Search results for: non-hierarchical production networks
3481 Robotic Arm Control with Neural Networks Using Genetic Algorithm Optimization Approach
Authors: A. Pajaziti, H. Cana
Abstract:
In this paper, the structural genetic algorithm is used to optimize the neural network to control the joint movements of robotic arm. The robotic arm has also been modeled in 3D and simulated in real-time in MATLAB. It is found that Neural Networks provide a simple and effective way to control the robot tasks. Computer simulation examples are given to illustrate the significance of this method. By combining Genetic Algorithm optimization method and Neural Networks for the given robotic arm with 5 D.O.F. the obtained the results shown that the base joint movements overshooting time without controller was about 0.5 seconds, while with Neural Network controller (optimized with Genetic Algorithm) was about 0.2 seconds, and the population size of 150 gave best results.
Keywords: Robotic Arm, Neural Network, Genetic Algorithm, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35953480 A Metric-Set and Model Suggestion for Better Software Project Cost Estimation
Authors: Murat Ayyıldız, Oya Kalıpsız, Sırma Yavuz
Abstract:
Software project effort estimation is frequently seen as complex and expensive for individual software engineers. Software production is in a crisis. It suffers from excessive costs. Software production is often out of control. It has been suggested that software production is out of control because we do not measure. You cannot control what you cannot measure. During last decade, a number of researches on cost estimation have been conducted. The metric-set selection has a vital role in software cost estimation studies; its importance has been ignored especially in neural network based studies. In this study we have explored the reasons of those disappointing results and implemented different neural network models using augmented new metrics. The results obtained are compared with previous studies using traditional metrics. To be able to make comparisons, two types of data have been used. The first part of the data is taken from the Constructive Cost Model (COCOMO'81) which is commonly used in previous studies and the second part is collected according to new metrics in a leading international company in Turkey. The accuracy of the selected metrics and the data samples are verified using statistical techniques. The model presented here is based on Multi-Layer Perceptron (MLP). Another difficulty associated with the cost estimation studies is the fact that the data collection requires time and care. To make a more thorough use of the samples collected, k-fold, cross validation method is also implemented. It is concluded that, as long as an accurate and quantifiable set of metrics are defined and measured correctly, neural networks can be applied in software cost estimation studies with successKeywords: Software Metrics, Software Cost Estimation, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19593479 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks
Authors: Khalid Ali, Manar Jammal
Abstract:
In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.
Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5453478 Utilizing Innovative Techniques to Improve Email Security
Authors: Amany M. Alshawi, Khaled Alduhaiman
Abstract:
This paper proposes a technique to protect against email bombing. The technique employs a statistical approach, Naïve Bayes (NB), and Neural Networks to show that it is possible to differentiate between good and bad traffic to protect against email bombing attacks. Neural networks and Naïve Bayes can be trained by utilizing many email messages that include both input and output data for legitimate and non-legitimate emails. The input to the model includes the contents of the body of the messages, the subject, and the headers. This information will be used to determine if the email is normal or an attack email. Preliminary tests suggest that Naïve Bayes can be trained to produce an accurate response to confirm which email represents an attack.Keywords: Email bombing, Legitimate email, Naïve Bayes, Neural networks, Non-legitimate email.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14213477 Handwriting Velocity Modeling by Artificial Neural Networks
Authors: Mohamed Aymen Slim, Afef Abdelkrim, Mohamed Benrejeb
Abstract:
The handwriting is a physical demonstration of a complex cognitive process learnt by man since his childhood. People with disabilities or suffering from various neurological diseases are facing so many difficulties resulting from problems located at the muscle stimuli (EMG) or signals from the brain (EEG) and which arise at the stage of writing. The handwriting velocity of the same writer or different writers varies according to different criteria: age, attitude, mood, writing surface, etc. Therefore, it is interesting to reconstruct an experimental basis records taking, as primary reference, the writing speed for different writers which would allow studying the global system during handwriting process. This paper deals with a new approach of the handwriting system modeling based on the velocity criterion through the concepts of artificial neural networks, precisely the Radial Basis Functions (RBF) neural networks. The obtained simulation results show a satisfactory agreement between responses of the developed neural model and the experimental data for various letters and forms then the efficiency of the proposed approaches.
Keywords: ElectroMyoGraphic (EMG) signals, Experimental approach, Handwriting process, Radial Basis Functions (RBF) neural networks, Velocity Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23173476 Low Power Circuit Architecture of AES Crypto Module for Wireless Sensor Network
Authors: MooSeop Kim, Juhan Kim, Yongje Choi
Abstract:
Recently, much research has been conducted for security for wireless sensor networks and ubiquitous computing. Security issues such as authentication and data integrity are major requirements to construct sensor network systems. Advanced Encryption Standard (AES) is considered as one of candidate algorithms for data encryption in wireless sensor networks. In this paper, we will present the hardware architecture to implement low power AES crypto module. Our low power AES crypto module has optimized architecture of data encryption unit and key schedule unit which could be applicable to wireless sensor networks. We also details low power design methods used to design our low power AES crypto module.Keywords: Algorithm, Low Power Crypto Circuit, AES, Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25173475 Cost Sensitive Analysis of Production Logistics Measures A Decision Making Support System for Evaluating Measures in the Production
Authors: Michael Grigutsch, Peter Nyhuis
Abstract:
Due to the volatile global economy, enterprises are increasingly focusing on logistics. By investing in suitable measures a company can increase their logistic performance and assert themselves over the competition. However, enterprises are also faced with the challenge of investing available capital for maximum profits. In order to be able to create an informed and quantifiably comprehensible basis for a decision, enterprises need a suitable model for logistically and monetarily evaluating measures in production. Previously, within the frame of Collaborate Research Centre 489 (SFB 489) at the Institute for Production Systems and Logistics, (IFA) a Logistic Information System was developed specifically for providing enterprises in the forging industry with support when making decisions. Based on this research, a new initiative referred to as ‘Transfer Project T7’, aims to develop a universal approach for logistically and monetarily evaluating production measures. This paper focuses on the structural measure echelon storage and their impact on the entire production system.
Keywords: Logistic Operating Curves, Transfer Functions, Production Logistics, Storages Echelon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13333474 Mucus Secretion Responses to Various Sublethal Copper (II) Concentrations in the Mussel Perna perna
Authors: Kamleshan Pillay
Abstract:
The purpose of this study was to evaluate the use of mucus production as a biomarker. This was done by exposing the mussel Perna perna to various sublethal concentrations of Cu. Mussels are effective as a bioindicator species as they accumulate Cu in their tissues. Differences in mucus production rates were evaluated at different Cu concentrations. The findings of this study indicate that increasing Cu concentrations had a significant effect on the mucus production rates over a 24 hour exposure. There were also significant differences between the mucus production rates at different Cu concentrations (p < 0.05). Thus, mucus is an essential detoxification mechanism.Keywords: Copper, Mucus, Depuration, Perna perna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27313473 An Energy-Efficient Distributed Unequal Clustering Protocol for Wireless Sensor Networks
Authors: Sungju Lee, Jangsoo Lee , Hongjoong Sin, Seunghwan Yoo, Sanghyuck Lee, Jaesik Lee, Yongjun Lee, Sungchun Kim
Abstract:
The wireless sensor networks have been extensively deployed and researched. One of the major issues in wireless sensor networks is a developing energy-efficient clustering protocol. Clustering algorithm provides an effective way to prolong the lifetime of a wireless sensor networks. In the paper, we compare several clustering protocols which significantly affect a balancing of energy consumption. And we propose an Energy-Efficient Distributed Unequal Clustering (EEDUC) algorithm which provides a new way of creating distributed clusters. In EEDUC, each sensor node sets the waiting time. This waiting time is considered as a function of residual energy, number of neighborhood nodes. EEDUC uses waiting time to distribute cluster heads. We also propose an unequal clustering mechanism to solve the hot-spot problem. Simulation results show that EEDUC distributes the cluster heads, balances the energy consumption well among the cluster heads and increases the network lifetime.Keywords: Wireless Sensor Network, Distributed UnequalClustering, Multi-hop, Lifetime.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24903472 Greedy Geographical Void Routing for Wireless Sensor Networks
Authors: Chiang Tzu-Chiang, Chang Jia-Lin, Tsai Yue-Fu, Li Sha-Pai
Abstract:
With the advantage of wireless network technology, there are a variety of mobile applications which make the issue of wireless sensor networks as a popular research area in recent years. As the wireless sensor network nodes move arbitrarily with the topology fast change feature, mobile nodes are often confronted with the void issue which will initiate packet losing, retransmitting, rerouting, additional transmission cost and power consumption. When transmitting packets, we would not predict void problem occurring in advance. Thus, how to improve geographic routing with void avoidance in wireless networks becomes an important issue. In this paper, we proposed a greedy geographical void routing algorithm to solve the void problem for wireless sensor networks. We use the information of source node and void area to draw two tangents to form a fan range of the existence void which can announce voidavoiding message. Then we use source and destination nodes to draw a line with an angle of the fan range to select the next forwarding neighbor node for routing. In a dynamic wireless sensor network environment, the proposed greedy void avoiding algorithm can be more time-saving and more efficient to forward packets, and improve current geographical void problem of wireless sensor networks.Keywords: Wireless sensor network, internet routing, wireless network, greedy void avoiding algorithm, bypassing void.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35693471 Existence and Globally Exponential Stability of Equilibrium for BAM Neural Networks with Mixed Delays and Impulses
Authors: Xiaomei Wang, Shouming Zhong
Abstract:
In this paper, a class of generalized bi-directional associative memory (BAM) neural networks with mixed delays is investigated. On the basis of Lyapunov stability theory and contraction mapping theorem, some new sufficient conditions are established for the existence and uniqueness and globally exponential stability of equilibrium, which generalize and improve the previously known results. One example is given to show the feasibility and effectiveness of our results.
Keywords: Bi-directional associative memory (BAM) neural networks, mixed delays, Lyapunov stability theory, contraction mapping theorem, existence, equilibrium, globally exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14853470 Integrated Energy-Aware Mechanism for MANETs using On-demand Routing
Authors: M. Tamilarasi, T.G. Palanivelu
Abstract:
Mobile Ad Hoc Networks (MANETs) are multi-hop wireless networks in which all nodes cooperatively maintain network connectivity. In such a multi-hop wireless network, every node may be required to perform routing in order to achieve end-to-end communication among nodes. These networks are energy constrained as most ad hoc mobile nodes today operate with limited battery power. Hence, it is important to minimize the energy consumption of the entire network in order to maximize the lifetime of ad hoc networks. In this paper, a mechanism involving the integration of load balancing approach and transmission power control approach is introduced to maximize the life-span of MANETs. The mechanism is applied on Ad hoc On-demand Vector (AODV) protocol to make it as energy aware AODV (EA_AODV). The simulation is carried out using GloMoSim2.03 simulator. The results show that the proposed mechanism reduces the average required transmission energy per packet compared to the standard AODV.Keywords: energy aware routing, load balance, Mobile Ad HocNetworks, MANETs , on demand routing, transmission power control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19643469 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks
Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian
Abstract:
Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.
Keywords: Lateral bearing capacity, short pile, clayey soil, artificial neural network, Imperialist competition algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9423468 Microbial Production of Levan using Date Syrup and Investigation of Its Properties
Authors: Marzieh Moosavi-Nasab, Behnaz Layegh , Ladan Aminlari, Mohammad B. Hashemi
Abstract:
Levan, an exopolysaccharide, was produced by Microbacterium laevaniformans and its yield was characterized as a function of concentrations of date syrup, sucrose and the fermentation time. The optimum condition for levan production from sucrose was at concentration of 20% sucrose for 48 h and for date syrup was 25% for 48 h. The results show that an increase in fermentation time caused a decrease in the levan production at all concentrations of date syrup tested. Under these conditions after 48 h in sucrose medium, levan production reached 48.9 g/L and for date syrup reached 10.48 g/L . The effect of pH on the yield of the purified levan was examined and the optimum pH for levan production was determined to be 6.0. Levan was composed mainly of fructose residues when analyzed by TLC and FT-IR spectroscopy. Date syrup is a cheap substrate widely available in Iran and has potential for levan production. The thermal stability of levan was assessed by Thermo Gravimetric Analysis (TGA) that revealed the onset of decomposition near to 49°C for the levan produced from sucrose and 51°C for the levan from date syrup. DSC results showed a single Tg at 98°C for levan produced from sucrose and 206 °C for levan from date syrup.Keywords: Date syrup, Fermentation, Levan, Microbacteriumlaevaniformans
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27343467 Churn Prediction: Does Technology Matter?
Authors: John Hadden, Ashutosh Tiwari, Rajkumar Roy, Dymitr Ruta
Abstract:
The aim of this paper is to identify the most suitable model for churn prediction based on three different techniques. The paper identifies the variables that affect churn in reverence of customer complaints data and provides a comparative analysis of neural networks, regression trees and regression in their capabilities of predicting customer churn.Keywords: Churn, Decision Trees, Neural Networks, Regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33053466 60 GHz Multi-Sector Antenna Array with Switchable Radiation-Beams for Small Cell 5G Networks
Authors: N. Ojaroudi Parchin, H. Jahanbakhsh Basherlou, Y. Al-Yasir, A. M. Abdulkhaleq, R. A. Abd-Alhameed, P. S. Excell
Abstract:
A compact design of multi-sector patch antenna array for 60 GHz applications is presented and discussed in details. The proposed design combines five 1x8 linear patch antenna arrays, referred to as sectors, in a multi-sector configuration. The coaxial-fed radiation elements of the multi-sector array are designed on 0.2 mm Rogers RT5880 dielectrics. The array operates in the frequency range of 58-62 GHz and provides switchable directional/omnidirectional radiation beams with high gain and high directivity characteristics. The designed multi-sector array exhibits good performances and could be used in the fifth generation (5G) cellular networks.
Keywords: MM-wave communications, multi-sector array, patch antenna, small cell networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9803465 Application New Approach with Two Networks Slow and Fast on the Asynchronous Machine
Authors: Samia Salah, M’hamed Hadj Sadok, Abderrezak Guessoum
Abstract:
In this paper, we propose a new modular approach called neuroglial consisting of two neural networks slow and fast which emulates a biological reality recently discovered. The implementation is based on complex multi-time scale systems; validation is performed on the model of the asynchronous machine. We applied the geometric approach based on the Gerschgorin circles for the decoupling of fast and slow variables, and the method of singular perturbations for the development of reductions models.
This new architecture allows for smaller networks with less complexity and better performance in terms of mean square error and convergence than the single network model.
Keywords: Gerschgorin’s Circles, Neuroglial Network, Multi time scales systems, Singular perturbation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16073464 A Survey of Access Control Schemes in Wireless Sensor Networks
Authors: Youssou Faye, Ibrahima Niang, Thomas Noel
Abstract:
Access control is a critical security service in Wire- less Sensor Networks (WSNs). To prevent malicious nodes from joining the sensor network, access control is required. On one hand, WSN must be able to authorize and grant users the right to access to the network. On the other hand, WSN must organize data collected by sensors in such a way that an unauthorized entity (the adversary) cannot make arbitrary queries. This restricts the network access only to eligible users and sensor nodes, while queries from outsiders will not be answered or forwarded by nodes. In this paper we presentee different access control schemes so as to ?nd out their objectives, provision, communication complexity, limits, etc. Using the node density parameter, we also provide a comparison of these proposed access control algorithms based on the network topology which can be flat or hierarchical.Keywords: Access Control, Authentication, Key Management, Wireless Sensor Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26563463 Advanced Travel Information System in Heterogeneous Networks
Authors: Hsu-Yung Cheng, Victor Gau, Chih-Wei Huang, Jenq-Neng Hwang, Chih-Chang Yu
Abstract:
In order to achieve better road utilization and traffic efficiency, there is an urgent need for a travel information delivery mechanism to assist the drivers in making better decisions in the emerging intelligent transportation system applications. In this paper, we propose a relayed multicast scheme under heterogeneous networks for this purpose. In the proposed system, travel information consisting of summarized traffic conditions, important events, real-time traffic videos, and local information service contents is formed into layers and multicasted through an integration of WiMAX infrastructure and Vehicular Ad hoc Networks (VANET). By the support of adaptive modulation and coding in WiMAX, the radio resources can be optimally allocated when performing multicast so as to dynamically adjust the number of data layers received by the users. In addition to multicast supported by WiMAX, a knowledge propagation and information relay scheme by VANET is designed. The experimental results validate the feasibility and effectiveness of the proposed scheme.Keywords: Intelligent Transportation Systems, RelayedMulticast, WiMAX, Vehicular Ad hoc Networks (VANET).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17183462 Dynamically Monitoring Production Methods for Identifying Structural Changes relevant to Logistics
Authors: Marco Kennemann, Steffen C. Eickemeyer, Peter Nyhuis
Abstract:
Due to the growing dynamic and complexity within the market environment production enterprises in particular are faced with new logistic challenges. Moreover, it is here in this dynamic environment that the Logistic Operating Curve Theory also reaches its limits as a method for describing the correlations between the logistic objectives. In order to convert this theory into a method for dynamically monitoring productions this paper will introduce methods for reliably and quickly identifying structural changes relevant to logistics.Keywords: Dynamics, Logistic Operating Curves, Production Logistics, Production Planning and Control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13873461 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise
Authors: Yasser F. Hassan
Abstract:
The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.
Keywords: Rough Sets, Rough Neural Networks, Cellular Automata, Image Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19503460 Applications of Cascade Correlation Neural Networks for Cipher System Identification
Authors: B. Chandra, P. Paul Varghese
Abstract:
Crypto System Identification is one of the challenging tasks in Crypt analysis. The paper discusses the possibility of employing Neural Networks for identification of Cipher Systems from cipher texts. Cascade Correlation Neural Network and Back Propagation Network have been employed for identification of Cipher Systems. Very large collection of cipher texts were generated using a Block Cipher (Enhanced RC6) and a Stream Cipher (SEAL). Promising results were obtained in terms of accuracy using both the Neural Network models but it was observed that the Cascade Correlation Neural Network Model performed better compared to Back Propagation Network.
Keywords: Back Propagation Neural Networks, CascadeCorrelation Neural Network, Crypto systems, Block Cipher, StreamCipher.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24463459 Advanced Neural Network Learning Applied to Pulping Modeling
Authors: Z. Zainuddin, W. D. Wan Rosli, R. Lanouette, S. Sathasivam
Abstract:
This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of pulping problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified odified problem M-1 Ax= M-1b where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.
Keywords: Convergence, pulping modeling, neural networks, preconditioned conjugate gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14103458 Evaluating the Logistic Performance Capability of Regeneration Processes
Authors: Thorben Kuprat, Julian Becker, Jonas Mayer, Peter Nyhuis
Abstract:
For years now, it has been recognized that logistic performance capability contributes enormously to a production enterprise’s competitiveness and as such is a critical control lever. In doing so, the orientation on customer wishes (e.g. delivery dates) represents a key parameter not only in the value-adding production but also in product regeneration. Since production and regeneration processes have different characteristics, production planning and control measures cannot be directly transferred to regeneration processes. As part of a special research project, the Institute of Production Systems and Logistics Hannover is focused on increasing the logistic performance capability of regeneration processes for complex capital goods. The aim is to ensure logistic targets are met by implementing a model specifically designed to align the capacities and load in regeneration processes.
Keywords: Capacity planning, complex capital goods, logistic performance, regeneration process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17453457 Exponential Stability of Periodic Solutions in Inertial Neural Networks with Unbounded Delay
Authors: Yunquan Ke, Chunfang Miao
Abstract:
In this paper, the exponential stability of periodic solutions in inertial neural networks with unbounded delay are investigated. First, using variable substitution the system is transformed to first order differential equation. Second, by the fixed-point theorem and constructing suitable Lyapunov function, some sufficient conditions guaranteeing the existence and exponential stability of periodic solutions of the system are obtained. Finally, two examples are given to illustrate the effectiveness of the results.
Keywords: Inertial neural networks, unbounded delay, fixed-point theorem, Lyapunov function, periodic solutions, exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15343456 Simplified Models to Determine Nodal Voltagesin Problems of Optimal Allocation of Capacitor Banks in Power Distribution Networks
Authors: A. Pereira, S. Haffner, L. V. Gasperin
Abstract:
This paper presents two simplified models to determine nodal voltages in power distribution networks. These models allow estimating the impact of the installation of reactive power compensations equipments like fixed or switched capacitor banks. The procedure used to develop the models is similar to the procedure used to develop linear power flow models of transmission lines, which have been widely used in optimization problems of operation planning and system expansion. The steady state non-linear load flow equations are approximated by linear equations relating the voltage amplitude and currents. The approximations of the linear equations are based on the high relationship between line resistance and line reactance (ratio R/X), which is valid for power distribution networks. The performance and accuracy of the models are evaluated through comparisons with the exact results obtained from the solution of the load flow using two test networks: a hypothetical network with 23 nodes and a real network with 217 nodes.Keywords: Distribution network models, distribution systems, optimization, power system planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15633455 Microalgal Lipid Production by Microalgae Chlorella sp. KKU-S2
Authors: Ratanaporn Leesing, Supaporn Kookkhunthod, Ngarmnit Nontaso
Abstract:
The objective of this work is to produce heterotrophic microalgal lipid in flask-batch fermentation. Chlorella sp. KKU-S2 supported maximum values of 0.374 g/L/d, 0.478 g lipid/g cells, and 0.112 g/L/d for volumetric lipid production rate, and specific yield of lipid, and specific rate of lipid production, respectively when culture was performed on BG-11 medium supplemented with 50g/L glucose. Among the carbon sources tested, maximum cell yield coefficient (YX/S, g/L), maximum specific yield of lipid (YP/X, g lipid/g cells) and volumetric lipid production rate (QP, g/L/d) were found of 0.728, 0.237, and 0.619, respectively, using sugarcane molasses as carbon source. The main components of fatty acid from extracted lipid were palmitic acid, stearic acid, oleic acid and linoleic acid which similar to vegetable oils and suitable for biodiesel production.Keywords: Microalgal lipid, Chlorella sp. KKU-S2, kineticparameters, biodiesel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27123454 Environmental Potentials within the Production of Asphalt Mixtures
Authors: Florian Gschösser, Walter Purrer
Abstract:
The paper shows examples for the (environmental) optimization of production processes for asphalt mixtures applied for typical road pavements in Austria and Switzerland. The conducted “from-cradle-to-gate” LCA firstly analyzes the production one cubic meter of asphalt and secondly all material production processes for exemplary highway pavements applied in Austria and Switzerland. It is shown that environmental impacts can be reduced by the application of reclaimed asphalt pavement (RAP) and by the optimization of specific production characteristics, e.g. the reduction of the initial moisture of the mineral aggregate and the reduction of the mixing temperature by the application of low-viscosity and foam bitumen. The results of the LCA study demonstrate reduction potentials per cubic meter asphalt of up to 57 % (Global Warming Potential–GWP) and 77 % (Ozone depletion–ODP). The analysis per square meter of asphalt pavement determined environmental potentials of up to 40 % (GWP) and 56 % (ODP).Keywords: Asphalt mixtures, environmental potentials, life cycle assessment, material production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10943453 Innovation to Protect the Smoke and Odor Pollutions in Benjarong Ceramic Production
Authors: Chonmapat Torasa, Witthaya Mekhum
Abstract:
The improvement of a filer case utilized to purify the let-out smoke and smell in the production of Benjarong Ceramic is studied through Participatory Action Research (PAR). This research is aimed to protect smell, dirty smoke, and air pollution which are effects of incomplete combustion in the production of Benjarong ceramic. This research was conducted at Jongjint Benjarong Ceramic Factory in Plai Bang, Bang Kruai, Nonthaburi Province,Thailand, also 12 employees were interviewed for data collection. All collected data were analyzed to develop and create solution to protect smoke and smell pollution from Benjarong ceramic production. The results revealed that the employees who have used the developed filer cases are moderately satisfied. In addition to the efficiency of developed smoke-and-smell filer cases, it was found that Overall, the respondents were satisfied moderately with efficiency of modified smoke and smell filter cases.
Keywords: Benjarong Ceramic, Community Economy, OTOP Production, Production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17783452 Improving Co-integration Trading Rule Profitability with Forecasts from an Artificial Neural Network
Authors: Paul Lajbcygier, Seng Lee
Abstract:
Co-integration models the long-term, equilibrium relationship of two or more related financial variables. Even if cointegration is found, in the short run, there may be deviations from the long run equilibrium relationship. The aim of this work is to forecast these deviations using neural networks and create a trading strategy based on them. A case study is used: co-integration residuals from Australian Bank Bill futures are forecast and traded using various exogenous input variables combined with neural networks. The choice of the optimal exogenous input variables chosen for each neural network, undertaken in previous work [1], is validated by comparing the forecasts and corresponding profitability of each, using a trading strategy.
Keywords: Artificial neural networks, co-integration, forecasting, trading rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1248