Search results for: nonlinear integer programming.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1698

Search results for: nonlinear integer programming.

1338 On the System of Nonlinear Rational Difference Equations

Authors: Qianhong Zhang, Wenzhuan Zhang

Abstract:

This paper is concerned with the global asymptotic behavior of positive solution for a system of two nonlinear rational difference equations. Moreover, some numerical examples are given to illustrate results obtained.

Keywords: Difference equations, stability, unstable, global asymptotic behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2465
1337 Evolved Bat Algorithm Based Adaptive Fuzzy Sliding Mode Control with LMI Criterion

Authors: P.-W. Tsai, C.-Y. Chen, C.-W. Chen

Abstract:

In this paper, the stability analysis of a GA-Based adaptive fuzzy sliding model controller for a nonlinear system is discussed. First, a nonlinear plant is well-approximated and described with a reference model and a fuzzy model, both involving FLC rules. Then, FLC rules and the consequent parameter are decided on via an Evolved Bat Algorithm (EBA). After this, we guarantee a new tracking performance inequality for the control system. The tracking problem is characterized to solve an eigenvalue problem (EVP). Next, an adaptive fuzzy sliding model controller (AFSMC) is proposed to stabilize the system so as to achieve good control performance. Lyapunov’s direct method can be used to ensure the stability of the nonlinear system. It is shown that the stability analysis can reduce nonlinear systems into a linear matrix inequality (LMI) problem. Finally, a numerical simulation is provided to demonstrate the control methodology.

Keywords: Adaptive fuzzy sliding mode control, Lyapunov direct method, swarm intelligence, evolved bat algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
1336 Truck Routing Problem Considering Platooning and Drivers’ Breaks

Authors: Xiaoyuan Yan, Min Xu

Abstract:

Truck platooning refers to a convoy of digitally connected automated trucks traveling safely with a small inter-vehicle gap. It has been identified as one of the most promising and applicable technologies towards automated and sustainable freight transportation. Although truck platooning delivers significant energy-saving benefits, it cannot be realized without good coordination of drivers’ shifts to lead the platoons subject to their mandatory breaks. Therefore, this study aims to route a fleet of trucks to their destinations using the least amount of fuel by maximizing platoon opportunities under the regulations of drivers’ mandatory breaks. We formulate this platoon coordination problem as a mixed-integer linear programming problem and solve it by CPLEX. Numerical experiments are conducted to demonstrate the effectiveness and efficiency of our proposed model. In addition, we also explore the impacts of drivers’ compulsory breaks on the fuel-savings performance. The results show a slight increase in the total fuel costs in the presence of drivers’ compulsory breaks, thanks to driving-while-resting benefit provided for the trailing trucks. This study may serve as a guide for the operators of automated freight transportation.

Keywords: Truck platooning, route optimization, compulsory breaks, energy saving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617
1335 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming

Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad

Abstract:

Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.

Keywords: Breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration (FNA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816
1334 Adaptive Neural Network Control of Autonomous Underwater Vehicles

Authors: Ahmad Forouzantabar, Babak Gholami, Mohammad Azadi

Abstract:

An adaptive neural network controller for autonomous underwater vehicles (AUVs) is presented in this paper. The AUV model is highly nonlinear because of many factors, such as hydrodynamic drag, damping, and lift forces, Coriolis and centripetal forces, gravity and buoyancy forces, as well as forces from thruster. In this regards, a nonlinear neural network is used to approximate the nonlinear uncertainties of AUV dynamics, thus overcoming some limitations of conventional controllers and ensure good performance. The uniform ultimate boundedness of AUV tracking errors and the stability of the proposed control system are guaranteed based on Lyapunov theory. Numerical simulation studies for motion control of an AUV are performed to demonstrate the effectiveness of the proposed controller.

Keywords: Autonomous Underwater Vehicle (AUV), Neural Network Controller, Composite Adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2529
1333 On Problem of Parameters Identification of Dynamic Object

Authors: Kamil Aida-zade, C. Ardil

Abstract:

In this paper, some problem formulations of dynamic object parameters recovery described by non-autonomous system of ordinary differential equations with multipoint unshared edge conditions are investigated. Depending on the number of additional conditions the problem is reduced to an algebraic equations system or to a problem of quadratic programming. With this purpose the paper offers a new scheme of the edge conditions transfer method called by conditions shift. The method permits to get rid from differential links and multipoint unshared initially-edge conditions. The advantage of the proposed approach is concluded by capabilities of reduction of a parametric identification problem to essential simple problems of the solution of an algebraic system or quadratic programming.

Keywords: dynamic objects, ordinary differential equations, multipoint unshared edge conditions, quadratic programming, conditions shift

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
1332 Multi-objective Optimization of Vehicle Passive Suspension with a Two-Terminal Mass Using Chebyshev Goal Programming

Authors: Chuan Li, Ming Liang, Qibing Yu

Abstract:

To improve the dynamics response of the vehicle passive suspension, a two-terminal mass is suggested to connect in parallel with the suspension strut. Three performance criteria, tire grip, ride comfort and suspension deflection, are taken into consideration to optimize the suspension parameters. However, the three criteria are conflicting and non-commensurable. For this reason, the Chebyshev goal programming method is applied to find the best tradeoff among the three objectives. A simulation case is presented to describe the multi-objective optimization procedure. For comparison, the Chebyshev method is also employed to optimize the design of a conventional passive suspension. The effectiveness of the proposed design method has been clearly demonstrated by the result. It is also shown that the suspension with a two-terminal mass in parallel has better performance in terms of the three objectives.

Keywords: Vehicle, passive suspension, two-terminal mass, optimization, Chebyshev goal programming

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
1331 A Quadratic Programming for Truck-to-Door Assignment Problem

Authors: Y. Fathi, B. Karimi, S. M. J. Mirzapour Al-e-Hashem

Abstract:

Cross-docking includes receiving products supplied by a set of suppliers, unloading them from inbound trucks (ITs) at strip doors, consolidating and handling these products to stack doors based on their destinations, loading them into outbound trucks (OTs); then, delivering these products to customers. An effective assignment of the trucks to the doors would enhance the advantages of the cross-docking (e.g. reduction of the handling costs). This paper addresses the truck-to-door assignment problem in a cross-dock in which assignment of the ITs to the strip doors as well as assignment of the OTs to the stacks doors is determined so that total material handling cost in the cross-dock is minimized. Capacity constraints are applied for the ITs, OTs, strip doors, and stack doors. We develop a Quadratic Programming (QP) to formulate the problem. To solve it, the model is coded in LINGO software to specify the best assignment of the trucks to the doors.

Keywords: Cross-docking, truck-to-door assignment, supply chain, quadratic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
1330 Mining Frequent Patterns with Functional Programming

Authors: Nittaya Kerdprasop, Kittisak Kerdprasop

Abstract:

Frequent patterns are patterns such as sets of features or items that appear in data frequently. Finding such frequent patterns has become an important data mining task because it reveals associations, correlations, and many other interesting relationships hidden in a dataset. Most of the proposed frequent pattern mining algorithms have been implemented with imperative programming languages such as C, Cµ, Java. The imperative paradigm is significantly inefficient when itemset is large and the frequent pattern is long. We suggest a high-level declarative style of programming using a functional language. Our supposition is that the problem of frequent pattern discovery can be efficiently and concisely implemented via a functional paradigm since pattern matching is a fundamental feature supported by most functional languages. Our frequent pattern mining implementation using the Haskell language confirms our hypothesis about conciseness of the program. The performance studies on speed and memory usage support our intuition on efficiency of functional language.

Keywords: Association, frequent pattern mining, functionalprogramming, pattern matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
1329 A Deterministic Dynamic Programming Approach for Optimization Problem with Quadratic Objective Function and Linear Constraints

Authors: S. Kavitha, Nirmala P. Ratchagar

Abstract:

This paper presents the novel deterministic dynamic programming approach for solving optimization problem with quadratic objective function with linear equality and inequality constraints. The proposed method employs backward recursion in which computations proceeds from last stage to first stage in a multi-stage decision problem. A generalized recursive equation which gives the exact solution of an optimization problem is derived in this paper. The method is purely analytical and avoids the usage of initial solution. The feasibility of the proposed method is demonstrated with a practical example. The numerical results show that the proposed method provides global optimum solution with negligible computation time.

Keywords: Backward recursion, Dynamic programming, Multi-stage decision problem, Quadratic objective function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3587
1328 A New Iterative Method for Solving Nonlinear Equations

Authors: Ibrahim Abu-Alshaikh

Abstract:

In this study, a new root-finding method for solving nonlinear equations is proposed. This method requires two starting values that do not necessarily bracketing a root. However, when the starting values are selected to be close to a root, the proposed method converges to the root quicker than the secant method. Another advantage over all iterative methods is that; the proposed method usually converges to two distinct roots when the given function has more than one root, that is, the odd iterations of this new technique converge to a root and the even iterations converge to another root. Some numerical examples, including a sine-polynomial equation, are solved by using the proposed method and compared with results obtained by the secant method; perfect agreements are found.

Keywords: Iterative method, root-finding method, sine-polynomial equations, nonlinear equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
1327 Study Punching Shear of Steel Fiber Reinforced Self Compacting Concrete Slabs by Nonlinear Analysis

Authors: Khaled S. Ragab

Abstract:

This paper deals with behavior and capacity of punching shear force for flat slabs produced from steel fiber reinforced self compacting concrete (SFRSCC) by application nonlinear finite element method. Nonlinear finite element analysis on nine slab specimens was achieved by using ANSYS software. A general description of the finite element method, theoretical modeling of concrete and reinforcement are presented. The nonlinear finite element analysis program ANSYS is utilized owing to its capabilities to predict either the response of reinforced concrete slabs in the post elastic range or the ultimate strength of a flat slabs produced from steel fiber reinforced self compacting concrete (SFRSCC). In order to verify the analytical model used in this research using test results of the experimental data, the finite element analysis were performed then a parametric study of the effect ratio of flexural reinforcement, ratio of the upper reinforcement, and volume fraction of steel fibers were investigated. A comparison between the experimental results and those predicted by the existing models are presented. Results and conclusions may be useful for designers, have been raised, and represented.

Keywords: Nonlinear FEM, Punching shear behavior, Flat slabs and Steel fiber reinforced self compacting concrete (SFRSCC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4256
1326 Nonlinear Controller for Fuzzy Model of Double Inverted Pendulums

Authors: I. Zamani, M. H. Zarif

Abstract:

In this paper a method for designing of nonlinear controller for a fuzzy model of Double Inverted Pendulum is proposed. This system can be considered as a fuzzy large-scale system that includes offset terms and disturbance in each subsystem. Offset terms are deterministic and disturbances are satisfied a matching condition that is mentioned in the paper. Based on Lyapunov theorem, a nonlinear controller is designed for this fuzzy system (as a model reference base) which is simple in computation and guarantees stability. This idea can be used for other fuzzy large- scale systems that include more subsystems Finally, the results are shown.

Keywords: Controller, Fuzzy Double Inverted Pendulums, Fuzzy Large-Scale Systems, Lyapunov Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2514
1325 Stress Solitary Waves Generated by a Second-Order Polynomial Constitutive Equation

Authors: Tsun-Hui Huang, Shyue-Cheng Yang, Chiou-Fen Shieh

Abstract:

In this paper, a nonlinear constitutive law and a curve fitting, two relationships between the stress-strain and the shear stress-strain for sandstone material were used to obtain a second-order polynomial constitutive equation. Based on the established polynomial constitutive equations and Newton’s second law, a mathematical model of the non-homogeneous nonlinear wave equation under an external pressure was derived. The external pressure can be assumed as an impulse function to simulate a real earthquake source. A displacement response under nonlinear two-dimensional wave equation was determined by a numerical method and computer-aided software. The results show that a suit pressure in the sandstone generates the phenomenon of stress solitary waves.

Keywords: Polynomial constitutive equation, solitary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
1324 Nonlinear Observer Design and Sliding Mode Control of Four Rotors Helicopter

Authors: H. Bouadi, M. Tadjine

Abstract:

In this paper; we are interested in dynamic modelling of quadrotor while taking into account the high-order nonholonomic constraints as well as the various physical phenomena, which can influence the dynamics of a flying structure. These permit us to introduce a new state-space representation and new control scheme. We present after the development and the synthesis of a stabilizing control laws design based on sliding mode in order to perform best tracking results. It ensures locally asymptotic stability and desired tracking trajectories. Nonlinear observer is then synthesized in order to estimate the unmeasured states and the effects of the external disturbances such as wind and noise. Finally simulation results are also provided in order to illustrate the performances of the proposed controllers.

Keywords: Dynamic modelling, nonholonomic constraints, sliding mode, nonlinear observer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2960
1323 Multi-Robotic Partial Disassembly Line Balancing with Robotic Efficiency Difference via HNSGA-II

Authors: Tao Yin, Zeqiang Zhang, Wei Liang, Yanqing Zeng, Yu Zhang

Abstract:

To accelerate the remanufacturing process of electronic waste products, this study designs a partial disassembly line with the multi-robotic station to effectively dispose of excessive wastes. The multi-robotic partial disassembly line is a technical upgrade to the existing manual disassembly line. Balancing optimization can make the disassembly line smoother and more efficient. For partial disassembly line balancing with the multi-robotic station (PDLBMRS), a mixed-integer programming model (MIPM) considering the robotic efficiency differences is established to minimize cycle time, energy consumption and hazard index and to calculate their optimal global values. Besides, an enhanced NSGA-II algorithm (HNSGA-II) is proposed to optimize PDLBMRS efficiently. Finally, MIPM and HNSGA-II are applied to an actual mixed disassembly case of two types of computers, the comparison of the results solved by GUROBI and HNSGA-II verifies the correctness of the model and excellent performance of the algorithm, and the obtained Pareto solution set provides multiple options for decision-makers.

Keywords: Waste disposal, disassembly line balancing, multi-robot station, robotic efficiency difference, HNSGA-II.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524
1322 Robust Fuzzy Control of Nonlinear Fuzzy Impulsive Singular Perturbed Systems with Time-varying Delay

Authors: Caigen Zhou, Haibo Jiang

Abstract:

The problem of robust fuzzy control for a class of nonlinear fuzzy impulsive singular perturbed systems with time-varying delay is investigated by employing Lyapunov functions. The nonlinear delay system is built based on the well-known T–S fuzzy model. The so-called parallel distributed compensation idea is employed to design the state feedback controller. Sufficient conditions for global exponential stability of the closed-loop system are derived in terms of linear matrix inequalities (LMIs), which can be easily solved by LMI technique. Some simulations illustrate the effectiveness of the proposed method.

Keywords: T–S fuzzy model, singular perturbed systems, time-varying delay, robust control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
1321 Limit State of Heterogeneous Smart Structures under Unknown Cyclic Loading

Authors: M. Chen, S-Q. Zhang, X. Wang, D. Tate

Abstract:

This paper presents a numerical solution, namely limit and shakedown analysis, to predict the safety state of smart structures made of heterogeneous materials under unknown cyclic loadings, for instance, the flexure hinge in the micro-positioning stage driven by piezoelectric actuator. In combination of homogenization theory and finite-element method (FEM), the safety evaluation problem is converted to a large-scale nonlinear optimization programming for an acceptable bounded loading as the design reference. Furthermore, a general numerical scheme integrated with the FEM and interior-point-algorithm based optimization tool is developed, which makes the practical application possible.

Keywords: Limit state, shakedown analysis, homogenization, heterogeneous structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849
1320 FEA for Transient Responses of an S-Shaped Force Transducer with a Viscoelastic Absorber Using a Nonlinear Complex Spring

Authors: T. Yamaguchi, Y. Fujii, A. Takita, T. Kanai

Abstract:

To compute dynamic characteristics of nonlinear viscoelastic springs with elastic structures having huge degree-of-freedom, Yamaguchi proposed a new fast numerical method using finite element method [1]-[2]. In this method, restoring forces of the springs are expressed using power series of their elongation. In the expression, nonlinear hysteresis damping is introduced. In this expression, nonlinear complex spring constants are introduced. Finite element for the nonlinear spring having complex coefficients is expressed and is connected to the elastic structures modeled by linear solid finite element. Further, to save computational time, the discrete equations in physical coordinate are transformed into the nonlinear ordinary coupled equations using normal coordinate corresponding to linear natural modes. In this report, the proposed method is applied to simulation for impact responses of a viscoelastic shock absorber with an elastic structure (an S-shaped structure) by colliding with a concentrated mass. The concentrated mass has initial velocities and collides with the shock absorber. Accelerations of the elastic structure and the concentrated mass are measured using Levitation Mass Method proposed by Fujii [3]. The calculated accelerations from the proposed FEM, corresponds to the experimental ones. Moreover, using this method, we also investigate dynamic errors of the S-shaped force transducer due to elastic mode in the S-shaped structure.

Keywords: Transient response, Finite Element analysis, Numerical analysis, Viscoelastic shock absorber, Force transducer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
1319 Mathematical Programming on Multivariate Calibration Estimation in Stratified Sampling

Authors: Dinesh Rao, M.G.M. Khan, Sabiha Khan

Abstract:

Calibration estimation is a method of adjusting the original design weights to improve the survey estimates by using auxiliary information such as the known population total (or mean) of the auxiliary variables. A calibration estimator uses calibrated weights that are determined to minimize a given distance measure to the original design weights while satisfying a set of constraints related to the auxiliary information. In this paper, we propose a new multivariate calibration estimator for the population mean in the stratified sampling design, which incorporates information available for more than one auxiliary variable. The problem of determining the optimum calibrated weights is formulated as a Mathematical Programming Problem (MPP) that is solved using the Lagrange multiplier technique.

Keywords: Calibration estimation, Stratified sampling, Multivariate auxiliary information, Mathematical programming problem, Lagrange multiplier technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
1318 Dynamic Analysis of Reduced Order Large Rotating Vibro-Impact Systems

Authors: Miroslav Byrtus

Abstract:

Large rotating systems, especially gear drives and gearboxes, occur as parts of many mechanical devices transmitting the torque with relatively small loss of power. With the increased demand for high speed machinery, mathematical modeling and dynamic analysis of gear drives gained importance. Mathematical description of such mechanical systems is a complex task evolving for several decades. In gear drive dynamic models, which include flexible shafts, bearings and gearing and use the finite elements, nonlinear effects due to gear mesh and bearings are usually ignored, for such models have large number of degrees of freedom (DOF) and it is computationally expensive to analyze nonlinear systems with large number of DOF. Therefore, these models are not suitable for simulation of nonlinear behavior with amplitude jumps in frequency response. The contribution uses a methodology of nonlinear large rotating system modeling which is based on degrees of freedom (DOF) number reduction using modal synthesis method (MSM). The MSM enables significant DOF number reduction while keeping the nonlinear behavior of the system in a specific frequency range. Further, the MSM with DOF number reduction is suitable for including detail models of nonlinear couplings (mainly gear and bearing couplings) into the complete gear drive models. Since each subsystem is modeled separately using different FEM systems, it is advantageous to parameterize models of subsystems and to use the parameterization for optimization of chosen design parameters. Final complex model of gear drive is assembled in MATLAB and MATLAB tools are used for dynamical analysis of the nonlinear system. The contribution is further focused on developing of a methodology for investigation of behavior of the system by Nonlinear Normal Modes with combination of the MSM using numerical continuation method. The proposed methodology will be tested using a two-stage gearbox including its housing.

Keywords: Vibro-impact system, rotating system, gear drive, modal synthesis method, numerical continuation method, periodic solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2401
1317 Stabilization and Control of a UAV Flight Attitude Angles using the Backstepping Method

Authors: Mihai Lungu

Abstract:

The paper presents the design of a mini-UAV attitude controller using the backstepping method. Starting from the nonlinear dynamic equations of the mini-UAV, by using the backstepping method, the author of this paper obtained the expressions of the elevator, rudder and aileron deflections, which stabilize the UAV, at each moment, to the desired values of the attitude angles. The attitude controller controls the attitude angles, the angular rates, the angular accelerations and other variables that describe the UAV longitudinal and lateral motions. To design the nonlinear controller, by using the backstepping technique, the nonlinear equations and the Lyapunov analysis have been directly used. The designed controller has been implemented in Matlab/Simulink environment and its effectiveness has been tested with a campaign of numerical simulations using data from the UAV flight tests. The obtained results are very good and they are better than the ones found in previous works.

Keywords: Attitude angles, Backstepping, Controller, UAV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2407
1316 A New Nonlinear Excitation Controller for Transient Stability Enhancement in Power Systems

Authors: M. Ouassaid, A. Nejmi, M. Cherkaoui, M. Maaroufi

Abstract:

The very nonlinear nature of the generator and system behaviour following a severe disturbance precludes the use of classical linear control technique. In this paper, a new approach of nonlinear control is proposed for transient and steady state stability analysis of a synchronous generator. The control law of the generator excitation is derived from the basis of Lyapunov stability criterion. The overall stability of the system is shown using Lyapunov technique. The application of the proposed controller to simulated generator excitation control under a large sudden fault and wide range of operating conditions demonstrates that the new control strategy is superior to conventional automatic voltage regulator (AVR), and show very promising results.

Keywords: Excitation control, Lyapunov technique, non linearcontrol, synchronous generator, transient stability, voltage regulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2614
1315 Nonlinear Propagation of Acoustic Soliton Waves in Dense Quantum Electron-Positron Magnetoplasma

Authors: A. Abdikian

Abstract:

Propagation of nonlinear acoustic wave in dense electron-positron (e-p) plasmas in the presence of an external magnetic field and stationary ions (to neutralize the plasma background) is studied. By means of the quantum hydrodynamics model and applying the reductive perturbation method, the Zakharov-Kuznetsov equation is derived. Using the bifurcation theory of planar dynamical systems, the compressive structure of electrostatic solitary wave and periodic travelling waves is found. The numerical results show how the ion density ratio, the ion cyclotron frequency, and the direction cosines of the wave vector affect the nonlinear electrostatic travelling waves. The obtained results may be useful to better understand the obliquely nonlinear electrostatic travelling wave of small amplitude localized structures in dense magnetized quantum e-p plasmas and may be applicable to study the particle and energy transport mechanism in compact stars such as the interior of massive white dwarfs etc.

Keywords: Bifurcation theory, magnetized electron-positron plasma, phase portrait, the Zakharov-Kuznetsov equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367
1314 Non-Linear Control Based on State Estimation for the Convoy of Autonomous Vehicles

Authors: M-M. Mohamed Ahmed, Nacer K. M’Sirdi, Aziz Naamane

Abstract:

In this paper, a longitudinal and lateral control approach based on a nonlinear observer is proposed for a convoy of autonomous vehicles to follow a desired trajectory. To authors best knowledge, this topic has not yet been sufficiently addressed in the literature for the control of multi vehicles. The modeling of the convoy of the vehicles is revisited using a robotic method for simulation purposes and control design. With these models, a sliding mode observer is proposed to estimate the states of each vehicle in the convoy from the available sensors, then a sliding mode control based on this observer is used to control the longitudinal and lateral movement. The validation and performance evaluation are done using the well-known driving simulator Scanner-Studio. The results are presented for different maneuvers of 5 vehicles.

Keywords: Autonomous vehicles, convoy, nonlinear control, nonlinear observer, sliding mode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
1313 Nonlinear Integral-Type Sliding Surface for Synchronization of Chaotic Systems with Unknown Parameters

Authors: Hongji Tang, Yanbo Gao, Yue Yu

Abstract:

This paper presents a new nonlinear integral-type sliding surface for synchronizing two different chaotic systems with parametric uncertainty. On the basis of Lyapunov theorem and average dwelling time method, we obtain the control gains of controllers which are derived to achieve chaos synchronization. In order to reduce the gains, the error system is modeled as a switching system. We obtain the sufficient condition drawn for the robust stability of the error dynamics by stability analysis. Then we apply it to guide the design of the controllers. Finally, numerical examples are used to show the robustness and effectiveness of the proposed control strategy.

Keywords: Chaos synchronization, Nonlinear sliding surface, Control gains, Sliding mode control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024
1312 A First Course in Numerical Methods with “Mathematica“

Authors: Andrei A. Kolyshkin

Abstract:

In the present paper some recommendations for the use of software package “Mathematica" in a basic numerical analysis course are presented. The methods which are covered in the course include solution of systems of linear equations, nonlinear equations and systems of nonlinear equations, numerical integration, interpolation and solution of ordinary differential equations. A set of individual assignments developed for the course covering all the topics is discussed in detail.

Keywords: Numerical methods, "Mathematica", e-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3670
1311 An Optimized Method for Calculating the Linear and Nonlinear Response of SDOF System Subjected to an Arbitrary Base Excitation

Authors: Hossein Kabir, Mojtaba Sadeghi

Abstract:

Finding the linear and nonlinear responses of a typical single-degree-of-freedom system (SDOF) is always being regarded as a time-consuming process. This study attempts to provide modifications in the renowned Newmark method in order to make it more time efficient than it used to be and make it more accurate by modifying the system in its own non-linear state. The efficacy of the presented method is demonstrated by assigning three base excitations such as Tabas 1978, El Centro 1940, and MEXICO CITY/SCT 1985 earthquakes to a SDOF system, that is, SDOF, to compute the strength reduction factor, yield pseudo acceleration, and ductility factor.

Keywords: Single-degree-of-freedom system, linear acceleration method, nonlinear excited system, equivalent displacement method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
1310 Distillation Monitoring and Control using LabVIEW and SIMULINK Tools

Authors: J. Fernandez de Canete, P. Del Saz Orozco, S. Gonzalez-Perez

Abstract:

LabVIEW and SIMULINK are two most widely used graphical programming environments for designing digital signal processing and control systems. Unlike conventional text-based programming languages such as C, Cµ and MATLAB, graphical programming involves block-based code developments, allowing a more efficient mechanism to build and analyze control systems. In this paper a LabVIEW environment has been employed as a graphical user interface for monitoring the operation of a controlled distillation column, by visualizing both the closed loop performance and the user selected control conditions, while the column dynamics has been modeled under the SIMULINK environment. This tool has been applied to the PID based decoupled control of a binary distillation column. By means of such integrated environments the control designer is able to monitor and control the plant behavior and optimize the response when both, the quality improvement of distillation products and the operation efficiency tasks, are considered.

Keywords: Distillation control, software tools, SIMULINKLabVIEWinterface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3816
1309 Surgery Scheduling Using Simulation with Arena

Authors: J. A. López, C.I. López, J.E. Olguín, C. Camargo, J. M. López

Abstract:

The institutions seek to improve their performance and quality of service, so that their patients are satisfied. This research project aims, conduct a time study program in the area of gynecological surgery, to determine the current level of capacity and optimize the programming time in order to adequately respond to demand. The system is analyzed by waiting lines and uses the simulation using ARENA to evaluate proposals for improvement and optimization programming time each of the surgeries.

Keywords: Time study, waiting lines, reducing time, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2750