Search results for: the maximizer of the posterior marginal estimate
530 Performance Prediction of Multi-Agent Based Simulation Applications on the Grid
Authors: Dawit Mengistu, Lars Lundberg, Paul Davidsson
Abstract:
A major requirement for Grid application developers is ensuring performance and scalability of their applications. Predicting the performance of an application demands understanding its specific features. This paper discusses performance modeling and prediction of multi-agent based simulation (MABS) applications on the Grid. An experiment conducted using a synthetic MABS workload explains the key features to be included in the performance model. The results obtained from the experiment show that the prediction model developed for the synthetic workload can be used as a guideline to understand to estimate the performance characteristics of real world simulation applications.Keywords: Grid computing, Performance modeling, Performance prediction, Multi-agent simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449529 Determinants of the U.S. Current Account
Authors: Shuh Liang
Abstract:
This article provides empirical evidence on the effect of domestic and international factors on the U.S. current account deficit. Linear dynamic regression and vector autoregression models are employed to estimate the relationships during the period from 1986 to 2011. The findings of this study suggest that the current and lagged private saving rate and foreign current account for East Asian economies have played a vital role in affecting the U.S. current account. Additionally, using Granger causality tests and variance decompositions, the change of the productivity growth and foreign domestic demand are determined to influence significantly the change of the U.S. current account. To summarize, the empirical relationship between the U.S. current account deficit and its determinants is sensitive to alternative regression models and specifications.Keywords: Current account deficit, productivity growth, foreign demand, vector autoregression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721528 Concentrations and History of Heavy Metals in Sediment Cores: Geochemistry and Geochronology Using 210Pb
Authors: F. Fernandes, C. Poleto
Abstract:
This paper aims at assessing the concentrations of heavy metals and the isotopic composition of lead 210Pb in different fractions of sediment produced in the watershed that makes up the Mãe d'água dam and thus characterizing the distribution of metals along the sedimentary column and inferencing in the urbanization of the same process. Sample collection was carried out in June 2014; eight sediment cores were sampled in the lake of the dam. For extraction of the sediments core, a core sampler “Piston Core” was used. The trace metal concentrations were determined by conventional atomic absorption spectrophotometric methods. The samples were subjected to radiochemical analysis of 210Po. 210Pb activity was obtained by measuring 210Po activity. The chronology was calculated using the constant rate of supply (CRS). 210Pb is used to estimate the sedimentation rate.
Keywords: 210Pb dating method, heavy metal, lakes urban, pollution history.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1114527 Predictability of the Two Commonly Used Models to Represent the Thin-layer Re-wetting Characteristics of Barley
Authors: M. A. Basunia
Abstract:
Thirty three re-wetting tests were conducted at different combinations of temperatures (5.7- 46.30C) and relative humidites (48.2-88.6%) with barley. Two most commonly used thinlayer drying and rewetting models i.e. Page and Diffusion were compared for their ability to the fit the experimental re-wetting data based on the standard error of estimate (SEE) of the measured and simulated moisture contents. The comparison shows both the Page and Diffusion models fit the re-wetting experimental data of barley well. The average SEE values for the Page and Diffusion models were 0.176 % d.b. and 0.199 % d.b., respectively. The Page and Diffusion models were found to be most suitable equations, to describe the thin-layer re-wetting characteristics of barley over a typically five day re-wetting. These two models can be used for the simulation of deep-bed re-wetting of barley occurring during ventilated storage and deep bed drying.Keywords: Thin-layer, barley, re-wetting parameters, temperature, relative humidity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498526 Application of Neural Network and Finite Element for Prediction the Limiting Drawing Ratio in Deep Drawing Process
Authors: H.Mohammadi Majd, M.Jalali Azizpour, A.V. Hoseini
Abstract:
In this paper back-propagation artificial neural network (BPANN) is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.Keywords: Back-propagation artificial neural network(BPANN), deep drawing, prediction, limiting drawing ratio (LDR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728525 Alternative Robust Estimators for the Shape Parameters of the Burr XII Distribution
Authors: F. Z. Doğru, O. Arslan
Abstract:
In general, classical methods such as maximum likelihood (ML) and least squares (LS) estimation methods are used to estimate the shape parameters of the Burr XII distribution. However, these estimators are very sensitive to the outliers. To overcome this problem we propose alternative robust estimators based on the M-estimation method for the shape parameters of the Burr XII distribution. We provide a small simulation study and a real data example to illustrate the performance of the proposed estimators over the ML and the LS estimators. The simulation results show that the proposed robust estimators generally outperform the classical estimators in terms of bias and root mean square errors when there are outliers in data.
Keywords: Burr XII distribution, robust estimator, M-estimator, maximum likelihood, least squares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2659524 Day Type Identification for Algerian Electricity Load using Kohonen Maps
Authors: Mohamed Tarek Khadir, Damien Fay, Ahmed Boughrira
Abstract:
Short term electricity demand forecasts are required by power utilities for efficient operation of the power grid. In a competitive market environment, suppliers and large consumers also require short term forecasts in order to estimate their energy requirements in advance. Electricity demand is influenced (among other things) by the day of the week, the time of year and special periods and/or days such as Ramadhan, all of which must be identified prior to modelling. This identification, known as day-type identification, must be included in the modelling stage either by segmenting the data and modelling each day-type separately or by including the day-type as an input. Day-type identification is the main focus of this paper. A Kohonen map is employed to identify the separate day-types in Algerian data.Keywords: Day type identification, electricity Load, Kohonenmaps, load forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791523 Comparison between Beta Wavelets Neural Networks, RBF Neural Networks and Polynomial Approximation for 1D, 2DFunctions Approximation
Authors: Wajdi Bellil, Chokri Ben Amar, Adel M. Alimi
Abstract:
This paper proposes a comparison between wavelet neural networks (WNN), RBF neural network and polynomial approximation in term of 1-D and 2-D functions approximation. We present a novel wavelet neural network, based on Beta wavelets, for 1-D and 2-D functions approximation. Our purpose is to approximate an unknown function f: Rn - R from scattered samples (xi; y = f(xi)) i=1....n, where first, we have little a priori knowledge on the unknown function f: it lives in some infinite dimensional smooth function space and second the function approximation process is performed iteratively: each new measure on the function (xi; f(xi)) is used to compute a new estimate f as an approximation of the function f. Simulation results are demonstrated to validate the generalization ability and efficiency of the proposed Beta wavelet network.
Keywords: Beta wavelets networks, RBF neural network, training algorithms, MSE, 1-D, 2D function approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922522 Estimating Regression Effects in Com Poisson Generalized Linear Model
Authors: Vandna Jowaheer, Naushad A. Mamode Khan
Abstract:
Com Poisson distribution is capable of modeling the count responses irrespective of their mean variance relation and the parameters of this distribution when fitted to a simple cross sectional data can be efficiently estimated using maximum likelihood (ML) method. In the regression setup, however, ML estimation of the parameters of the Com Poisson based generalized linear model is computationally intensive. In this paper, we propose to use quasilikelihood (QL) approach to estimate the effect of the covariates on the Com Poisson counts and investigate the performance of this method with respect to the ML method. QL estimates are consistent and almost as efficient as ML estimates. The simulation studies show that the efficiency loss in the estimation of all the parameters using QL approach as compared to ML approach is quite negligible, whereas QL approach is lesser involving than ML approach.
Keywords: Com Poisson, Cross-sectional, Maximum Likelihood, Quasi likelihood
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763521 Prediction the Limiting Drawing Ratio in Deep Drawing Process by Back Propagation Artificial Neural Network
Authors: H.Mohammadi Majd, M.Jalali Azizpour, M. Goodarzi
Abstract:
In this paper back-propagation artificial neural network (BPANN) with Levenberg–Marquardt algorithm is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.Keywords: BPANN, deep drawing, prediction, limiting drawingratio (LDR), Levenberg–Marquardt algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855520 Uplink Throughput Prediction in Cellular Mobile Networks
Authors: Engin Eyceyurt, Josko Zec
Abstract:
The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.Keywords: Drive test, LTE, machine learning, uplink throughput prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 899519 Spectrum Sensing Based On the Cyclostationarity of PU Signals in High Traffic Environments
Authors: Keunhong Chae, Youngpo Lee, Seokho Yoon
Abstract:
In cognitive radio (CR) systems, the primary user (PU) signal would randomly depart or arrive during the sensing period of a CR user, which is referred to as the high traffic environment. In this paper, we propose a novel spectrum sensing scheme based on the cyclostationarity of PU signals in high traffic environments. Specifically, we obtain a test statistic by applying an estimate of spectral autocoherence function of the PU signal to the generalized- likelihood ratio. From numerical results, it is confirmed that the proposed scheme provides a better spectrum sensing performance compared with the conventional spectrum sensing scheme based on the energy of the PU signals in high traffic environments.
Keywords: Spectrum sensing, cyclostationarity, high traffic environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856518 Using Adaptive Pole Placement Control Strategy for Active Steering Safety System
Authors: Hadi Adibi-Asl, Alireza Doosthosseini, Amir Taghavipour
Abstract:
This paper studies the design of an adaptive control strategy to tune an active steering system for better drivability and maneuverability. In the first step, adaptive control strategy is applied to estimate the uncertain parameters on-line (e.g. cornering stiffness), then the estimated parameters are fed into the pole placement controller to generate corrective feedback gain to improve the steering system dynamic’s characteristics. The simulations are evaluated for three types of road conditions (dry, wet, and icy), and the performance of the adaptive pole placement control (APPC) are compared with pole placement control (PPC) and a passive system. The results show that the APPC strategy significantly improves the yaw rate and side slip angle of a bicycle plant model.Keywords: Adaptive control, active steering, pole placement, vehicle dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347517 Directionally-Sensitive Personal Wearable Radiation Dosimeter
Authors: Hai Huu Le, Paul Junor, Moshi Geso, Graeme O’Keefe
Abstract:
In this paper, the authors propose a personal wearable directionally-sensitive radiation dosimeter using multiple semiconductor CdZnTe detectors. The proposed dosimeter not only measures the real-time dose rate but also provide the direction of the radioactive source. A linear relationship between radioactive source direction and the radiation intensity measured by each detectors is established and an equation to determine the source direction is derived by the authors. The efficiency and accuracy of the proposed dosimeter is verified by simulation using Geant4 package. Results have indicated that in a measurement duration of about 7 seconds, the proposed dosimeter was able to estimate the direction of a 10μCi 137/55Cs radioactive source to within 2 degrees.Keywords: Dose rate, Geant4 package, radiation detectors, radioactive source direction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198516 Localization of Mobile Robots with Omnidirectional Cameras
Authors: Tatsuya Kato, Masanobu Nagata, Hidetoshi Nakashima, Kazunori Matsuo
Abstract:
Localization of mobile robots are important tasks for developing autonomous mobile robots. This paper proposes a method to estimate positions of a mobile robot using a omnidirectional camera on the robot. Landmarks for points of references are set up on a field where the robot works. The omnidirectional camera which can obtain 360 [deg] around images takes photographs of these landmarks. The positions of the robots are estimated from directions of these landmarks that are extracted from the images by image processing. This method can obtain the robot positions without accumulative position errors. Accuracy of the estimated robot positions by the proposed method are evaluated through some experiments. The results show that it can obtain the positions with small standard deviations. Therefore the method has possibilities of more accurate localization by tuning of appropriate offset parameters.
Keywords: Mobile robots, Localization, Omnidirectional camera.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337515 Performance Evaluation of Single Basin Solar Still
Authors: Prem Singh, Jagdeep Singh
Abstract:
In an attempt to investigate the performance of single basin solar still for climate conditions of Ludhiana a single basin solar still was designed, fabricated and tested. The energy balance equations for various parts of the still are solved by Gauss-Seidel iteration method. Computer model was made and experimentally validated. The validated computer model was used to estimate the annual distillation yield and performance ratio of the still for Ludhiana. The Theoretical and experimental distillation yield were 4318.79 ml and 3850 ml respectively for the typical day. The predicted distillation yield was 12.5% higher than the experimental yield. The annual distillation yield per square metre aperture area and annual performance ratio for single basin solar still is 1095 litres and 0.43 respectively. The payback period for micro-stepped solar still is 2.5 years.Keywords: Solar distillation, solar still, single basin, still.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3094514 Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning
Authors: Ahcene Habbi, Yassine Boudouaoui
Abstract:
This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods.
Keywords: Automatic design, learning, fuzzy rules, hybrid, swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159513 Potential of Irish Orientated Strand Board in Bending Active Structures
Authors: M. Collins, B. O’Regan, T. Cosgrove
Abstract:
To determine the potential of a low cost Irish engineered timber product to replace high cost solid timber for use in bending active structures such as gridshells a single Irish engineered timber product in the form of orientated strand board (OSB) was selected. A comparative study of OSB and solid timber was carried out to determine the optimum properties that make a material suitable for use in gridshells. Three parameters were identified to be relevant in the selection of a material for gridshells. These three parameters are the strength to stiffness ratio, the flexural stiffness of commercially available sections, and the variability of material and section properties. It is shown that when comparing OSB against solid timber, OSB is a more suitable material for use in gridshells that are at the smaller end of the scale and that have tight radii of curvature. Typically, for solid timber materials, stiffness is used as an indicator for strength and engineered timber is no different. Thus, low flexural stiffness would mean low flexural strength. However, when it comes to bending active gridshells, OSB offers a significant advantage. By the addition of multiple layers, an increased section size is created, thus endowing the structure with higher stiffness and higher strength from initial low stiffness and low strength materials while still maintaining tight radii of curvature. This allows OSB to compete with solid timber on large scale gridshells. Additionally, a preliminary sustainability study using a set of sustainability indicators was carried out to determine the relative sustainability of building a large-scale gridshell in Ireland with a primary focus on economic viability but a mention is also given to social and environmental aspects. For this, the Savill garden gridshell in the UK was used as the functional unit with the sustainability of the structural roof skeleton constructed from UK larch solid timber being compared with the same structure using Irish OSB. Albeit that the advantages of using commercially available OSB in a bending active gridshell are marginal and limited to specific gridshell applications, further study into an optimised engineered timber product is merited.
Keywords: Bending active gridshells, High end timber structures, Low cost material, Sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712512 Facial Recognition on the Basis of Facial Fragments
Authors: Tetyana Baydyk, Ernst Kussul, Sandra Bonilla Meza
Abstract:
There are many articles that attempt to establish the role of different facial fragments in face recognition. Various approaches are used to estimate this role. Frequently, authors calculate the entropy corresponding to the fragment. This approach can only give approximate estimation. In this paper, we propose to use a more direct measure of the importance of different fragments for face recognition. We propose to select a recognition method and a face database and experimentally investigate the recognition rate using different fragments of faces. We present two such experiments in the paper. We selected the PCNC neural classifier as a method for face recognition and parts of the LFW (Labeled Faces in the Wild) face database as training and testing sets. The recognition rate of the best experiment is comparable with the recognition rate obtained using the whole face.
Keywords: Face recognition, Labeled Faces in the Wild (LFW) database, Random Local Descriptor (RLD), random features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1015511 Estimating Regression Parameters in Linear Regression Model with a Censored Response Variable
Authors: Jesus Orbe, Vicente Nunez-Anton
Abstract:
In this work we study the effect of several covariates X on a censored response variable T with unknown probability distribution. In this context, most of the studies in the literature can be located in two possible general classes of regression models: models that study the effect the covariates have on the hazard function; and models that study the effect the covariates have on the censored response variable. Proposals in this paper are in the second class of models and, more specifically, on least squares based model approach. Thus, using the bootstrap estimate of the bias, we try to improve the estimation of the regression parameters by reducing their bias, for small sample sizes. Simulation results presented in the paper show that, for reasonable sample sizes and censoring levels, the bias is always smaller for the new proposals.
Keywords: Censored response variable, regression, bias.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477510 Optical Parametric Oscillators Lidar Sounding of Trace Atmospheric Gases in the 3-4 µm Spectral Range
Authors: Olga V. Kharchenko
Abstract:
Applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO) generation to lidar sounding of the atmosphere in the spectral range 3–4 µm is studied in this work. A technique based on differential absorption lidar (DIAL) method and differential optical absorption spectroscopy (DOAS) is developed for lidar sounding of trace atmospheric gases (TAG). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases.Keywords: Atmosphere, lidar sounding, DIAL, DOAS, trace gases, nonlinear crystal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178509 Additional Considerations on a Sequential Life Testing Approach using a Weibull Model
Authors: D. I. De Souza, D. R. Fonseca, R. Rocha
Abstract:
In this paper we will develop further the sequential life test approach presented in a previous article by [1] using an underlying two parameter Weibull sampling distribution. The minimum life will be considered equal to zero. We will again provide rules for making one of the three possible decisions as each observation becomes available; that is: accept the null hypothesis H0; reject the null hypothesis H0; or obtain additional information by making another observation. The product being analyzed is a new type of a low alloy-high strength steel product. To estimate the shape and the scale parameters of the underlying Weibull model we will use a maximum likelihood approach for censored failure data. A new example will further develop the proposed sequential life testing approach.Keywords: Sequential Life Testing, Underlying Weibull Model, Maximum Likelihood Approach, Hypothesis Testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388508 Survival of Neutrino Mass Models in Nonthermal Leptogenesis
Authors: Amal Kr Sarma, H Zeen Devi, N Nimai Singh
Abstract:
The Constraints imposed by non-thermal leptogenesis on the survival of the neutrino mass models describing the presently available neutrino mass patterns, are studied numerically. We consider the Majorana CP violating phases coming from right-handed Majorana mass matrices to estimate the baryon asymmetry of the universe, for different neutrino mass models namely quasi-degenerate, inverted hierarchical and normal hierarchical models, with tribimaximal mixings. Considering two possible diagonal forms of Dirac neutrino mass matrix as either charged lepton or up-quark mass matrix, the heavy right-handed mass matrices are constructed from the light neutrino mass matrix. Only the normal hierarchical model leads to the best predictions of baryon asymmetry of the universe, consistent with observations in non-thermal leptogenesis scenario.Keywords: Thermal leptogenesis, Non-thermal leptogenesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290507 The Effects of Different Amounts of Additional Moisture on the Physical Properties of Cow Pea (Vigna unguiculata (L.) Walp.) Extrudates
Authors: L. Strauta, S. Muižniece-Brasava
Abstract:
Even though legumes possess high nutritional value and have a rather high protein content for plant origin products, they are underutilized mostly due to their lengthy cooking time. To increase the presence of legume-based products in human diet, new extruded products were made of cow peas (Vigna unguiculata (L.) Walp.). But as it is known, adding different moisture content to flour before extrusion can change the physical properties of the extruded product. Experiments were carried out to estimate the optimal moisture content for cow pea extrusion. After extrusion, the pH level had dropped from 6.7 to 6.5 and the lowest hardness rate was observed in the samples with additional 9 g 100g-1 of moisture - 28±4N, but the volume mass of the samples with additional 9 g100g-1 of water was 263±3 g L-1; all samples were approximately 7±1mm long.
Keywords: Cow pea, extrusion-cooking, moisture, size.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909506 Estimation of Load Impedance in Presence of Harmonics
Authors: Khaled M. EL-Naggar
Abstract:
This paper presents a fast and efficient on-line technique for estimating impedance of unbalanced loads in power systems. The proposed technique is an application of a discrete timedynamic filter based on stochastic estimation theory which is suitable for estimating parameters in noisy environment. The algorithm uses sets of digital samples of the distorted voltage and current waveforms of the non-linear load to estimate the harmonic contents of these two signal. The non-linear load impedance is then calculated from these contents. The method is tested using practical data. Results are reported and compared with those obtained using the conventional least error squares technique. In addition to the very accurate results obtained, the method can detect and reject bad measurements. This can be considered as a very important advantage over the conventional static estimation methods such as the least error square method.
Keywords: Estimation, identification, Harmonics, Dynamic Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065505 Dempster-Shafer Information Filtering in Multi-Modality Wireless Sensor Networks
Authors: D.M. Weeraddana, K.S. Walgama, E.C. Kulasekere
Abstract:
A framework to estimate the state of dynamically varying environment where data are generated from heterogeneous sources possessing partial knowledge about the environment is presented. This is entirely derived within Dempster-Shafer and Evidence Filtering frameworks. The belief about the current state is expressed as belief and plausibility functions. An addition to Single Input Single Output Evidence Filter, Multiple Input Single Output Evidence Filtering approach is introduced. Variety of applications such as situational estimation of an emergency environment can be developed within the framework successfully. Fire propagation scenario is used to justify the proposed framework, simulation results are presented.
Keywords: Dempster-Shafer Belief theory, Evidence Filtering, Evidence Fusion, Sensor Modalities, Wireless Sensor Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236504 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based On an RBF Network
Authors: Magdi M. Nabi, Ding-Li Yu
Abstract:
Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.
Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward and feedback control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2678503 Algebraic Approach for the Reconstruction of Linear and Convolutional Error Correcting Codes
Authors: Johann Barbier, Guillaume Sicot, Sebastien Houcke
Abstract:
In this paper we present a generic approach for the problem of the blind estimation of the parameters of linear and convolutional error correcting codes. In a non-cooperative context, an adversary has only access to the noised transmission he has intercepted. The intercepter has no knowledge about the parameters used by the legal users. So, before having acess to the information he has first to blindly estimate the parameters of the error correcting code of the communication. The presented approach has the main advantage that the problem of reconstruction of such codes can be expressed in a very simple way. This allows us to evaluate theorical bounds on the complexity of the reconstruction process but also bounds on the estimation rate. We show that some classical reconstruction techniques are optimal and also explain why some of them have theorical complexities greater than these experimentally observed.
Keywords: Blind estimation parameters, error correcting codes, non-cooperative context, reconstruction algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200502 Consistent Modeling of Functional Dependencies along with World Knowledge
Authors: Sven Rebhan, Nils Einecke, Julian Eggert
Abstract:
In this paper we propose a method for vision systems to consistently represent functional dependencies between different visual routines along with relational short- and long-term knowledge about the world. Here the visual routines are bound to visual properties of objects stored in the memory of the system. Furthermore, the functional dependencies between the visual routines are seen as a graph also belonging to the object-s structure. This graph is parsed in the course of acquiring a visual property of an object to automatically resolve the dependencies of the bound visual routines. Using this representation, the system is able to dynamically rearrange the processing order while keeping its functionality. Additionally, the system is able to estimate the overall computational costs of a certain action. We will also show that the system can efficiently use that structure to incorporate already acquired knowledge and thus reduce the computational demand.Keywords: Adaptive systems, Knowledge representation, Machinevision, Systems engineering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698501 Assessment of Vermiculite Concrete Containing Bio-Polymer Aggregate
Authors: Aliakbar Sayadi, Thomas R. Neitzert, G. Charles Clifton, Min Cheol Han
Abstract:
The present study aims to assess the performance of vermiculite concrete containing poly-lactic acid beads as an eco-friendly aggregate. Vermiculite aggregate was replaced by poly-lactic acid in percentages of 0%, 20%, 40%, 60% and 80%. Mechanical and thermal properties of concrete were investigated. Test results indicated that the inclusion of poly-lactic acid decreased the PH value of concrete and all the poly-lactic acid particles were dissolved due to the formation of sodium lactide and lactide oligomers when subjected to the high alkaline environment of concrete. In addition, an increase in thermal conductivity value of concrete was observed as the ratio of poly-lactic acid increased. Moreover, a set of equations was proposed to estimate the water-cement ratio, cement content and water absorption ratio of concrete.Keywords: Poly-lactic acid, PLA, vermiculite, concrete, eco-friendly, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800