Search results for: Medical Imaging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 834

Search results for: Medical Imaging

474 Computational and Experimental Investigation of Supersonic Flow and their Controls

Authors: Vasana M. Don, Eldad J. Avital, Fariborz Motallebi

Abstract:

Supersonic open and closed cavity flows are investigated experimentally and computationally. Free stream Mach number of two is set. Schlieren imaging is used to visualise the flow behaviour showing stark differences between open and closed. Computational Fluid Dynamics (CFD) is used to simulate open cavity of flow with aspect ratio of 4. A rear wall treatment is implemented in order to pursue a simple passive control approach. Good qualitative agreement is achieved between the experimental flow visualisation and the CFD in terms of the expansion-shock waves system. The cavity oscillations are shown to be dominated by the first and third Rossister modes combining to high fluctuations of non-linear nature above the cavity rear edge. A simple rear wall treatment in terms of a hole shows mixed effect on the flow oscillations, RMS contours, and time history density fluctuations are given and analysed.

Keywords: Supersonic, Schlieren, open-cavity, flow simulation, passive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2395
473 Self-Supervised Pretraining on Paired Sequences of fMRI Data for Transfer Learning to Brain Decoding Tasks

Authors: Sean Paulsen, Michael Casey

Abstract:

In this work, we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.

Keywords: Transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151
472 A Tubular Electrode for Radiofrequency Ablation Therapy

Authors: Carlos L. Antunes, Tony R. Almeida, Nélia Raposeiro, Belarmino Gonçalves, Paulo Almeida, André Antunes

Abstract:

In the last two decades radiofrequency ablation (RFA) has been considered a promising medical procedure for the treatment of primary and secondary malignancies. However, the needle-based electrodes so far developed for this kind of treatment are not suitable for the thermal ablation of tumors located in hollow organs like esophagus, colon or bile duct. In this work a tubular electrode solution is presented. Numerical and experimental analyses were performed to characterize the volume of the lesion induced. Results show that this kind of electrode is a feasible solution and numerical simulation might provide a tool for planning RFA procedure with some accuracy.

Keywords: 3D modeling, cancer, medical therapy, radiofrequency ablation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
471 One-Class Support Vector Machines for Aerial Images Segmentation

Authors: Chih-Hung Wu, Chih-Chin Lai, Chun-Yen Chen, Yan-He Chen

Abstract:

Interpretation of aerial images is an important task in various applications. Image segmentation can be viewed as the essential step for extracting information from aerial images. Among many developed segmentation methods, the technique of clustering has been extensively investigated and used. However, determining the number of clusters in an image is inherently a difficult problem, especially when a priori information on the aerial image is unavailable. This study proposes a support vector machine approach for clustering aerial images. Three cluster validity indices, distance-based index, Davies-Bouldin index, and Xie-Beni index, are utilized as quantitative measures of the quality of clustering results. Comparisons on the effectiveness of these indices and various parameters settings on the proposed methods are conducted. Experimental results are provided to illustrate the feasibility of the proposed approach.

Keywords: Aerial imaging, image segmentation, machine learning, support vector machine, cluster validity index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
470 Automatic Visualization Pipeline Formation for Medical Datasets on Grid Computing Environment

Authors: Aboamama Atahar Ahmed, Muhammad Shafie Abd Latiff, Kamalrulnizam Abu Bakar, Zainul AhmadRajion

Abstract:

Distance visualization of large datasets often takes the direction of remote viewing and zooming techniques of stored static images. However, the continuous increase in the size of datasets and visualization operation causes insufficient performance with traditional desktop computers. Additionally, the visualization techniques such as Isosurface depend on the available resources of the running machine and the size of datasets. Moreover, the continuous demand for powerful computing powers and continuous increase in the size of datasets results an urgent need for a grid computing infrastructure. However, some issues arise in current grid such as resources availability at the client machines which are not sufficient enough to process large datasets. On top of that, different output devices and different network bandwidth between the visualization pipeline components often result output suitable for one machine and not suitable for another. In this paper we investigate how the grid services could be used to support remote visualization of large datasets and to break the constraint of physical co-location of the resources by applying the grid computing technologies. We show our grid enabled architecture to visualize large medical datasets (circa 5 million polygons) for remote interactive visualization on modest resources clients.

Keywords: Visualization, Grid computing, Medical datasets, visualization techniques, thin clients, Globus toolkit, VTK.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
469 Metal Streak Analysis with different Acquisition Settings in Postoperative Spine Imaging: A Phantom Study

Authors: N. D. Osman, M. S. Salikin, M. I. Saripan

Abstract:

CT assessment of postoperative spine is challenging in the presence of metal streak artifacts that could deteriorate the quality of CT images. In this paper, we studied the influence of different acquisition parameters on the magnitude of metal streaking. A water-bath phantom was constructed with metal insertion similar with postoperative spine assessment. The phantom was scanned with different acquisition settings and acquired data were reconstructed using various reconstruction settings. Standardized ROIs were defined within streaking region for image analysis. The result shows increased kVp and mAs enhanced SNR values by reducing image noise. Sharper kernel enhanced image quality compared to smooth kernel, but produced more noise in the images with higher CT fluctuation. The noise between both kernels were significantly different (P <0.05) with increment of noise in the bone kernel images (mean difference = 54.78). The technical settings should be selected appropriately to attain the acceptable image quality with the best diagnostic value.

Keywords: Computed tomography, metal streak, noise, CT fluctuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998
468 A Combined Cipher Text Policy Attribute-Based Encryption and Timed-Release Encryption Method for Securing Medical Data in Cloud

Authors: G. Shruthi, Purohit Shrinivasacharya

Abstract:

The biggest problem in cloud is securing an outsourcing data. A cloud environment cannot be considered to be trusted. It becomes more challenging when outsourced data sources are managed by multiple outsourcers with different access rights. Several methods have been proposed to protect data confidentiality against the cloud service provider to support fine-grained data access control. We propose a method with combined Cipher Text Policy Attribute-based Encryption (CP-ABE) and Timed-release encryption (TRE) secure method to control medical data storage in public cloud.

Keywords: Attribute, encryption, security, trapdoor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759
467 A Low-Cost Vision-Based Unmanned Aerial System for Extremely Low-Light GPS-Denied Navigation and Thermal Imaging

Authors: Chang Liu, John Nash, Stephen D. Prior

Abstract:

This paper presents the design and implementation details of a complete unmanned aerial system (UAS) based on commercial-off-the-shelf (COTS) components, focusing on safety, security, search and rescue scenarios in GPS-denied environments. In particular, The aerial platform is capable of semi-autonomously navigating through extremely low-light, GPS-denied indoor environments based on onboard sensors only, including a downward-facing optical flow camera. Besides, an additional low-cost payload camera system is developed to stream both infra-red video and visible light video to a ground station in real-time, for the purpose of detecting sign of life and hidden humans. The total cost of the complete system is estimated to be $1150, and the effectiveness of the system has been tested and validated in practical scenarios.

Keywords: Unmanned aerial system, commercial-off-the-shelf, extremely low-light, GPS-denied, optical flow, infrared video.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
466 An Efficient Pixel Based Cervical Disc Localization

Authors: J. Preetha, S. Selvarajan

Abstract:

When neck pain is associated with pain, numbness, or weakness in the arm, shoulder, or hand, further investigation is needed as these are symptoms indicating pressure on one or more nerve roots. Evaluation necessitates a neurologic examination and imaging using an MRI/CT scan. A degenerating disc loses some thickness and is less flexible, causing inter-vertebrae space to narrow. A radiologist diagnoses an Intervertebral Disc Degeneration (IDD) by localizing every inter-vertebral disc and identifying the pathology in a disc based on its geometry and appearance. Accurate localizing is necessary to diagnose IDD pathology. But, the underlying image signal is ambiguous: a disc’s intensity overlaps the spinal nerve fibres. Even the structure changes from case to case, with possible spinal column bending (scoliosis). The inter-vertebral disc pathology’s quantitative assessment needs accurate localization of the cervical region discs. In this work, the efficacy of multilevel set segmentation model, to segment cervical discs is investigated. The segmented images are annotated using a simple distance matrix.

Keywords: Intervertebral Disc Degeneration (IDD), Cervical Disc Localization, multilevel set segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
465 Virtual E-Medic: A Cloud Based Medical Aid

Authors: Madiajagan Muthaiyan, Neha Goel, Deepti Sunder Prakash

Abstract:

This paper discusses about an intelligent system to be installed in ambulances providing professional support to the paramedics on board. A video conferencing device over mobile 4G services enables specialists virtually attending the patient being transferred to the hospital. The data centre holds detailed databases on the patients past medical history and hospitals with the specialists. It also hosts various software modules that compute the shortest traffic –less path to the closest hospital with the required facilities, on inputting the symptoms of the patient, on a real time basis.

Keywords: 4G mobile services, cloud computing, data centre, intelligent system, optimization, real time traffic reporting, SaaS, video conferencing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
464 An Improved QRS Complex Detection for Online Medical Diagnosis

Authors: I. L. Ahmad, M. Mohamed, N. A. Ab. Ghani

Abstract:

This paper presents the work of signal discrimination specifically for Electrocardiogram (ECG) waveform. ECG signal is comprised of P, QRS, and T waves in each normal heart beat to describe the pattern of heart rhythms corresponds to a specific individual. Further medical diagnosis could be done to determine any heart related disease using ECG information. The emphasis on QRS Complex classification is further discussed to illustrate the importance of it. Pan-Tompkins Algorithm, a widely known technique has been adapted to realize the QRS Complex classification process. There are eight steps involved namely sampling, normalization, low pass filter, high pass filter (build a band pass filter), derivation, squaring, averaging and lastly is the QRS detection. The simulation results obtained is represented in a Graphical User Interface (GUI) developed using MATLAB.

Keywords: ECG, Pan Tompkins Algorithm, QRS Complex, Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2573
463 Development of Performance Indicators in Operational Level for Pre-hospital EMS in Thailand

Authors: Napisporn Memongkol, Runchana Sinthavalai, Nattapong Seneeratanaprayune Weerawat Ounsaneha, Chanisada Choosuk

Abstract:

The objective of this research is to develop the performance indicators (PIs) in operational level for the Pre-hospital Emergency Medical Service (EMS) system employing in Thailand. This research started with ascertaining the current pre-hospital care system. The team analyzed the strategies of Narerthorn, a government unit under the ministry of public health, and the existing PIs of the pre-hospital care. Afterwards, the current National Strategic Plan of EMS development (2008-2012) of the Emergency Medical Institute of Thailand (EMIT) was considered using strategic analysis to developed Strategy Map (SM) and identified the Success Factors (SFs). The analysis results from strategy map and SFs were used to develop the Performance Indicators (PIs). To verify the set of PIs, the team has interviewed with the relevant practitioners for the possibilities to implement the PIs. To this paper, it was to ascertain that all the developed PIs support the objectives of the strategic plan. Nevertheless, the results showed that the operational level PIs suited only with the first dimension of National Strategic Plan (infrastructure and information technology development). Besides, the SF was the infrastructure development (to contribute the EMS system to people throughout with standard and efficiency both in normally and disaster conditions). Finally, twenty-nine indicators were developed from the analysis results of SM and SFs.

Keywords: Emergency Medical Service, Performance Indicator, Success Factor, Thailand

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2272
462 Degraded Document Analysis and Extraction of Original Text Document: An Approach without Optical Character Recognition

Authors: L. Hamsaveni, Navya Prakash, Suresha

Abstract:

Document Image Analysis recognizes text and graphics in documents acquired as images. An approach without Optical Character Recognition (OCR) for degraded document image analysis has been adopted in this paper. The technique involves document imaging methods such as Image Fusing and Speeded Up Robust Features (SURF) Detection to identify and extract the degraded regions from a set of document images to obtain an original document with complete information. In case, degraded document image captured is skewed, it has to be straightened (deskew) to perform further process. A special format of image storing known as YCbCr is used as a tool to convert the Grayscale image to RGB image format. The presented algorithm is tested on various types of degraded documents such as printed documents, handwritten documents, old script documents and handwritten image sketches in documents. The purpose of this research is to obtain an original document for a given set of degraded documents of the same source.

Keywords: Grayscale image format, image fusing, SURF detection, YCbCr image format.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
461 Ultrasonic Evaluation of Bone Callus Growth in a Rabbit Tibial Distraction Model

Authors: H.K. Luk, Y.M. Lai, L. Qin, C.W. Chan, Z. Liu, Y.P. Huang, Y.P. Zheng

Abstract:

Ultrasound is useful in demonstrating bone mineral density of regenerating osseous tissue as well as structural alterations. A proposed ultrasound method, which included ultrasonography and acoustic parameters measurement, was employed to evaluate its efficacy in monitoring the bone callus changes in a rabbit tibial distraction osteogenesis (DO) model. The findings demonstrated that ultrasonographic images depicted characteristic changes of the bone callus, typical of histology findings, during the distraction phase. Follow-up acoustic parameters measurement of the bone callus, including speed of sound, reflection and attenuation, showed significant linear changes over time during the distraction phase. The acoustic parameters obtained during the distraction phase also showed moderate to strong correlation with consolidated bone callus density and micro-architecture measured by micro-computed tomography at the end of the consolidation phase. The results support the preferred use of ultrasound imaging in the early monitoring of bone callus changes during DO treatment.

Keywords: Bone Callus Growth, Rabbit Tibial DistractionOsteogenesis, Ultrasonography, Ultrasonometry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
460 Expression of Security Policy in Medical Systems for Electronic Healthcare Records

Authors: Nathan C. Lea, Tony Austin, Stephen Hailes, Dipak Kalra

Abstract:

This paper introduces a tool that is being developed for the expression of information security policy controls that govern electronic healthcare records. By reference to published findings, the paper introduces the theory behind the use of knowledge management for automatic and consistent security policy assertion using the formalism called the Secutype; the development of the tool and functionality is discussed; some examples of Secutypes generated by the tool are provided; proposed integration with existing medical record systems is described. The paper is concluded with a section on further work and critique of the work achieved to date.

Keywords: Information Security Policy, Electronic Healthcare Records, Knowledge Management, Archetypes, Secutypes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352
459 Image Enhancement of Medical Images using Gabor Filter Bank on Hexagonal Sampled Grids

Authors: Veni.S , K.A.Narayanankutty

Abstract:

For about two decades scientists have been developing techniques for enhancing the quality of medical images using Fourier transform, DWT (Discrete wavelet transform),PDE model etc., Gabor wavelet on hexagonal sampled grid of the images is proposed in this work. This method has optimal approximation theoretic performances, for a good quality image. The computational cost is considerably low when compared to similar processing in the rectangular domain. As X-ray images contain light scattered pixels, instead of unique sigma, the parameter sigma of 0.5 to 3 is found to satisfy most of the image interpolation requirements in terms of high Peak Signal-to-Noise Ratio (PSNR) , lower Mean Squared Error (MSE) and better image quality by adopting windowing technique.

Keywords: Hexagonal lattices, Gabor filter, Interpolation, imageprocessing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2742
458 2D Rigid Registration of MR Scans using the 1d Binary Projections

Authors: Panos D. Kotsas

Abstract:

This paper presents the application of a signal intensity independent registration criterion for 2D rigid body registration of medical images using 1D binary projections. The criterion is defined as the weighted ratio of two projections. The ratio is computed on a pixel per pixel basis and weighting is performed by setting the ratios between one and zero pixels to a standard high value. The mean squared value of the weighted ratio is computed over the union of the one areas of the two projections and it is minimized using the Chebyshev polynomial approximation using n=5 points. The sum of x and y projections is used for translational adjustment and a 45deg projection for rotational adjustment. 20 T1- T2 registration experiments were performed and gave mean errors 1.19deg and 1.78 pixels. The method is suitable for contour/surface matching. Further research is necessary to determine the robustness of the method with regards to threshold, shape and missing data.

Keywords: Medical image, projections, registration, rigid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
457 A Universal Model for Content-Based Image Retrieval

Authors: S. Nandagopalan, Dr. B. S. Adiga, N. Deepak

Abstract:

In this paper a novel approach for generalized image retrieval based on semantic contents is presented. A combination of three feature extraction methods namely color, texture, and edge histogram descriptor. There is a provision to add new features in future for better retrieval efficiency. Any combination of these methods, which is more appropriate for the application, can be used for retrieval. This is provided through User Interface (UI) in the form of relevance feedback. The image properties analyzed in this work are by using computer vision and image processing algorithms. For color the histogram of images are computed, for texture cooccurrence matrix based entropy, energy, etc, are calculated and for edge density it is Edge Histogram Descriptor (EHD) that is found. For retrieval of images, a novel idea is developed based on greedy strategy to reduce the computational complexity. The entire system was developed using AForge.Imaging (an open source product), MATLAB .NET Builder, C#, and Oracle 10g. The system was tested with Coral Image database containing 1000 natural images and achieved better results.

Keywords: Content Based Image Retrieval (CBIR), Cooccurrencematrix, Feature vector, Edge Histogram Descriptor(EHD), Greedy strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2933
456 Family Carers' Experiences in Striving for Medical Care and Finding Their Solutions for Family Members with Mental Illnesses

Authors: Yu-Yu Wang, Shih-Hua Hsieh, Ru-Shian Hsieh

Abstract:

Wishes and choices being respected, and the right to be supported rather than coerced, have been internationally recognized as the human rights of persons with mental illness. In Taiwan, ‘coerced hospitalization’ has become difficult since the revision of the mental health legislation in 2007. Despite trend towards human rights, the real problem families face when their family members are in mental health crisis is the lack of alternative services. This study aims to explore: 1) When is hospitalization seen as the only solution by family members? 2) What are the barriers for arranging hospitalization, and how are they managed? 3) What have family carers learned, in their experiences of caring for their family members with mental illness? To answer these questions, qualitative approach was adopted, and focus group interviews were taken to collect data. This study includes 24 family carers. The main findings of this research include: First, hospital is the last resort for carers in helplessness. Family carers tend to do everything they could to provide care at home for their family members with mental illness. Carers seek hospitalization only when a patient’s behavior is too violent, weird, and/or abnormal, and beyond their ability to manage. Hospitalization, nevertheless, is never an easy choice. Obstacles emanate from the attitudes of the medical doctors, the restricted areas of ambulance service, and insufficient information from the carers’ part. On the other hand, with some professionals’ proactive assistance, access to medical care while in crisis becomes possible. Some family carers obtained help from the medical doctor, nurse, therapist and social workers. Some experienced good help from policemen, taxi drivers, and security guards at the hospital. The difficulty in accessing medical care prompts carers to work harder on assisting their family members with mental illness to stay in stable states. Carers found different ways of helping the ‘person’ to get along with the ‘illness’ and have better quality of life. Taking back ‘the right to control’ in utilizing medication, from passiveness to negotiating with medical doctors and seeking alternative therapies, are seen in many carers’ efforts. Besides, trying to maintain regular activities in daily life and play normal family roles are also experienced as important. Furthermore, talking with the patient as a person is also important. The authors conclude that in order to protect the human rights of persons with mental illness, it is crucial to make the medical care system more flexible and to make the services more humane: sufficient information should be provided and communicated, and efforts should be made to maintain the person’s social roles and to support the family.

Keywords: Family carers, coercive treatment, independent living, mental health crisis, persons with mental illness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014
455 Design of an Efficient Retimed CIC Compensation Filter

Authors: Vishal Awasthi, Krishna Raj

Abstract:

Unwanted side effects because of spectral aliasing and spectral imaging during signal processing would be the major concern over the sampling rate alteration. Multirate-multistage implementation of digital filter could come about a large computational saving than single rate filter suitable for sample rate conversion. This implementation can further improve through high-level architectural transformation in circuit level. Reallocating registers and  relocating flip-flops across logic gates through retiming certainly a prominent sequential transformation technology, that optimize hardware circuits to achieve faster clocking speed without affecting the functionality. In this paper, we proposed an efficient compensated cascade Integrator comb (CIC) decimation filter structure that analyze the consequence of filter order variation which has a retimed FIR filter being compensator while using the cutset retiming technique and achieved an improvement in the passband droop by 14% to 39%, in computation time by 38.04%, 25.78%, 12.21%, 6.69% and 4.44% and reduction in path delay by 62.27%, 72%, 86.63%, 91.56% and 94.42% of 3, 6, 8, 12 and 24 order filter respectively than the non-retimed CIC compensation filter.

Keywords: Multirate Filtering, CIC decimation filter, Compensation theory, Retiming, Retiming algorithm, Filter order, Synchronous dataflow graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3706
454 Processing the Medical Sensors Signals Using Fuzzy Inference System

Authors: S. Bouharati, I. Bouharati, C. Benzidane, F. Alleg, M. Belmahdi

Abstract:

Sensors possess several properties of physical measures. Whether devices that convert a sensed signal into an electrical signal, chemical sensors and biosensors, thus all these sensors can be considered as an interface between the physical and electrical equipment. The problem is the analysis of the multitudes of saved settings as input variables. However, they do not all have the same level of influence on the outputs. In order to identify the most sensitive parameters, those that can guide users in gathering information on the ground and in the process of model calibration and sensitivity analysis for the effect of each change made. Mathematical models used for processing become very complex. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The system collects the available signals information from sensors. Moreover, the system allows the study of the influence of the various factors that take part in the decision system. Since its inception fuzzy set theory has been regarded as a formalism suitable to deal with the imprecision intrinsic to many problems. At the same time, fuzzy sets allow to use symbolic models. In this study an example was applied for resolving variety of physiological parameters that define human health state. The application system was done for medical diagnosis help. The inputs are the signals expressed the cardiovascular system parameters, blood pressure, Respiratory system paramsystem was done, it will be able to predict the state of patient according any input values.

Keywords: Sensors, Sensivity, fuzzy logic, analysis, physiological parameters, medical diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
453 Content Based Image Retrieval of Brain MR Images across Different Classes

Authors: Abraham Varghese, Kannan Balakrishnan, Reji R. Varghese, Joseph S. Paul

Abstract:

Magnetic Resonance Imaging play a vital role in the decision-diagnosis process of brain MR images. For an accurate diagnosis of brain related problems, the experts mostly compares both T1 and T2 weighted images as the information presented in these two images are complementary. In this paper, rotational and translational invariant form of Local binary Pattern (LBP) with additional gray scale information is used to retrieve similar slices of T1 weighted images from T2 weighted images or vice versa. The incorporation of additional gray scale information on LBP can extract more local texture information. The accuracy of retrieval can be improved by extracting moment features of LBP and reweighting the features based on users feedback. Here retrieval is done in a single subject scenario where similar images of a particular subject at a particular level are retrieved, and multiple subjects scenario where relevant images at a particular level across the subjects are retrieved.

Keywords: Local Binary pattern (LBP), Modified Local Binary pattern (MOD-LBP), T1 and T2 weighted images, Moment features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2381
452 The Relevance of Data Warehousing and Data Mining in the Field of Evidence-based Medicine to Support Healthcare Decision Making

Authors: Nevena Stolba, A Min Tjoa

Abstract:

Evidence-based medicine is a new direction in modern healthcare. Its task is to prevent, diagnose and medicate diseases using medical evidence. Medical data about a large patient population is analyzed to perform healthcare management and medical research. In order to obtain the best evidence for a given disease, external clinical expertise as well as internal clinical experience must be available to the healthcare practitioners at right time and in the right manner. External evidence-based knowledge can not be applied directly to the patient without adjusting it to the patient-s health condition. We propose a data warehouse based approach as a suitable solution for the integration of external evidence-based data sources into the existing clinical information system and data mining techniques for finding appropriate therapy for a given patient and a given disease. Through integration of data warehousing, OLAP and data mining techniques in the healthcare area, an easy to use decision support platform, which supports decision making process of care givers and clinical managers, is built. We present three case studies, which show, that a clinical data warehouse that facilitates evidence-based medicine is a reliable, powerful and user-friendly platform for strategic decision making, which has a great relevance for the practice and acceptance of evidence-based medicine.

Keywords: data mining, data warehousing, decision-support systems, evidence-based medicine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3811
451 Enhancement of m-FISH Images using Spectral Unmixing

Authors: Martin De Biasio, Raimund Leitner, Franz G. Wuertz, Sergey Verzakov, Pierre J. Elbischger

Abstract:

Breast carcinoma is the most common form of cancer in women. Multicolour fluorescent in-situ hybridisation (m-FISH) is a common method for staging breast carcinoma. The interpretation of m-FISH images is complicated due to two effects: (i) Spectral overlap in the emission spectra of fluorochrome marked DNA probes and (ii) tissue autofluorescence. In this paper hyper-spectral images of m-FISH samples are used and spectral unmixing is applied to produce false colour images with higher contrast and better information content than standard RGB images. The spectral unmixing is realised by combinations of: Orthogonal Projection Analysis (OPA), Alterating Least Squares (ALS), Simple-to-use Interactive Self-Modeling Mixture Analysis (SIMPLISMA) and VARIMAX. These are applied on the data to reduce tissue autofluorescence and resolve the spectral overlap in the emission spectra. The results show that spectral unmixing methods reduce the intensity caused by tissue autofluorescence by up to 78% and enhance image contrast by algorithmically reducing the overlap of the emission spectra.

Keywords: breast carcinoma, hyperspectral imaging, m-FISH, spectral unmixing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
450 An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning

Authors: Yanwen Li, Shuguo Xie

Abstract:

In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method.

Keywords: Gradient image, segmentation and extract, mean-shift algorithm, dictionary learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970
449 Study of EEGs from Somatosensory Cortex and Alzheimer's Disease Sources

Authors: Md R. Bashar, Yan Li, Peng Wen

Abstract:

This study is to investigate the electroencephalogram (EEG) differences generated from a normal and Alzheimer-s disease (AD) sources. We also investigate the effects of brain tissue distortions due to AD on EEG. We develop a realistic head model from T1 weighted magnetic resonance imaging (MRI) using finite element method (FEM) for normal source (somatosensory cortex (SC) in parietal lobe) and AD sources (right amygdala (RA) and left amygdala (LA) in medial temporal lobe). Then, we compare the AD sourced EEGs to the SC sourced EEG for studying the nature of potential changes due to sources and 5% to 20% brain tissue distortions. We find an average of 0.15 magnification errors produced by AD sourced EEGs. Different brain tissue distortion models also generate the maximum 0.07 magnification. EEGs obtained from AD sources and different brain tissue distortion levels vary scalp potentials from normal source, and the electrodes residing in parietal and temporal lobes are more sensitive than other electrodes for AD sourced EEG.

Keywords: Alzheimer's disease (AD), brain tissue distortion, electroencephalogram, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
448 Implementation of a Web-Based Wireless ECG Measuring and Recording System

Authors: Onder Yakut, Serdar Solak, Emine Dogru Bolat

Abstract:

Measuring the Electrocardiogram (ECG) signal is an essential process for the diagnosis of the heart diseases. The ECG signal has the information of the degree of how much the heart performs its functions. In medical diagnosis and treatment systems, Decision Support Systems processing the ECG signal are being developed for the use of clinicians while medical examination. In this study, a modular wireless ECG (WECG) measuring and recording system using a single board computer and e-Health sensor platform is developed. In this designed modular system, after the ECG signal is taken from the body surface by the electrodes first, it is filtered and converted to digital form. Then, it is recorded to the health database using Wi-Fi communication technology. The real time access of the ECG data is provided through the internet utilizing the developed web interface.

Keywords: ECG, e-health sensor shield, raspberry Pi, wifi technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3006
447 Willingness and Attitude Towards Organ Donation of Nurses in Taiwan

Authors: Min-Chuan Huang, I-Ping Chen, Shu-Ying Chung

Abstract:

Taking the medical staff in an emergency ward of a medical center in Central Taiwan as the research object, the questionnaire data were collected by anonymous and voluntary reporting methods with structured questionnaires to explore organ donation’s actual situation, willingness, and attitude. Only 80 valid questionnaires were gathered. Of the 8 questions, the correct mean rate was 5.9 and the correct rate was 73.13%. According to the statistics of organ donation survey, only 8.7% have signed the consent for organ donation, 21.3% are willing but have not yet signed the consent for organ donation, 62.5% have not yet decided, and 7.5% are unwilling. The average total score (standard deviation) of attitude towards organ donation was 36.2. There is no significant difference between the demographic variables and the awareness and willingness of organ donation, but there is a significant correlation between marital status and the attitude toward organ donation.

Keywords: clinical psychology, organ donation, factors affecting psychological disorders, commitment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1194
446 Image Haze Removal Using Scene Depth Based Spatially Varying Atmospheric Light in Haar Lifting Wavelet Domain

Authors: Prabh Preet Singh, Harpreet Kaur

Abstract:

This paper presents a method for single image dehazing based on dark channel prior (DCP). The property that the intensity of the dark channel gives an approximate thickness of the haze is used to estimate the transmission and atmospheric light. Instead of constant atmospheric light, the proposed method employs scene depth to estimate spatially varying atmospheric light as it truly occurs in nature. Haze imaging model together with the soft matting method has been used in this work to produce high quality haze free image. Experimental results demonstrate that the proposed approach produces better results than the classic DCP approach as color fidelity and contrast of haze free image are improved and no over-saturation in the sky region is observed. Further, lifting Haar wavelet transform is employed to reduce overall execution time by a factor of two to three as compared to the conventional approach.

Keywords: Depth based atmospheric light, dark channel prior, lifting wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 553
445 An Amalgam Approach for DICOM Image Classification and Recognition

Authors: J. Umamaheswari, G. Radhamani

Abstract:

This paper describes about the process of recognition and classification of brain images such as normal and abnormal based on PSO-SVM. Image Classification is becoming more important for medical diagnosis process. In medical area especially for diagnosis the abnormality of the patient is classified, which plays a great role for the doctors to diagnosis the patient according to the severeness of the diseases. In case of DICOM images it is very tough for optimal recognition and early detection of diseases. Our work focuses on recognition and classification of DICOM image based on collective approach of digital image processing. For optimal recognition and classification Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Support Vector Machine (SVM) are used. The collective approach by using PSO-SVM gives high approximation capability and much faster convergence.

Keywords: Recognition, classification, Relaxed Median Filter, Adaptive thresholding, clustering and Neural Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259