Search results for: cascade control system
10249 Recent Developments in Speed Control System of Pipeline PIGs for Deepwater Pipeline Applications
Authors: Mohamad Azmi Haniffa, Fakhruldin Mohd Hashim
Abstract:
Pipeline infrastructures normally represent high cost of investment and the pipeline must be free from risks that could cause environmental hazard and potential threats to personnel safety. Pipeline integrity such monitoring and management become very crucial to provide unimpeded transportation and avoiding unnecessary production deferment. Thus proper cleaning and inspection is the key to safe and reliable pipeline operation and plays an important role in pipeline integrity management program and has become a standard industry procedure. In view of this, understanding the motion (dynamic behavior), prediction and control of the PIG speed is important in executing pigging operation as it offers significant benefits, such as estimating PIG arrival time at receiving station, planning for suitable pigging operation, and improves efficiency of pigging tasks. The objective of this paper is to review recent developments in speed control system of pipeline PIGs. The review carried out would serve as an industrial application in a form of quick reference of recent developments in pipeline PIG speed control system, and further initiate others to add-in/update the list in the future leading to knowledge based data, and would attract active interest of others to share their view points.
Keywords: Pipeline Inspection Gauge (PIG), In Line Inspection Tools (ILI), PIG motion, PIG speed control system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 332810248 Statistical Analysis of First Order Plus Dead-time System using Operational Matrix
Authors: Pham Luu Trung Duong, Moonyong Lee
Abstract:
To increase precision and reliability of automatic control systems, we have to take into account of random factors affecting the control system. Thus, operational matrix technique is used for statistical analysis of first order plus time delay system with uniform random parameter. Examples with deterministic and stochastic disturbance are considered to demonstrate the validity of the method. Comparison with Monte Carlo method is made to show the computational effectiveness of the method.
Keywords: First order plus dead-time, Operational matrix, Statistical analysis, Walsh function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136410247 Solar Thermal Aquaculture System Controller Based on Artificial Neural Network
Authors: A. Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah
Abstract:
Temperature is one of the most principle factors affects aquaculture system. It can cause stress and mortality or superior environment for growth and reproduction. This paper presents the control of pond water temperature using artificial intelligence technique. The water temperature is very important parameter for shrimp growth. The required temperature for optimal growth is 34oC, if temperature increase up to 38oC it cause death of the shrimp, so it is important to control water temperature. Solar thermal water heating system is designed to supply an aquaculture pond with the required hot water in Mersa Matruh in Egypt. Neural networks are massively parallel processors that have the ability to learn patterns through a training experience. Because of this feature, they are often well suited for modeling complex and non-linear processes such as those commonly found in the heating system. Artificial neural network is proposed to control water temperature due to Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques. They have been used to solve complicated practical problems. Moreover this paper introduces a complete mathematical modeling and MATLAB SIMULINK model for the aquaculture system. The simulation results indicate that, the control unit success in keeping water temperature constant at the desired temperature by controlling the hot water flow rate.
Keywords: artificial neural networks, aquaculture, forced circulation hot water system,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205410246 Greenhouse Micro Climate Monitoring Based On WSN with Smart Irrigation Technique
Authors: Mahmoud Shaker, Ala'a Imran
Abstract:
Greenhouse is a building, which provides controlled climate conditions to the plants to keep them from external hard conditions. Greenhouse technology gives freedom to the farmer to select any crop type in any time during year. The quality and productivity of plants inside greenhouse is highly dependent on the management quality and a good management scheme is defined by the quality of the information collected from the greenhouse environment. Therefore, Continuous monitoring of environmental variables such as temperature, humidity, and soil moisture gives information to the grower to better understand, how each factor affects growth and how to manage maximal crop productiveness. In this piper, we designed and implemented climate monitoring with irrigation control system based on Wireless Sensor Network (WSN) technology. The designed system is characterized with friendly to use, easy to install by any greenhouse user, multi-sensing nodes, multi-PAN ID, low cast, water irrigation control and low operation complexity. The system consists of two node types (sensing and control) with star topology on one PAN ID. Moreover, greenhouse manager can modifying system parameters such as (sensing node addresses, irrigation upper and lower control limits) by updating corresponding data in SDRAM memory. In addition, the designed system uses 2*16 characters. LCD to display the micro climate parameters values of each plants row inside the greenhouse.
Keywords: ZigBee, WSN, Arduino platform, Greenhouse automation, micro climate monitoring, smart Irrigation control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 515910245 Power System Voltage Control using LP and Artificial Neural Network
Authors: A. Sina, A. Aeenmehr, H. Mohamadian
Abstract:
Optimization and control of reactive power distribution in the power systems leads to the better operation of the reactive power resources. Reactive power control reduces considerably the power losses and effective loads and improves the power factor of the power systems. Another important reason of the reactive power control is improving the voltage profile of the power system. In this paper, voltage and reactive power control using Neural Network techniques have been applied to the 33 shines- Tehran Electric Company. In this suggested ANN, the voltages of PQ shines have been considered as the input of the ANN. Also, the generators voltages, tap transformers and shunt compensators have been considered as the output of ANN. Results of this techniques have been compared with the Linear Programming. Minimization of the transmission line power losses has been considered as the objective function of the linear programming technique. The comparison of the results of the ANN technique with the LP shows that the ANN technique improves the precision and reduces the computation time. ANN technique also has a simple structure and this causes to use the operator experience.Keywords: voltage control, linear programming, artificial neural network, power systems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175910244 Stability Analysis of a Class of Nonlinear Systems Using Discrete Variable Structures and Sliding Mode Control
Authors: Vivekanandan C., Prabhakar .R., Prema D.
Abstract:
This paper presents the application of discrete-time variable structure control with sliding mode based on the 'reaching law' method for robust control of a 'simple inverted pendulum on moving cart' - a standard nonlinear benchmark system. The controllers designed using the above techniques are completely insensitive to parametric uncertainty and external disturbance. The controller design is carried out using pole placement technique to find state feedback gain matrix , which decides the dynamic behavior of the system during sliding mode. This is followed by feedback gain realization using the control law which is synthesized from 'Gao-s reaching law'. The model of a single inverted pendulum and the discrete variable structure control controller are developed, simulated in MATLAB-SIMULINK and results are presented. The response of this simulation is compared with that of the discrete linear quadratic regulator (DLQR) and the advantages of sliding mode controller over DLQR are also presentedKeywords: Inverted pendulum, Variable Structure, Sliding mode control, Discrete-time systems, Nonlinear systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200210243 DEA-Based Variable Structure Position Control of DC Servo Motor
Authors: Ladan Maijama’a, Jibril D. Jiya, Ejike C. Anene
Abstract:
This paper presents Differential Evolution Algorithm (DEA) based Variable Structure Position Control (VSPC) of Laboratory DC servomotor (LDCSM). DEA is employed for the optimal tuning of Variable Structure Control (VSC) parameters for position control of a DC servomotor. The VSC combines the techniques of Sliding Mode Control (SMC) that gives the advantages of small overshoot, improved step response characteristics, faster dynamic response and adaptability to plant parameter variations, suppressed influences of disturbances and uncertainties in system behavior. The results of the simulation responses of the VSC parameters adjustment by DEA were performed in Matlab Version 2010a platform and yield better dynamic performance compared with the untuned VSC designed.Keywords: Differential evolution algorithm, laboratory DC servomotor, sliding mode control, variable structure control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156210242 Adaptive Integral Backstepping Motion Control for Inverted Pendulum
Authors: Ö. Tolga Altınöz
Abstract:
The adaptive backstepping controller for inverted pendulum is designed by using the general motion control model. Backstepping is a novel nonlinear control technique based on the Lyapunov design approach, used when higher derivatives of parameter estimation appear. For easy parameter adaptation, the mathematical model of the inverted pendulum converted into the motion control model. This conversion is performed by taking functions of unknown parameters and dynamics of the system. By using motion control model equations, inverted pendulum is simulated without any information about not only parameters but also measurable dynamics. Also these results are compare with the adaptive backstepping controller which extended with integral action that given from [1].
Keywords: Adaptive backstepping, inverted pendulum, nonlinear adaptive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 349010241 Adaptive Nonlinear Backstepping Control
Authors: Sun Lim, Bong-Seok Kim
Abstract:
This paper presents an adaptive nonlinear position controller with velocity constraint, capable of combining the input-output linearization technique and Lyapunov stability theory. Based on the Lyapunov stability theory, the adaptation law of the proposed controller is derived along with the verification of the overall system-s stability. Computer simulation results demonstrate that the proposed controller is robust and it can ensure transient stability of BLDCM, under the occurrence of a large sudden fault.Keywords: BLDC Motor Control, Backstepping Control, Adaptive nonlinear control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222710240 Output Regulation of Perturbed Nonlinear Systems by Nested Sliding Mode Control
Authors: Aras Adhami Mirhoseini, Mohammad J. Yazdanpanah
Abstract:
In this paper, we consider nested sliding mode control of SISO nonlinear systems, perturbed by bounded matched and unmatched uncertainties. The systems are assumed to be in strict-feedback form. A step wise procedure is introduced to obtain the controller. In each step, a continuous sliding mode controller is designed as virtual control law. Then the next step sliding surface is defined by using this virtual controller. These sliding surfaces are selected as nonlinear static functions of the system states. Finally in the last step, smooth static state feedback control law is determined such that the output reaches the desired set-point while the system is forced arbitrary close to the intersection of sliding surfaces and the states remain bounded.
Keywords: Sliding mode control, Strict-feedback form, Unmatched uncertainty, output regulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 215010239 Multi-Agent Approach for Monitoring and Control of Biotechnological Processes
Authors: Ivanka Valova
Abstract:
This paper is aimed at using a multi-agent approach to monitor and diagnose a biotechnological system in order to validate certain control actions depending on the process development and the operating conditions. A multi-agent system is defined as a network of interacting software modules that collectively solve complex tasks. Remote monitoring and control of biotechnological processes is a necessity when automated and reliable systems operating with no interruption of certain activities are required. The advantage of our approach is in its flexibility, modularity and the possibility of improving by acquiring functionalities through the integration of artificial intelligence.
Keywords: Multi-agent approach, artificial intelligence, biotechnological processes, anaerobic biodegradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7310238 Shear Layer Investigation through a High-Load Cascade in Low-Pressure Gas Turbine Conditions
Authors: Mehdi Habibnia Rami, Shidvash Vakilipour, Mohammad H. Sabour, Rouzbeh Riazi, Hossein Hassannia
Abstract:
This paper deals with the steady and unsteady flow behavior on the separation bubble occurring on the rear portion of the suction side of T106A blade. The first phase was to implement the steady condition capturing the separation bubble. To accurately predict the separated region, the effects of three different turbulence models and computational grids were separately investigated. The results of Large Eddy Simulation (LES) model on the finest grid structure are acceptably in a good agreement with its relevant experimental results. The second phase is mainly to address the effects of wake entrance on bubble disappearance in unsteady situation. In the current simulations, from what was suggested in an experiment, simulating the flow unsteadiness, with concentrations on small scale disturbances instead of simulating a complete oncoming wake, is the key issue. Subsequently, the results from the current strategy to apply the effects of the wake and two other experimental work were compared to be in a good agreement. Between the two experiments, one of them deals with wake passing unsteady flow, and the other one implements experimentally the same approach as the current Computational Fluid Dynamics (CFD) simulation.
Keywords: T106A turbine cascade, shear-layer separation, steady and unsteady conditions, turbulence models, OpenFOAM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73510237 Fault Detection via Stability Analysis for the Hybrid Control Unit of HEVs
Authors: Kyogun Chang, Yoon Bok Lee
Abstract:
Fault detection determines faultexistence and detecting time. This paper discusses two layered fault detection methods to enhance the reliability and safety. Two layered fault detection methods consist of fault detection methods of component level controllers and system level controllers. Component level controllers detect faults by using limit checking, model-based detection, and data-driven detection and system level controllers execute detection by stability analysis which can detect unknown changes. System level controllers compare detection results via stability with fault signals from lower level controllers. This paper addresses fault detection methods via stability and suggests fault detection criteria in nonlinear systems. The fault detection method applies tothe hybrid control unit of a military hybrid electric vehicleso that the hybrid control unit can detect faults of the traction motor.Keywords: Two Layered Fault Detection, Stability Analysis, Fault-Tolerant Control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171010236 Hybrid Control Mode Based On Multi-Sensor Information by Fuzzy Approach for Navigation Task of Autonomous Mobile Robot
Authors: Jonqlan Lin, C. Y. Tasi, K. H. Lin
Abstract:
This paper addresses the issue of the autonomous mobile robot (AMR) navigation task based on the hybrid control modes. The novel hybrid control mode, based on multi-sensors information by using the fuzzy approach, has been presented in this research. The system operates in real time, is robust, enables the robot to operate with imprecise knowledge, and takes into account the physical limitations of the environment in which the robot moves, obtaining satisfactory responses for a large number of different situations. An experiment is simulated and carried out with a pioneer mobile robot. From the experimental results, the effectiveness and usefulness of the proposed AMR obstacle avoidance and navigation scheme are confirmed. The experimental results show the feasibility, and the control system has improved the navigation accuracy. The implementation of the controller is robust, has a low execution time, and allows an easy design and tuning of the fuzzy knowledge base.
Keywords: Autonomous mobile robot, obstacle avoidance, MEMS, hybrid control mode, navigation control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220710235 Black Box Model and Evolutionary Fuzzy Control Methods of Coupled-Tank System
Authors: S. Yaman, S. Rostami
Abstract:
In this study, a black box modeling of the coupled-tank system is obtained by using fuzzy sets. The derived model is tested via adaptive neuro fuzzy inference system (ANFIS). In order to achieve a better control performance, the parameters of three different controller types, classical proportional integral controller (PID), fuzzy PID and function tuner method, are tuned by one of the evolutionary computation method, genetic algorithm. All tuned controllers are applied to the fuzzy model of the coupled-tank experimental setup and analyzed under the different reference input values. According to the results, it is seen that function tuner method demonstrates better robust control performance and guarantees the closed loop stability.
Keywords: Function tuner method, fuzzy modeling, fuzzy PID controller, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164710234 Fuzzy Control of the Air Conditioning System at Different Operating Pressures
Authors: Mohanad Alata , Moh'd Al-Nimr, Rami Al-Jarrah
Abstract:
The present work demonstrates the design and simulation of a fuzzy control of an air conditioning system at different pressures. The first order Sugeno fuzzy inference system is utilized to model the system and create the controller. In addition, an estimation of the heat transfer rate and water mass flow rate injection into or withdraw from the air conditioning system is determined by the fuzzy IF-THEN rules. The approach starts by generating the input/output data. Then, the subtractive clustering algorithm along with least square estimation (LSE) generates the fuzzy rules that describe the relationship between input/output data. The fuzzy rules are tuned by Adaptive Neuro-Fuzzy Inference System (ANFIS). The results show that when the pressure increases the amount of water flow rate and heat transfer rate decrease within the lower ranges of inlet dry bulb temperatures. On the other hand, and as pressure increases the amount of water flow rate and heat transfer rate increases within the higher ranges of inlet dry bulb temperatures. The inflection in the pressure effect trend occurs at lower temperatures as the inlet air humidity increases.
Keywords: Air Conditioning, ANFIS, Fuzzy Control, Sugeno System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 336510233 Modelling of a Multi-Track Railway Level Crossing System Using Timed Petri Net
Authors: Prasun Hajra, Ranjan Dasgupta
Abstract:
Petri Net being one of the most useful graphical tools for modelling complex asynchronous systems, we have used Petri Net to model multi-track railway level crossing system. The roadway has been augmented with four half-size barriers. For better control, a three stage control mechanism has been introduced to ensure that no road-vehicle is trapped on the level crossing. Timed Petri Net is used to include the temporal nature of the signalling system. Safeness analysis has also been included in the discussion section.
Keywords: Modelling, Timed Petri Net, Railway Level Crossing, Safeness Condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211010232 Continuous and Discontinuous Shock Absorber Control through Skyhook Strategy in Semi-Active Suspension System (4DOF Model)
Authors: A. Shamsi, N. Choupani
Abstract:
Active vibration isolation systems are less commonly used than passive systems due to their associated cost and power requirements. In principle, semi-active isolation systems can deliver the versatility, adaptability and higher performance of fully active systems for a fraction of the power consumption. Various semi-active control algorithms have been suggested in the past. This paper studies the 4DOF model of semi-active suspension performance controlled by on–off and continuous skyhook damping control strategy. The frequency and transient responses of model are evaluated in terms of body acceleration, roll angle and tire deflection and are compared with that of a passive damper. The results show that the semi-active system controlled by skyhook strategy always provides better isolation than a conventional passively damped system except at tire natural frequencies.Keywords: Semi-active suspension system, Skyhook, Vibration isolation, 4DOF model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 272210231 Effective Internal Control System in the Nasarawa State Tertiary Educational Institutions for Efficiency: A Case of Nasarawa State Polytechnic, Lafia
Authors: Ibrahim Dauda Adagye
Abstract:
Effective internal control system in the bursary unit of tertiary educational institutions is geared toward achieving quality teaching, learning and research environment and as well assist the management of the institutions, particularly when decisions are to be made. While internal control system exists in all institutions, the outlined objectives above are far from being achieved. The paper therefore assesses the effectiveness of internal control system in tertiary educational institutions in Nasarawa State, Nigeria with specific focus on the Nasarawa State Polytechnic, Lafia. The study is survey, hence a simple closed ended questionnaire was developed and administered to a sample of twenty seven (27) member staff from the Bursary and the Internal audit unit of the Nasarawa State Polytechnic, Lafia so as to obtain data for analysis purposes and to test the study hypothesis. Responses from the questionnaire were analysed using a simple percentage and chi square. Findings shows that the right people are not assigned to the right job in the department, budget, and management accounting were never used in the institution’s operations and checking of subordinate by their superior officers is not regular. This renders the current internal control structure of the Polytechnic as ineffective and weak. The paper therefore recommends that: transparency should be seen as significant, as the institution work toward meeting its objectives, it therefore means that the right staff be assigned the right job and regular checking of the subordinates by their superiors be ensued.
Keywords: Bursary unit, efficiency, Internal control, tertiary educational institutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 388710230 Earth Station Neural Network Control Methodology and Simulation
Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah
Abstract:
Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.
Keywords: Satellite, neural network, MATLAB, power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186710229 Dynamic Control Modeling and Simulation of a UPFC-SMES Compensator in Power Systems
Authors: K. Saravanan, R. Anita
Abstract:
Flexible AC Transmission Systems (FACTS) is granting a new group of advanced power electronic devices emerging for enhancement of the power system performance. Unified Power Flow Controller (UPFC) is a recent version of FACTS devices for power system applications. The back-up energy supply system incorporated with UPFC is providing a complete control of real and reactive power at the same time and hence is competent to improve the performance of an electrical power system. In this article, backup energy supply unit such as superconducting magnetic energy storage (SMES) is integrated with UPFC. In addition, comparative exploration of UPFC–battery, UPFC–UC and UPFC–SMES performance is evaluated through the vibrant simulation by using MATLAB/Simulink software.
Keywords: Power system, FACTS, UPFC, DC-DC chopper, battery, UC, SMES.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195510228 Design of IMC-PID Controller Cascaded Filter for Simplified Decoupling Control System
Authors: Le Linh, Truong Nguyen Luan Vu, Le Hieu Giang
Abstract:
In this work, the IMC-PID controller cascaded filter based on Internal Model Control (IMC) scheme is systematically proposed for the simplified decoupling control system. The simplified decoupling is firstly introduced for multivariable processes by using coefficient matching to obtain a stable, proper, and causal simplified decoupler. Accordingly, transfer functions of decoupled apparent processes can be expressed as a set of n equivalent independent processes and then derived as a ratio of the original open-loop transfer function to the diagonal element of the dynamic relative gain array. The IMC-PID controller in series with filter is then directly employed to enhance the overall performance of the decoupling control system while avoiding difficulties arising from properties inherent to simplified decoupling. Some simulation studies are considered to demonstrate the simplicity and effectiveness of the proposed method. Simulations were conducted by tuning various controllers of the multivariate processes with multiple time delays. The results indicate that the proposed method consistently performs well with fast and well-balanced closed-loop time responses.
Keywords: Coefficient matching method, internal model control scheme, PID controller cascaded filter, simplified decoupler.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148210227 C@sa: Intelligent Home Control and Simulation
Authors: Berardina De Carolis, Giovanni Cozzolongo
Abstract:
In this paper, we present C@sa, a multiagent system aiming at modeling, controlling and simulating the behavior of an intelligent house. The developed system aims at providing to architects, designers and psychologists a simulation and control tool for understanding which is the impact of embedded and pervasive technology on people daily life. In this vision, the house is seen as an environment made up of independent and distributed devices, controlled by agents, interacting to support user's goals and tasks.
Keywords: Ambient intelligence, agent-based systems, influence diagrams.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154910226 A Study on Fuzzy Adaptive Control of Enteral Feeding Pump
Authors: Seungwoo Kim, Hyojune Chae, Yongrae Jung, Jongwook Kim
Abstract:
Recent medical studies have investigated the importance of enteral feeding and the use of feeding pumps for recovering patients unable to feed themselves or gain nourishment and nutrients by natural means. The most of enteral feeding system uses a peristaltic tube pump. A peristaltic pump is a form of positive displacement pump in which a flexible tube is progressively squeezed externally to allow the resulting enclosed pillow of fluid to progress along it. The squeezing of the tube requires a precise and robust controller of the geared motor to overcome parametric uncertainty of the pumping system which generates due to a wide variation of friction and slip between tube and roller. So, this paper proposes fuzzy adaptive controller for the robust control of the peristaltic tube pump. This new adaptive controller uses a fuzzy multi-layered architecture which has several independent fuzzy controllers in parallel, each with different robust stability area. Out of several independent fuzzy controllers, the most suited one is selected by a system identifier which observes variations in the controlled system parameter. This paper proposes a design procedure which can be carried out mathematically and systematically from the model of a controlled system. Finally, the good control performance, accurate dose rate and robust system stability, of the developed feeding pump is confirmed through experimental and clinic testing.
Keywords: Enteral Feeding Pump, Peristaltic Tube Pump, Fuzzy Adaptive Control, Fuzzy Multi-layered Controller, Look-up Table..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164410225 Vector Control of Multimotor Drive
Authors: Archana S. Nanoty, A. R. Chudasama
Abstract:
Three-phase induction machines are today a standard for industrial electrical drives. Cost, reliability, robustness and maintenance free operation are among the reasons these machines are replacing dc drive systems. The development of power electronics and signal processing systems has eliminated one of the greatest disadvantages of such ac systems, which is the issue of control. With modern techniques of field oriented vector control, the task of variable speed control of induction machines is no longer a disadvantage. The need to increase system performance, particularly when facing limits on the power ratings of power supplies and semiconductors, motivates the use of phase number other than three, In this paper a novel scheme of connecting two, three phase induction motors in parallel fed by two inverters; viz. VSI and CSI and their vector control is presented.Keywords: Field oriented control, multiphase induction motor, power electronics converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 338110224 Calculation of Reorder Point Level under Stochastic Parameters: A Case Study in Healthcare Area
Authors: Serap Akcan, Ali Kokangul
Abstract:
We consider a single-echelon, single-item inventory system where both demand and lead-time are stochastic. Continuous review policy is used to control the inventory system. The objective is to calculate the reorder point level under stochastic parameters. A case study is presented in Neonatal Intensive Care Unit.Keywords: Inventory control system, reorder point level, stochastic demand, stochastic lead time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 353310223 Preliminary Design of Frozen Soil Simulation System Based on Finite Element Simulation
Authors: Wenyu Song, Bingxi Li, Zhongbin Fu, Baocheng Jiang
Abstract:
Full - Scale Accelerated Loading System, one part of “the Eleventh - Five - Year National Grand Technology Infrastructure Program" is a facility to evaluate the performance and service life of different kinds of pavements subjected to traffic loading under full - controlled environment. While simulating the environments of frigid zone and permafrost zone, the accurate control of air temperature, road temperature and roadbed temperature are the key points and also aporias for the designment. In this paper, numerical simulations are used to determine the design parameters of the frozen soil simulation system. At first, a brief introduction of the Full - Scale Accelerate Loading System was given. Then, the temperature control method of frozen soil simulation system was proposed. Finally, by using finite element simulations, the optimal design of frozen soil simulation system was obtained. This proposed design, which was obtained by finite element simulations, provided significant referents to the ultimate design of the environment simulation system.Keywords: China, finite element simulation, frozen soilsimulation system, preliminary design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158110222 Fuzzy Logic Based Active Vibration Control of Piezoelectric Stewart Platform
Authors: Arian Bahrami, Mojtaba Tafaoli-Masoule, Mansour Nikkhah Bahrami
Abstract:
This paper demonstrates the potential of applying PD-like fuzzy logic controller for active vibration control of piezoelectric Stewart platforms. Through simulation, the control authority of the piezo stack actuators for effectively damping the Stewart platform vibration can be evaluated for further implementation of the system. Each leg of the piezoelectric Stewart platform consists of a linear piezo stack actuator, a collocated velocity sensor, a collocated displacement sensor and flexible tips for the connections with the two end plates. The piezoelectric stack is modeled as a bar element and the electro-mechanical coupling property is simulated using Matlab/Simulink software. Then, the open loop and closed loop dynamic responses are performed for the system to characterize the effect of the control on the vibration of the piezoelectric Stewart platform. A significant improvement in the damping of the structure can be observed by using the PD-like fuzzy controller.
Keywords: Active vibration control, Fuzzy controller, Piezoelectric stewart platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 289610221 Interpolation Issue in PVNPG-14M Application for Technical Control of Artillery Fire
Authors: Martin Blaha, Ladislav Potužák, Daniel Holesz
Abstract:
This paper focused on application support for technical control of artillery units – PVNPG-14M, especially on interpolation issue. Artillery units of the Army of the Czech Republic, reflecting the current global security neighborhood, can be used outside the Czech Republic. The paper presents principles, evolution and calculation in the process of complete preparation. The paper presents expertise using of application of current artillery communication and information system and suggests the perspective future system. The paper also presents problems in process of complete preparing of fire especially problems in permanently information (firing table) and calculated values. The paper presents problems of current artillery communication and information system and suggests requirements of the future system.Keywords: Fire for effect, application, fire control, interpolation method, software development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 115310220 Design of a Reduced Order Robust Convex Controller for Flight Control System
Authors: S. Swain, P. S. Khuntia
Abstract:
In this paper an optimal convex controller is designed to control the angle of attack of a FOXTROT aircraft. Then the order of the system model is reduced to a low-dimensional state space by using Balanced Truncation Model Reduction Technique and finally the robust stability of the reduced model of the system is tested graphically by using Kharitonov rectangle and Zero Exclusion Principle for a particular range of perturbation value. The same robust stability is tested theoretically by using Frequency Sweeping Function for robust stability.
Keywords: Convex Optimization, Kharitonov Stability Criterion, Model Reduction, Robust Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719