Search results for: Energy Efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4797

Search results for: Energy Efficiency

927 Effect of Using Stone Cutting Waste on the Compression Strength and Slump Characteristics of Concrete

Authors: Kamel K. Alzboon, Khalid N.Mahasneh

Abstract:

The aim of this work is to study the possible use of stone cutting sludge waste in concrete production, which would reduce both the environmental impact and the production cost .Slurry sludge was used a source of water in concrete production, which was obtained from Samara factory/Jordan, The physico-chemical and mineralogical characterization of the sludge was carried out to identify the major components and to compare it with the typical sand used to produce concrete. Samples analysis showed that 96% of slurry sludge volume is water, so it should be considered as an important source of water. Results indicated that the use of slurry sludge as water source in concrete production has insignificant effect on compression strength, while it has a sharp effect on the slump values. Using slurry sludge with a percentage of 25% of the total water content obtained successful concrete samples regarding slump and compression tests. To clarify slurry sludge, settling process can be used to remove the suspended solid. A settling period of 30 min. obtained 99% removal efficiency. The clarified water is suitable for using in concrete mixes, which reduce water consumption, conserve water recourses, increase the profit, reduce operation cost and save the environment. Additionally, the dry sludge could be used in the mix design instead of the fine materials with sizes < 160 um. This application could conserve the natural materials and solve the environmental and economical problem caused by sludge accumulation.

Keywords: Concrete, recycle, sludge, slurry waste, stone cutting waste, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3560
926 A Review of the Antecedents and Consequences of Employee Engagementc

Authors: Ibrahim Hamidu Magem

Abstract:

Employee engagement has continued to gain popularity among practitioners, consultants and academicians recent years. This is due to the fact that the engaged employees are central to organizational success in today’s highly competitive and rapidly changing business environment. Employee engagement depicts a situation whereby employee’s harnessed themselves to their work roles. The importance of employee engagement to organizations cannot be overemphasized in today’s rapidly changing business environment. Organizations both large and small are constantly striving to improve their performance, retain employees, reduce absenteeism, and create loyal customers among others. To be able to achieve these organizations need a team of highly engaged employees. In line with this, the study attempts to provide a valuable framework for understanding the antecedents and consequences of employee engagement in organizations. The paper categorizes the antecedents of employee engagement into individual and organizational factors which it is assumed that the existence of such factors could result into engaged employees that will be of benefit to organizations. Therefore, it is recommended that organizations should revisit and redesign its employee engagement system to enable them attain their organizational goals and objectives. In addition, organizations should note that engagement is personal but organizational engagement programmes should be about everyone in the organization. The findings from this paper adds to existing studies about employee engagement and also provide awareness to academics and practitioners about the importance of employee engagement to improve organizations efficiency and effectiveness, as well as to impact to overall firm performance.

Keywords: Antecedent, employee engagement, job involvement, organization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
925 Development of a Cost Effective Two Wheel Tractor Mounted Mobile Maize Sheller for Small Farmers in Bangladesh

Authors: M. Israil Hossain, T. P. Tiwari, Ashrafuzzaman Gulandaz, Nusrat Jahan

Abstract:

Two-wheel tractor (power tiller) is a common tillage tool in Bangladesh agriculture for easy access in fragmented land with affordable price of small farmers. Traditional maize sheller needs to be carried from place to place by hooking with two-wheel tractor (2WT) and set up again for shelling operation which takes longer time for preparation of maize shelling. The mobile maize sheller eliminates the transportation problem and can start shelling operation instantly any place as it is attached together with 2WT. It is counterclockwise rotating cylinder, axial flow type sheller, and grain separated with a frictional force between spike tooth and concave. The maize sheller is attached with nuts and bolts in front of the engine base of 2WT. The operating power of the sheller comes from the fly wheel of the engine of the tractor through ‘V” belt pulley arrangement. The average shelling capacity of the mobile sheller is 2.0 t/hr, broken kernel 2.2%, and shelling efficiency 97%. The average maize shelling cost is Tk. 0.22/kg and traditional custom hire rate is Tk.1.0/kg, respectively (1 US$=Tk.78.0). The service provider of the 2WT can transport the mobile maize sheller long distance in operator’s seating position. The manufacturers started the fabrication of mobile maize sheller. This mobile maize sheller is also compatible for the other countries where 2WT is available for farming operation.

Keywords: Cost effective, mobile maize sheller, maize shelling capacity, small farmers, two-wheel tractor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 900
924 Effect of Environmental Factors on Photoreactivation of Microorganisms under Indoor Conditions

Authors: Shirin Shafaei, James R. Bolton, Mohamed Gamal El Din

Abstract:

Ultraviolet (UV) disinfection causes damage to the DNA or RNA of microorganisms, but many microorganisms can repair this damage after exposure to near-UV or visible wavelengths (310–480 nm) by a mechanism called photoreactivation. Photoreactivation is gaining more attention because it can reduce the efficiency of UV disinfection of wastewater several hours after treatment. The focus of many photoreactivation research activities on the single species has caused a considerable lack in knowledge about complex natural communities of microorganisms and their response to UV treatment. In this research, photoreactivation experiments were carried out on the influent of the UV disinfection unit at a municipal wastewater treatment plant (WWTP) in Edmonton, Alberta after exposure to a Medium-Pressure (MP) UV lamp system to evaluate the effect of environmental factors on photoreactivation of microorganisms in the actual municipal wastewater. The effect of reactivation fluence, temperature, and river water on photoreactivation of total coliforms was examined under indoor conditions. The results showed that higher effective reactivation fluence values (up to 20 J/cm2) and higher temperatures (up to 25 °C) increased the photoreactivation of total coliforms. However, increasing the percentage of river in the mixtures of the effluent and river water decreased the photoreactivation of the mixtures. The results of this research can help the municipal wastewater treatment industry to examine the environmental effects of discharging their effluents into receiving waters.

Keywords: Photoreactivation, reactivation fluence, river water, temperature, ultraviolet disinfection, wastewater effluent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
923 Implicit Eulerian Fluid-Structure Interaction Method for the Modeling of Highly Deformable Elastic Membranes

Authors: Aymen Laadhari, Gábor Székely

Abstract:

This paper is concerned with the development of a fully implicit and purely Eulerian fluid-structure interaction method tailored for the modeling of the large deformations of elastic membranes in a surrounding Newtonian fluid. We consider a simplified model for the mechanical properties of the membrane, in which the surface strain energy depends on the membrane stretching. The fully Eulerian description is based on the advection of a modified surface tension tensor, and the deformations of the membrane are tracked using a level set strategy. The resulting nonlinear problem is solved by a Newton-Raphson method, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the presented method. We show that stability is maintained for significantly larger time steps.

Keywords: Fluid-membrane interaction, stretching, Eulerian, finite element method, Newton, implicit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1281
922 Investigating the Usability of a University Website from the Users’ Perspective: An Empirical Study of Benue State University Website

Authors: Abraham Undu, Stephen Akuma

Abstract:

Websites are becoming a major component of an organization’s success in our ever globalizing competitive world. The website symbolizes an organization, interacting or projecting an organization’s principles, culture, values, vision, and perspectives. It is an interface connecting organizations and their clients. The university, as an academic institution, makes use of a website to communicate and offer computing services to its stakeholders (students, staff, host community, university management etc). Unfortunately, website designers often give more consideration to the technology, organizational structure and business objectives of the university than to the usability of the site. Website designers end up designing university websites which do not meet the needs of the primary users. This empirical study investigated the Benue State University website from the point view of students. This research was realized by using a standardized website usability questionnaire based on the five factors of usability defined by WAMMI (Website Analysis and Measurement Inventory): attractiveness, controllability, efficiency, learnability and helpfulness. The result of the investigation showed that the university website (https://portal.bsum.edu.ng/) has neutral usability level because of the usability issues associated with the website. The research recommended feasible solutions to improve the usability of the website from the users’ perspective and also provided a modified usability model that will be used for better evaluation of the Benue State University website.

Keywords: Usability, usability factors, university websites, user’s perspective, WAMMI, modified usability model, Benue State University.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
921 Dissolution of Zeolite as a Sorbent in Flue Gas Desulphurization Process Using a pH Stat Apparatus

Authors: Hilary Rutto, John Kabuba

Abstract:

Sulphur dioxide is a harmful gaseous product that needs to be minimized in the atmosphere. This research work investigates the use of zeolite as a possible additive that can improve the sulphur dioxide capture in wet flue gas desulphurisation dissolution process. This work determines the effect of temperature, solid to liquid ratio, acid concentration and stirring speed on the leaching of zeolite using a pH stat apparatus. The atomic absorption spectrometer was used to measure the calcium ions from the solution. It was found that the dissolution rate of zeolite decreased with increase in solid to liquid ratio and increases with increase in temperature, stirring speed and acid concentration. The activation energy for the dissolution rate of zeolite in hydrochloric acid was found to be 9.29kJ/mol. and therefore the product layer diffusion was the rate limiting step.

Keywords: Calcium ion, pH stat apparatus, wet flue gas desulphurization, zeolite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
920 Sustainable Solutions for Municipal Solid Waste Management in Thailand

Authors: Thaniya Kaosol

Abstract:

General as well as the MSW management in Thailand is reviewed in this paper. Topics include the MSW generation, sources, composition, and trends. The review, then, moves to sustainable solutions for MSW management, sustainable alternative approaches with an emphasis on an integrated MSW management. Information of waste in Thailand is also given at the beginning of this paper for better understanding of later contents. It is clear that no one single method of MSW disposal can deal with all materials in an environmentally sustainable way. As such, a suitable approach in MSW management should be an integrated approach that could deliver both environmental and economic sustainability. With increasing environmental concerns, the integrated MSW management system has a potential to maximize the useable waste materials as well as produce energy as a by-product. In Thailand, the compositions of waste (86%) are mainly organic waste, paper, plastic, glass, and metal. As a result, the waste in Thailand is suitable for an integrated MSW management. Currently, the Thai national waste management policy starts to encourage the local administrations to gather into clusters to establish central MSW disposal facilities with suitable technologies and reducing the disposal cost based on the amount of MSW generated.

Keywords: MSW, management, sustainable, Thailand

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5812
919 Compact Ultra-Wideband Printed Monopole Antenna with Inverted L-Shaped Slots for Data Communication and RF Energy Harvesting

Authors: Mohamed Adel Sennouni, Jamal Zbitou, Benaissa Abboud, Abdelwahed Tribak, Hamid Bennis, Mohamed Latrach

Abstract:

A compact UWB planar antenna fed with a microstrip-line is proposed. The new design consist of a rectangular patch with symmetric l-shaped slots and fed by 50 Ω microstrip transmission line and a reduced ground-plane which have a periodic slots with an overall size of 47 mm x 20 mm. It is intended to be used in wireless applications that cover the ultra-wideband (UWB) frequency band. A wider impedance bandwidth of around 116.5% (1.875 – 7.115 GHz) with stable radiation pattern is achieved. The proposed antenna has excellent characteristics, low profile and costeffective compared to existing UWB antennas. The UWB antenna is designed and analyzed using CST Microwave Studio in transient mode to verify antenna parameters improvements.

Keywords: UWB Planar Antenna, L-shaped Slots, Wireless Applications, impedance band-width, radiation pattern, CST Microwave Studio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2756
918 An Investigation into Sealing Materials for Vacuum Glazing

Authors: Paul Onyegbule, Harjit Singh

Abstract:

Vacuum glazing is an innovative transparent thermal insulator that has application in high performance window, especially in renewable energy. Different materials as well as sealing methods have been adopted to seal windows with different temperatures. The impact of temperatures on sealing layers has been found to have significant effects on the microstructure of the seal. This paper seeks to investigate the effects of sealing materials specifically glass powder and flux compound (borax) for vacuum glazing. The findings of the experiment conducted show that the sealing material was rigid with some leakage around the edge, and we found that this could be stopped by enhancing the uniformity of the seal within the periphery. Also, we found that due to the intense tensile stress from the oven surface temperature of the seal at 200 0C, a crack was observed at the side of the glass. Based on the above findings, this study concludes that a glass powder with a lower melting temperature of below 250 0C with the addition of an adhesive (borax flux) should be used for future vacuum seals.

Keywords: Double glazed windows, U-value, borax powder, edge seal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 808
917 Natural Convection in Wavy-Wall Cavities Filled with Power-Law Fluid

Authors: Cha’o-Kuang Chen, Ching-Chang Cho

Abstract:

This paper investigates the natural convection heat transfer performance in a complex-wavy-wall cavity filled with power-law fluid. In performing the simulations, the continuity, Cauchy momentum and energy equations are solved subject to the Boussinesq approximation using a finite volume method. The simulations focus specifically on the effects of the flow behavior index in the power-law model and the Rayleigh number on the flow streamlines, isothermal contours and mean Nusselt number within the cavity. The results show that pseudoplastic fluids have a better heat transfer performance than Newtonian or dilatant fluids. Moreover, it is shown that for Rayleigh numbers greater than Ra=103, the mean Nusselt number has a significantly increase as the flow behavior index is decreased.

Keywords: Non-Newtonian fluid, Power-law fluid, Natural convection, Heat transfer enhancement, Cavity, Wavy wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1983
916 A Novel Machining Signal Filtering Technique: Z-notch Filter

Authors: Nuawi M. Z., Lamin F., Ismail A. R., Abdullah S., Wahid Z.

Abstract:

A filter is used to remove undesirable frequency information from a dynamic signal. This paper shows that the Znotch filter filtering technique can be applied to remove the noise nuisance from a machining signal. In machining, the noise components were identified from the sound produced by the operation of machine components itself such as hydraulic system, motor, machine environment and etc. By correlating the noise components with the measured machining signal, the interested components of the measured machining signal which was less interfered by the noise, can be extracted. Thus, the filtered signal is more reliable to be analysed in terms of noise content compared to the unfiltered signal. Significantly, the I-kaz method i.e. comprises of three dimensional graphical representation and I-kaz coefficient, Z∞ could differentiate between the filtered and the unfiltered signal. The bigger space of scattering and the higher value of Z∞ demonstrated that the signal was highly interrupted by noise. This method can be utilised as a proactive tool in evaluating the noise content in a signal. The evaluation of noise content is very important as well as the elimination especially for machining operation fault diagnosis purpose. The Z-notch filtering technique was reliable in extracting noise component from the measured machining signal with high efficiency. Even though the measured signal was exposed to high noise disruption, the signal generated from the interaction between cutting tool and work piece still can be acquired. Therefore, the interruption of noise that could change the original signal feature and consequently can deteriorate the useful sensory information can be eliminated.

Keywords: Digital signal filtering, I-kaz method, Machiningmonitoring, Noise Cancelling, Sound

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
915 Using Genetic Algorithms to Outline Crop Rotations and a Cropping-System Model

Authors: Nicolae Bold, Daniel Nijloveanu

Abstract:

The idea of cropping-system is a method used by farmers. It is an environmentally-friendly method, protecting the natural resources (soil, water, air, nutritive substances) and increase the production at the same time, taking into account some crop particularities. The combination of this powerful method with the concepts of genetic algorithms results into a possibility of generating sequences of crops in order to form a rotation. The usage of this type of algorithms has been efficient in solving problems related to optimization and their polynomial complexity allows them to be used at solving more difficult and various problems. In our case, the optimization consists in finding the most profitable rotation of cultures. One of the expected results is to optimize the usage of the resources, in order to minimize the costs and maximize the profit. In order to achieve these goals, a genetic algorithm was designed. This algorithm ensures the finding of several optimized solutions of cropping-systems possibilities which have the highest profit and, thus, which minimize the costs. The algorithm uses genetic-based methods (mutation, crossover) and structures (genes, chromosomes). A cropping-system possibility will be considered a chromosome and a crop within the rotation is a gene within a chromosome. Results about the efficiency of this method will be presented in a special section. The implementation of this method would bring benefits into the activity of the farmers by giving them hints and helping them to use the resources efficiently.

Keywords: Genetic algorithm, chromosomes, genes, cropping, agriculture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
914 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement

Authors: Ferinar Moaidi, Mahdi Moaidi

Abstract:

Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.

Keywords: Distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049
913 Mechanical Properties Enhancement of 66/34Mg-Alloy for Medical Application

Authors: S. O. Adeosun, O. I. Sekunowo, O. P. Gbenebor, W. A. Ayoola, A. O. Odunade, T. A. Idowu

Abstract:

Sand cast samples of the as-received 66/34Mg-Al alloy were first homogenized at 4900C and then divided into three groups on which annealing, normalising and artificial ageing were respectively carried out. Thermal ageing of the samples involved treatment at 5000C, soaked for 4 hours and quenched in water at ambient temperature followed by tempering at 2000C for 2 hours. Test specimens were subjected to microstructure and mechanical analyses and the results compared. Precipitation of significant volume of stable Mg17Al12 crystals in the aged specimen’s matrix conferred superior mechanical characteristics compared with the annealed, normalized and as-cast specimens. The ultimate tensile strength was 93.4MPa with micro-hardness of 64.9HRC and impact energy (toughness) of 4.05J. In particular, its Young modulus was 10.4GPa which compared well with that of cortical (trabecule) bone’s modulus that varies from 12-17GPa.

Keywords: Mg-Al alloy, artificial ageing, medical implant, cortical bone, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
912 Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method

Authors: Mohammed T. Hayajneh

Abstract:

Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al2O3 particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life.

Keywords: Composite, fuzzy, tool life, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085
911 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle

Authors: S. Chahba, R. Sehab, A. Akrad, C. Morel

Abstract:

Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.

Keywords: Electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit fault diagnosis, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 438
910 ED Machining of Particulate Reinforced MMC’s

Authors: Sarabjeet Singh Sidhu, Ajay Batish, Sanjeev Kumar

Abstract:

This paper reports the optimal process conditions for machining of three different types of MMC’s 65vol%SiC/A356.2; 10vol%SiC-5vol%quartz/Al and 30vol%SiC/A359 using PMEDM process. MRR, TWR, SR and surface integrity were evaluated after each trial and contributing process parameters were identified. The four responses were then collectively optimized using TOPSIS and optimal process conditions were identified for each type of MMC. The density of reinforced particles shields the matrix material from spark energy hence the high MRR and SR was observed with lowest reinforced particle. TWR was highest with Cu-Gr electrode due to disintegration of the weakly bonded particles in the composite electrode. Each workpiece was examined for surface integrity and ranked as per severity of surface defects observed and their rankings were used for arriving at the most optimal process settings for each workpiece. 

Keywords: Metal matrix composites (MMCs), Metal removal rate (MRR), Surface roughness (SR), Surface integrity (SI), Tool wear rate (TWR), Technique for order preference by similarity to ideal solution (TOPSIS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2871
909 Model Predictive Control Using Thermal Inputs for Crystal Growth Dynamics

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

Recently, crystal growth technologies have made progress by the requirement for the high quality of crystal materials. To control the crystal growth dynamics actively by external forces is useuful for reducing composition non-uniformity. In this study, a control method based on model predictive control using thermal inputs is proposed for crystal growth dynamics of semiconductor materials. The control system of crystal growth dynamics considered here is governed by the continuity, momentum, energy, and mass transport equations. To establish the control method for such thermal fluid systems, we adopt model predictive control known as a kind of optimal feedback control in which the control performance over a finite future is optimized with a performance index that has a moving initial time and terminal time. The objective of this study is to establish a model predictive control method for crystal growth dynamics of semiconductor materials.

Keywords: Model predictive control, optimal control, crystal growth, process control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 820
908 Removal of Volatile Organic Compounds from Contaminated Surfactant Solution using Co-Curren Vacuum Stripping

Authors: Pornchai Suriya-Amrit, Suratsawadee Kungsanant, Boonyarach Kitiyanan

Abstract:

There has been a growing interest in utilizing surfactants in remediation processes to separate the hydrophobic volatile organic compounds (HVOCs) from aqueous solution. One attractive process is cloud point extraction (CPE), which utilizes nonionic surfactants as a separating agent. Since the surfactant cost is a key determination of the economic viability of the process, it is important that the surfactants are recycled and reused. This work aims to study the performance of the co-current vacuum stripping using a packed column for HVOCs removal from contaminated surfactant solution. Six types HVOCs are selected as contaminants. The studied surfactant is the branched secondary alcohol ethoxylates (AEs), Tergitol TMN-6 (C14H30O2). The volatility and the solubility of HVOCs in surfactant system are determined in terms of an apparent Henry’s law constant and a solubilization constant, respectively. Moreover, the HVOCs removal efficiency of vacuum stripping column is assessed in terms of percentage of HVOCs removal and the overall liquid phase volumetric mass transfer coefficient. The apparent Henry’s law constant of benzenz , toluene, and ethyl benzene were 7.00×10-5, 5.38×10-5, 3.35× 10-5 respectively. The solubilization constant of benzene, toluene, and ethyl benzene were 1.71, 2.68, 7.54 respectively. The HVOCs removal for all solute were around 90 percent.

Keywords: Apparent Henry’s law constant, Branched secondary alcohol ethoxylates, Vacuum Stripping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
907 Material Failure Process Simulation by Improve Finite Elements with Embedded Discontinuities

Authors: Juárez-Luna Gelacio, Ayala Gustavo, Retama-Velasco Jaime

Abstract:

This paper shows the advantages of the material failure process simulation by improve finite elements with embedded discontinuities, using a new definition of traction vector, dependent on the discontinuity length and the angle. Particularly, two families of this kind of elements are compared: kinematically optimal symmetric and statically and kinematically optimal non-symmetric. The constitutive model to describe the behavior of the material in the symmetric formulation is a traction-displacement jump relationship equipped with softening after reaching the failure surface.

To show the validity of this symmetric formulation, representative numerical examples illustrating the performance of the proposed formulation are presented. It is shown that the non-symmetric family may over or underestimate the energy required to create a discontinuity, as this effect is related with the total length of the discontinuity, fact that is not noticed when the discontinuity path is a straight line.

Keywords: Variational formulation, strong discontinuity, embedded discontinuities, strain localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
906 Durability Enhancement of CaSO4 in Repetitive Operation of Chemical Heat Pump

Authors: Y. Shiren, M. Masuzawa, H. Ohkura, T. Yamagata, Y. Aman, N. Kobayashi

Abstract:

An important problem for the CaSO4/CaSO4・1/2H2O Chemical heat pump (CHP) is that the material is deactivated through repetitive reaction between hydration and dehydration in which the crystal phase of the material is transformed from III-CaSO4 to II-CaSO4. We investigated suppression on the phase change by adding a sulfated compound. The most effective material was MgSO4. MgSO4 doping increased the durability of CaSO4 in the actual CHP repetitive cycle of hydration/dehydration to 3.6 times that of undoped CaSO4. The MgSO4-doped CaSO4 showed a higher phase transition temperature and activation energy for crystal transformation from III-CaSO4 to II-CaSO4. MgSO4 doping decreased the crystal lattice size of CaSO4・1/2H2O and II-CaSO4 to smaller than that of undoped CaSO4. Modification of the crystal structure is considered to be related to the durability change in CaSO4 resulting from MgSO4 doping.

Keywords: CaSO4, chemical heat pump, durability of chemical heat storage material, heat storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
905 Ice Load Measurements on Known Structures Using Image Processing Methods

Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

This study employs a method based on image analyses and structure information to detect accumulated ice on known structures. The icing of marine vessels and offshore structures causes significant reductions in their efficiency and creates unsafe working conditions. Image processing methods are used to measure ice loads automatically. Most image processing methods are developed based on captured image analyses. In this method, ice loads on structures are calculated by defining structure coordinates and processing captured images. A pyramidal structure is designed with nine cylindrical bars as the known structure of experimental setup. Unsymmetrical ice accumulated on the structure in a cold room represents the actual case of experiments. Camera intrinsic and extrinsic parameters are used to define structure coordinates in the image coordinate system according to the camera location and angle. The thresholding method is applied to capture images and detect iced structures in a binary image. The ice thickness of each element is calculated by combining the information from the binary image and the structure coordinate. Averaging ice diameters from different camera views obtains ice thicknesses of structure elements. Comparison between ice load measurements using this method and the actual ice loads shows positive correlations with an acceptable range of error. The method can be applied to complex structures defining structure and camera coordinates.

Keywords: Camera calibration, Ice detection, ice load measurements, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
904 Experimental Characterization of Anisotropic Mechanical Properties of Textile Woven Fabric

Authors: Rym Zouari, Sami Ben Amar, Abdelwaheb Dogui

Abstract:

This paper presents an experimental characterization of the anisotropic mechanical behavior of 4 textile woven fabrics with different weaves (Twill 3, Plain, Twill4 and Satin 4) by off-axis tensile testing. These tests are applied according seven directions oriented by 15° increment with respect to the warp direction. Fixed and articulated jaws are used. Analysis of experimental results is done through global (Effort/Elongation curves) and local scales. Global anisotropy was studied from the Effort/Elongation curves: shape, breaking load (Frup), tensile elongation (EMT), tensile energy (WT) and linearity index (LT). Local anisotropy was studied from the measurement of strain tensor components in the central area of the specimen as a function of testing orientation and effort: longitudinal strain ɛL, transverse strain ɛT and shearing ɛLT. The effect of used jaws is also analyzed.

Keywords: Anisotropy, Off-axis tensile test, strain fields, Textile woven fabric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
903 Cardiac Disorder Classification Based On Extreme Learning Machine

Authors: Chul Kwak, Oh-Wook Kwon

Abstract:

In this paper, an extreme learning machine with an automatic segmentation algorithm is applied to heart disorder classification by heart sound signals. From continuous heart sound signals, the starting points of the first (S1) and the second heart pulses (S2) are extracted and corrected by utilizing an inter-pulse histogram. From the corrected pulse positions, a single period of heart sound signals is extracted and converted to a feature vector including the mel-scaled filter bank energy coefficients and the envelope coefficients of uniform-sized sub-segments. An extreme learning machine is used to classify the feature vector. In our cardiac disorder classification and detection experiments with 9 cardiac disorder categories, the proposed method shows significantly better performance than multi-layer perceptron, support vector machine, and hidden Markov model; it achieves the classification accuracy of 81.6% and the detection accuracy of 96.9%.

Keywords: Heart sound classification, extreme learning machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
902 The Evaluation of Electricity Generation and Consumption from Solar Generator: A Case Study at Rajabhat Suan Sunandha’s Learning Center in Samutsongkram

Authors: Chonmapat Torasa

Abstract:

This paper presents the performance of electricity generation and consumption from solar generator installed at Rajabhat Suan Sunandha’s learning center in Samutsongkram. The result from the experiment showed that solar cell began to work and distribute the current into the system when the solar energy intensity was 340 w/m2, starting from 8:00 am to 4:00 pm (duration of 8 hours). The highest intensity read during the experiment was 1,051.64w/m2. The solar power was 38.74kWh/day. The electromotive force from solar cell averagely was 93.6V. However, when connecting solar cell with the battery charge controller system, the voltage was dropped to 69.07V. After evaluating the power distribution ability and electricity load of tested solar cell, the result showed that it could generate power to 11 units of 36-watt fluorescent lamp bulbs, which was altogether 396W. In the meantime, the AC to DC power converter generated 3.55A to the load, and gave 781VA.

Keywords: Solar Cell, Solar-cell power generating system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
901 Flight Control of TUAV with Coaxial Rotor and Ducted Fan Configuration by NARMA-L2 Controllers for Enhanced Situational Awareness

Authors: Igor Astrov, Andrus Pedai, Boris Gordon

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for tactical unmanned aerial vehicle (TUAV). With the SA strategy, we proposed a two stage flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory for an unmanned helicopter model with coaxial rotor and ducted fan configuration. This control strategy for chosen model of TUAV has been verified by simulation of hovering maneuvers using software package Simulink and demonstrated good performance for fast stabilization of engines in hovering, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.

Keywords: Coaxial rotors, ducted fan, NARMA-L2 neurocontroller, situational awareness, tactical unmanned aerial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304
900 Implementation of TinyHash based on Hash Algorithm for Sensor Network

Authors: HangRok Lee, YongJe Choi, HoWon Kim

Abstract:

In recent years, it has been proposed security architecture for sensor network.[2][4]. One of these, TinySec by Chris Kalof, Naveen Sastry, David Wagner had proposed Link layer security architecture, considering some problems of sensor network. (i.e : energy, bandwidth, computation capability,etc). The TinySec employs CBC_mode of encryption and CBC-MAC for authentication based on SkipJack Block Cipher. Currently, This TinySec is incorporated in the TinyOS for sensor network security. This paper introduces TinyHash based on general hash algorithm. TinyHash is the module in order to replace parts of authentication and integrity in the TinySec. it implies that apply hash algorithm on TinySec architecture. For compatibility about TinySec, Components in TinyHash is constructed as similar structure of TinySec. And TinyHash implements the HMAC component for authentication and the Digest component for integrity of messages. Additionally, we define the some interfaces for service associated with hash algorithm.

Keywords: sensor network security, nesC, TinySec, TinyOS, Hash, HMAC, integrity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2348
899 PAPR Reduction of FBMC Using Sliding Window Tone Reservation Active Constellation Extension Technique

Authors: V. Sandeep Kumar, S. Anuradha

Abstract:

The high Peak to Average Power Ratio (PAR) in Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation (FBMC-OQAM) can significantly reduce power efficiency and performance. In this paper, we address the problem of PAPR reduction for FBMC-OQAM systems using Tone Reservation (TR) technique. Due to the overlapping structure of FBMCOQAM signals, directly applying TR schemes of OFDM systems to FBMC-OQAM systems is not effective. We improve the tone reservation (TR) technique by employing sliding window with Active Constellation Extension for the PAPR reduction of FBMC-OQAM signals, called sliding window tone reservation Active Constellation Extension (SW-TRACE) technique. The proposed SW-TRACE technique uses the peak reduction tones (PRTs) of several consecutive data blocks to cancel the peaks of the FBMC-OQAM signal inside a window, with dynamically extending outer constellation points in active(data-carrying) channels, within margin-preserving constraints, in order to minimize the peak magnitude. Analysis and simulation results compared to the existing Tone Reservation (TR) technique for FBMC/OQAM system. The proposed method SW-TRACE has better PAPR performance and lower computational complexity.

Keywords: FBMC-OQAM, peak-to-average power ratio, sliding window, tone reservation Active Constellation Extension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2836
898 Removal of Copper and Zinc Ions onto Biomodified Palm Shell Activated Carbon

Authors: Gulnaziya Issabayeva, Mohamed Kheireddine Aroua

Abstract:

commercially produced in Malaysia granular palm shell activated carbon (PSAC) was biomodified with bacterial biomass (Bacillus subtilis) to produce a hybrid biosorbent of higher efficiency. The obtained biosorbent was evaluated in terms of adsorption capacity to remove copper and zinc metal ions from aqueous solutions. The adsorption capacity was evaluated in batch adsorption experiments where concentrations of metal ions varied from 20 to 350 mg/L. A range of pH from 3 to 6 of aqueous solutions containing metal ions was tested. Langmuir adsorption model was used to interpret the experimental data. Comparison of the adsorption data of the biomodified and original palm shell activated carbon showed higher uptake of metal ions by the hybrid biosorbent. A trend in metal ions uptake increase with the increase in the solution-s pH was observed. The surface characterization data indicated a decrease in the total surface area for the hybrid biosorbent; however the uptake of copper and zinc by it was at least equal to the original PSAC at pH 4 and 5. The highest capacity of the hybrid biosorbent was observed at pH 5 and comprised 22 mg/g and 19 mg/g for copper and zinc, respectively. The adsorption capacity at the lowest pH of 3 was significantly low. The experimental results facilitated identification of potential factors influencing the adsorption of copper and zinc onto biomodified and original palm shell activated carbon.

Keywords: Adsorption, biomodification, copper, zinc, palm shell carbon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857