allocation, with probabilities proportional to thamber of the
previous draws with same allocation. L{eqi;,(p;, 0k }
denote the distinct values af,,¢,, ", ¢y_, ,» and let
{ny, ny, -+, ng} be the number of values @, ¢,, -, ¢, _, that
equal top;, 9, -+, 0. Then, the conditional distribution of;
giveno,, ¢, -, ¢, _, follows a Polya urn scheme and has th
following form:

ploy [{opn =1 N=1}0Gp) = ——Go + Tf_, 2)
whereswi«( denotes the distribution concentrated at a sing
pointoe, . These results illustrate two key properties & BP
scheme. First, the innovation parametg@iays a key role in
determining the number of distinct parameter valAdargera
induces a higher tendency of drawing new paramétensthe
base distributiol@,; indeed, as. — «, we getG - G,. On the
contrary, as. - 0, all¢,, ¢,, "+, ¢ tend to cluster to a single
random variable. Second, the more often a pararisestiared,
the more likely it will be shared in the future.

Another characterization of the unconditional dlsttion of
the random variabl& drawn fromDP(a, G,) is provided by
the stick-breaking construction due to Sethurani®94) [8].
The stick-breaking construction is based on twoinité
collections of independent random variablés, )y,
and (0,7

vk | o,Go ~ Beta(1,0), O | o, Gg ~ Gg,
whereBeta(a, b) is the Beta distribution with parametarand
b. The stick-breaking construction 6fis then given by
G =Yg ”k(V)Sok,

)

SKDI(

®)

where

m (V) = i[5 (1 = w) € [0.1], Tz me(v) = 1. (4)
In this case, we may interpret the sequanee (T, )%-, as a

International Scholarly and Scientific Research & Innovation 6(4) 2012

462

random probability measure on the positive integgraler the
stick-breaking representation of the Dirichlet psg, the
atomsdy, drawn independently from the base distributign
can be seen as the parameters of the componeitiutisin of a
mixture model comprising an unbounded number
component densities, with mixing proportions,(v) .
Sethuraman(1994) showed tlitads defined in this way is a
random  probability measure distributed according
to DP(a, Go)[8]. This stick breaking representation®fnakes
clear that the random measuarawn from DP(a, G,) is
discrete. It shows explicitly that the supportGofonsists of a
countably infinite sum of atoms located @t, drawn
independently frong,.

of

B. Gaussian Dirichlet Process Mixture Model

One of the most important applications of the Dikét
processes is as a honparametric prior distribudfoa mixture
model. In particular, suppose that observatyjgnarise as
follows:

¢, | G~ G, ynlo, ~F(p)

whereF(¢, ) denotes the distribution of the observatign
given ¢ . The factors¢ are conditionally independent
givenG, and the observatign,is conditionally independent of
the other observations given the factgy. WhenG is
distributed according to a Dirichlet process, thi®del is
referred to as a Dirichlet process mixture (DPM)delo Since
G can be represented using a stick-breaking coniiru¢3),
the factorsp take on value$, with probabilitym,(v). We
may denote this using an indicator varial)g which takes on
positive integral valuegklk =1,---,} and is distributed
according tat = (my ) gy -

Next, suppose that we have a set dfdimensional
adependent multivariate observatiovs= {y;,y,, -, yn}. We
want to model this data by mans of nonparametrigeBi@n
formulation of Gaussian Dirichlet process mixtu@DPM)
[godel. For this purpose, since the number of mextur
componeni is unknown, we have to consider the mixture
model with countably infinite components. Therefore will
use the Diriclet process mixture model as the mistribution
over the number of components generating the datd,we
also assume the probability distribution of obstores as the
multivariate Gaussian distribution. Moreover, imtuging a set
of latent variables Z = {z,,z,,--,zy} indicating the
component labels associated with the observatida da
defined on above. Then, the GDPM model for the olesk
data set can be described as follows. First, we hised the
multi-dimensional Gaussian distribution with paraene
0, = (i, Ay )for the likelihoods of the observations;

Yo | Zn =Kk; O ~ N(pk'AEI) . (5)
Second for the prior distribution of total clusteemberships,
we assume that

Pz, 7y) | (W) = N1 p(zal T(V))
where p(z, = k| m(v) ) is the prior probabilities of the cluster
membership stemming from the imposed Drichlet psecthat
is,
p(zy, = k| (V) ) ~ Multi(m(v)),
Multi(m(v)) denotes the multinomial distribution owe(v).
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Third, the probabilities of countable infinite nuerb of the variational free energy, forms a strict loweuhd of the log
components in the mixture model is given by thevidence. Hence, maximizing the variational freesrgp

stick-breaking representation of the DP, that is, £(q(®)) is equivalent to minimizing the KL divergence. By
Y | @Gy ~ Beta(1,0),k=1,--, 00 appropriate choice ofi(®), £(q(®)) becomes tractable to
m(v) = v [5G A —v) € [0.1], R, me(v) = 1. (6) compute and to maximize.

Forth, Bayesian inference for the assumed GDPM mode For computational convenience, the variational @ost
involves the assumption of a set of appropriaterprover the (@) is expressed in a factorized form, with the saorenfas
model parameters, and derivation of the correspandithe priorsp(@|=), and each parameter represented by its own
posterior densities. We choose the conjugate-expi@@rior  conjugate exponential prior. Furthermore, variadiddayesian

distributions over the model parameters. Hencejmse a jnference assumes to formulate under infinite disiemal
joint normal-Wishart distribution over the mean t@cand  setting. But, it is actually not tractable. Forstiieason, we

precision matrix for a multivariate Gaussian disition of the  employ a common strategy in DPM literature, forredaon

model component_fls follows: . the basis of a truncated stick-breaking representaf the DP.
i [ A ~ V(e [y, e A ™) (") That is, we fix a valu& and we let the variational posterior
A ~ W(A| o, W) over the stick-breaking random variableg have the

Finally, taking under consideration the effect dfeetive property q(vx =1) = 1. This implies that the mixture

mixture components of the GDPM model, we choosalto proportionsm, (v) are equal to zero fok > K. Therefore, for

impose a hyper-prior over the innovation hyper-p@tera of  Gppm model proposed in this paper, the variatideesian
the GDPM model. We use a Gamma prior with parametgpsterior is given as the following form:

ns andnm, : a(®) = I a@)a@ T a0 T alme AY. - (14)
a | nyny ~ Tlafng,mg). ) (8) Then, substituting (10) and (14) into (12), we habe
Hencte, the annt pdrobatblllty of Iatsnt Var_'tf*’"a”d all following variational free energy for our model;
parameters considered up to now can be rewritten as ~ DA A 01 ¥
p(Y,Z, m(v),a, u,A) £L(a(®)) = Tt [ alime A In =5 Z(Pkk:Alli) = dind Ay
=p(Y | Z, 1, A) p(Z | m(¥))p(v | Op(it | A) p(A) ©) + [ a@In X 4+ S0 [ g(v) In 208 v, jda (15)
where the individual factors are K N _ p(za=k|n(v))
POV 12,1, ) =TT, TR N 3 | s A1) F i Znea 6l = 9 (A In TG S av

p(Z | (v)) =TI\, p(zn] (W), + J [ a(iue AIn p(yn [ Ax) dpiedAg}
zq [T(V)) = [TrZ; me (V) %0k |z € {0,1 10 o ) o ) -
EEV'] L)(:)r)loo_ rikal _k\(/k))oz—l 1\1,1; e{ [0} 1] (10) Derivation of the optimal variational posterior tilsution
p( | Aw) :kﬁ(uk I my, (e A'k)-1 ), p(Ak) =W( Al 0, Py). q(®) involves the maximization of the variational freeergy
(10) over each one of the factaré®;) of q(®) in turn, holding the
and others fixed. Using the calculus of variationszgah be shown
N |, 2) :le%ﬂ X exp (_% (v - Tz (y — ) .tar:(a;[rg;iebdezl.dstnbut|oq|(<b]-)* for each of the factors can be
= (w-d-1)/2 _1 -1 .
Wl o) =B, ¥) A = 75 exp (5 A a(@) = exp(Ey.;llogp(Y, @ £)])/Z,
B(w,¥) =¥~/ nd@ D/ x [IL, T(——) ™" where Z; denotes the normalized constant of variational
distribution q(®;) . Hence, the update equations for the
[ll.  VARIATIONAL BAYESIAN INFERENCE variational posteriors of each factors are givefolsws.

Inference for the GDPM model can be conducted baseal
Bayesian setting, typically by means of variatioBalyesian (1) The variational posterior of mixture componentigatior
methods. Variational Bayesian inference implie$ tha actual variable
posterior distributionp(® |E,Y) over a set of all hidden q(z, =k) =
variables and unknown parameters of GDPM modek  exp{ E{n(y[Inp(z = kIt(W)] + Eyaj[Inp(yn |20 = k, 1 Al }
{Z,v, o, p, A} given an observed date setand the set of the - (v) x p(y, | we Ay) (16)
hyper-parameters of the assumed priars; {A, m, w, ¥, Where
N1, N2} iS approximated by a variational Bayesian posteriof(v) = exp{ E[ qc[In p(z, = kIm(v))] }
distribution, q(®) . To derive the variational Bayesian = exp{E[qwy[InVil] + Z57 Efqeo[In (1 = vi) }
distribution q(®), we consider a well-known equation for the

. : Bn | o i) = exp {—3In 21 + ZEfq(a,)[In |Ax]
log evidencelog p(Y | E). This can be expressed as n etk 2 2 o] «

1

logp(Y | 2) = £(a(®) + D @(@Ip@I YD) (11) 2 ClamaniOn = 10" A = wl)
where ooyl = ) — s + B

Lla(®)) = @)1 p(Y|<l>)p(d>|E)dq> 12 [qw]UIN V| = k1)~ k1T Pk2)s

| (a(®) = Ja(®)log™g; 12) g nn( —vidl = W) — W(Bics + Bra),

an @) Elqquetio) [Vn = 10" Ak = )]

DiL(q(®)[Ip(@| Y, E) = [ q(®)log———d®. (13) —

P(PIV.E) . = —+ wi(yn — my) Wy (Yo — my)

Here, Dx.(q(®)||p(®] Y, E) stands for the Kullback-Leibler Ax .
(KL) divergence between the approximate variatiquuaterior Erqapi[InAgl] = —lnl% | + Zﬂzlw(“’k”' )

q(®) and the actual posterip(®|Y,£) andL(q(®)) called  wherey(-) is the Digamma function.
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(2) The variational posterior of the DP parameters
q(a) = exp {Inp(a) + Ejqey[Inp(v ()]}

where
Eqwilinp(v 0] = ZE;% EqoilInp(vi ()] .
Hence,
q(0) = T({1,fiz),
where

fii= M +K—1,1, = n, — TR][ LIJ(Gk,Z) - LIJ(Gk,l + Bk,z)]

(3) The variational posterior of stick-breaking iadtes
q(vi) = exp {E[q(z)[Inp(z [(v))] + Eq(ey[In p(vi [0)]}
where
E[q@[Inp(z [n(v))] = ZN_; q(zn = k)
EfqoiInp(vic [0)] = Ejglal + X1 Zh=1a(za = 1)
Hence,
q(vi) = Beta(By1,Br2) k=1, K-1
where

Bk,l =1+ Zgzl q(z, = K), Bk,z = 2_: + Z{iku Zgzl az, =D .

(18)

(4) The variational posterior of the likelihood fition
parameters

q(mi, A) = exp{In p(uy, A+ XN_1 4(Zn = K) (AN p(¥n M Ak} -
Hence,

q(e A) = NV ([ my, ey ) ™ DW (A [Py, wye
where
Nk = 2N214(Zn = K), A =2 + Ny, @ = wo + Ny
Fi = 1INt 4@ =K ¥
Sk = ZF:I a(zn = K) (Yo — Vi) (n
my = — (7\0"10 + Nk?k)

(19)

-y"

‘Pk—‘P0+Sk+

< (Fi — my) (Fi — my) "

Ao +N

As a last step, after updating the posterior digtions
(16)-(19) using the variational Bayesian inferealgwrithm for
the GDPM model at each iteration, we use a Bayesitn
which allocates each pixel to one of regions iroadance with
their posterior probabilities to segment a givetocamage.
That is, every pixel is assigned to the class hlatfe highest
posterior probability that the observation origathtfrom this
class.

IV. 3D GEOMETRY ESTIMATION

In this section, we present an automatic approaictréating
a 3D model based on region segmentation by statistidel

V.EXPERIMENTAL RESULTS

First, to verify the application of GDPM model tmage
segmentation, we have used various color images Bajure
1(a) shows the color images used at our experiarghfigure
1(b) also shows the results of segmentation foorcishages

7 using proposed model. From the experimental resuksnote

that our algorithm manage to discriminate exactigheobjects

E
Sd

(a) Color images (b) Segmentation results
Fig. 1 Results of segmentation for color imagesgitihe proposed
approach

1/

We can observe that the GDPM model is able to ageve
with the optimal likelihood function without depesrdt on
assumed initial values for model parameters. Theeefthis
model can classify or partition exactly each pixate proper
regions, and we can obtain the excellent segmeatgdns.

In order to test the performance of the proposethaotke we
use Hoiem’s publicly available code to generate3bemodel
from an image based MATLABE [13]. Fig. 2 shows the
qualitative results of the proposed method on séverages.
Therefore, we can set out with the goal of autocadti
creating visually pleasing 3D models for a 2D scefiean
outdoor image. We can create beautiful 3D scenegdidous

from a single scene. The model is made up of sbverlglages

texture-mapped plannar billboards and has the cexitplof a

typical children’s pop-up book illustration. Theoposed core
technology is that we are based on statistical-ingelemetric
features defined by their orientation componentthanimage
instead of attempting to recover precise geom&tingt of all,

regions are created by labeling of the segmentpdtiimage
into coarse categories: “ground”, “sky”, and “vedf’. In the

second step, each label is used to “cut and fblelirhage into a
pop-up model using a set of simple assumptiongeheral, we
can show the results for creating virtual walkttgls that is
completely automatic and requires only a singletpix@ph as
input scene [13].

International Scholarly and Scientific Research & Innovation 6(4) 2012

464

1SN1:0000000091950263



Open Science Index, Electronics and Communication Engineering Vol:6, No:4, 2012 publications.waset.org/7008.pdf

World Academy of Science, Engineering and Technology
Internationa Journal of Electronics and Communication Engineering
Vol:6, No:4, 2012

[11] Blei, D. M., Jordan, M. I.: Variational InferencerfDirichlet Process
Mixtures. Bayesian Analysis, 1(1), 121-144( 2006)

[12] Chatzis, S. P., Tsechpenakis, G.: The infinite ididd/arkov random
Field Model. IEEE Trans. on Neural Networks, 21(@)04-1014(2010).

[13] Hoiem, D., Alexei, A. E., and Martial H., Automatptoto pop-up, ACM
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Fig. 2 Input scenes and novel views taken fromraatizally
generated 3D models

VI. CONCLUSIONS

In this paper, we present automatically creatinguaily
pleasing 3D models from a single 2D image of adooit scene.
The proposed approach can observe single-view nmgdel
paves the way for a new class of applicationst,Hmsorder to
segment of ROI from natural scene, we apply new
segmentation method based GDPM model, which can
automatically determinate the number of mixture ponents
at a unsupervised segmentation. The method uses the
variational Bayesian inference method recently wétgn used,
and we have conducted to segment various color éméy
using the trained GDPM model. Therefore, the expenial
results indicate that the proposed method canfbetefe in 3D
modeling with natural single scene.
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