
Self-Supervised Pretraining on Paired Sequences of
fMRI Data for Transfer Learning to Brain Decoding

Tasks
Sean Paulsen, Michael Casey

Abstract—In this work, we present a self-supervised pretraining
framework for transformers on functional Magnetic Resonance
Imaging (fMRI) data. First, we pretrain our architecture on two
self-supervised tasks simultaneously to teach the model a general
understanding of the temporal and spatial dynamics of human auditory
cortex during music listening. Our pretraining results are the first to
suggest a synergistic effect of multitask training on fMRI data. Second,
we finetune the pretrained models and train additional fresh models
on a supervised fMRI classification task. We observe significantly
improved accuracy on held-out runs with the finetuned models, which
demonstrates the ability of our pretraining tasks to facilitate transfer
learning. This work contributes to the growing body of literature on
transformer architectures for pretraining and transfer learning with
fMRI data, and serves as a proof of concept for our pretraining tasks
and multitask pretraining on fMRI data.

Keywords—Transfer learning, fMRI, self-supervised, brain
decoding, transformer, multitask training.

I. INTRODUCTION

FUNCTIONAL MRI (fMRI) scans measure

blood-oxygen-level-dependent (BOLD) responses

that reflect changes in metabolic demand consequent to neural

activity [1]–[3]. By measuring BOLD responses at specific

combinations of spatio-temporal resolutions and coverages,

fMRI data provide the means to study complex cognitive

processes in the human brain [4]–[6]. In particular, task-based

fMRI protocols include targeted stimuli or other task variables,

such as question answering, during the scan. Researchers

can then conclude associations between task features and

the evoked responses across the brain [7]–[9]. Regions of

activity that are correlated with the presence of a particular

task feature are thus taken to be involved in the brain’s

representation of that feature [10], and they are considered

to be functionally connected [11]. Even rest-state fMRI data,

that is, data collected in the absence of external stimuli or

task, contain characteristic multi-variate signals of the brain

[12]–[16]. Such rest-state signals have been shown to be

predictive of the diagnosis and characterization of multiple

neurological diseases and psychiatric conditions [17]–[19].

fMRI researchers have thus adopted machine learning

(ML) techniques to analyze the complex relationship between

BOLD signal and the underlying task, disease, or biological

information. More specifically, training an ML model to predict

such information given the BOLD data as input is known
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as task-state decoding, or brain decoding. Toward the goal

of more powerful brain decoding models, many advances in

modern deep machine learning have been applied to fMRI

research. These include convolution-based models [12], [20],

[21], recurrent neural networks (RNN) [22], and graph neural

networks [23]. Most recently, transformer [24] based models

have achieved state of the art results on several brain decoding

tasks [1], [25], [26], having already grown to dominate the fields

of time series forecasting [27], natural language processing

[28], and computer vision [29], [30].

However, training deep models is data intensive, while fMRI

scans are expensive with relatively little data obtained per

scan. One strategy to somewhat alleviate the burden of data

is to pretrain the model on a self-supervised task to acquire

general knowledge inherent in the dataset. The pretrained model

then has a head start, so to speak, on the task of interest, by

leveraging its general understanding of the data [31]. This

strategy is nearly ubiquitous in the domain of Natural Language

Processing (NLP) [32] and has begun to appear in fMRI

studies [25], [26]. As Kalyan et al. [32] note: “These models

provide good background knowledge to downstream tasks

which avoids training of downstream models from scratch.”

This process is called transfer learning. In this paper we

propose two self-supervised pretraining tasks on sequences

of audio-evoked fMRI data to facilitate transfer learning to

downstream auditory brain decoding tasks. We demonstrate

our transformer architecture’s ability to learn these tasks and

“transfer” that knowledge to improve convergence time on a

supervised auditory brain decoding task. Further, our results

show that simultaneous training on both pretraining tasks

achieves superior final performance than training on only one

of the tasks.

Our contributions are: (1) we present self-supervised tasks for

two-task simultaneous pretraining on sequences of fMRI data,

(2) we report our transformer architecture’s successful learning

of those tasks and achieve, to the best of our knowledge, the

first evidence of a synergistic benefit from multitask training on

fMRI data, (3) we demonstrate transfer learning to a supervised

brain decoding task, and thereby establish a proof of concept of

our pretraining tasks’ suitability and our framework’s capacity

for transfer learning on fMRI data.

II. RELATED WORK

Univariate approaches to fMRI data such as contrast

subtraction can be useful for basic analysis, but such
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Fig. 1 The sequences of voxel data used in our experiments which are
timeseries of neural activity measured by fMRI [51]

approaches struggle to isolate the densely overlapping patterns

of multivariate signals which comprise neural activity [33], [34].

This challenge motivated the adoption of early ML architectures

for multivariate fMRI analysis [35], [36], notably support

vector machines for brain decoding classification [37]–[40].

Progression into deep ML models saw multilayer perceptrons

[41], autoencoders [12], [42], convolutional neural networks

(CNN) [43], [44], and graph neural networks (GNN) [23] for

feature extraction and classification of single fMRI images.

Time series analysis is perhaps more desirable due to the high

degree of temporal correlation in BOLD responses, and indeed

recurrent neural networks (RNN) and various long short-term

memory (LSTM) models have been reported [45]–[49].

Most recently, the transformer [24] architecture has emerged

as a superior alternative to recurrent methods for fMRI

timeseries modeling. Bedel et al. [1] improved the state of the

art for timeseries classification on multiple public fMRI datasets

with a novel fused-window attention mechanism, but their work

did not explore pretraining or transfer learning. Nguyen et al.

[26] achieved state of the art classification accuracy for a

task-state decoding task on the Human Connectome Project

7-task dataset [50]. Their analysis includes the explicit benefits

of the transformer’s self-attention module when compared to

previous recurrent architectures, as well as a demonstration

of transfer learning when pretraining on held-out subsets of

HCP 7-task. However, their pretraining task was supervised

classification specific to HCP 7-task labelled data, and thus their

pretrained models would be of little to no value toward transfer

learning on different datasets or modalities [32]. Malkiel et al.

[25] pretrain on a self-supervised fMRI reconstruction task by

wrapping the transformer block in an encoder-decoder. They

report that their pretraining was crucial for improved state of

the art performance on a variety of fMRI tasks such as age and

gender prediction, and schizophrenia recognition. We note that

their downstream task uses the CLS token decoding method

popularized by Devlin et al. [28], while their pretraining task

does not incorporate the CLS token. This inconsistency between

training phases does not obtain the full value of the transfer

learning paradigm.

Extending the above work, we explore multitask pretraining

and transfer learning with novel self-supervised pretraining

tasks which include the CLS token, with all model inputs in a

standardized geographical brain space, without passing through

an embedding layer.

III. ARCHITECTURE AND TRAINING TASKS

A. Paired-Sequence Transformer

Our architecture is a modified stacked bidirectional-encoder

design (Fig. 2) with two separate output blocks, one for

each of two self-supervised pretraining tasks on which the

model is trained simultaneously. We implemented our models

from scratch with the pyTorch library. Our model does not

include the standard embedding layer after positional encoding.

We hypothesize that the composition of the fMRI scanner’s

measurement of BOLD signal with the mapping of that

measurement to MNI space constitutes a meaningful embedding

of the physical, biological neural response. The data are

already in a shared, distributed, representative space. Hence,

we dispense with the embedding layer in our design.

A thorough explanation of the data preprocessing and the

construction of the inputs to the model is given in the Data

Preparation section below, which we summarize here. All

training data in this work were built from the Music Genre

fMRI Dataset (2021) [52]. The images were collected while

five subjects listened to samples of music from ten different

genres. Each input to the model is constructed by extracting a

contiguous sequence of five fMRI images of a subject listening

to music (Seq1), and pairing it with another (different) such

sequence (Seq2). A separator token (SEP) [28] is inserted

between the two sequences, and a classification token (CLS)

[25], [26], [28] is inserted at the front. Before constructing

the inputs, we reduced all fMRI images to only the left-side

auditory cortex, resulting in 420 voxels, which we then flattened

to 1-D. Thus each input xi in the training set is a sequence of

twelve 420-dimensional vectors:

xi = [CLS, �v0, . . . , SEP, �v5 . . . , �v11] , vj ∈ R
420 (1)

The implementation of these tokens without an embedding

layer is explained in the last paragraph of the Materials section

below.

B. Pretraining Tasks

We now present our two self-supervised pretraining tasks.

First is Next Thought Prediction (NTP). The goal of this task

is binary classification, predicting whether or not Seq2 follows

immediately after Seq1 in the original data. From the output

of the final transformer block, the transformed CLS token is

sent to Output Block 1. This block consists of a linear layer

projecting down from 420 dimensions to 210, then a linear

layer projecting down from 210 to 2, and finally a softmax is

applied to obtain probabilities for “No” (index 0) and “Yes”

(index 1). The loss for NTP is calculated as the Cross-Entropy

between the result of Output Block 1 and a one-hot encoding

of the ground truth.

Our second pretraining task is Masked Brain Modeling
(MBM). The goal of this task is to reconstruct a masked

element or elements of the input sequence. When an input

arrives at the model, before positional encoding, either one or

two of the ten fMRI images are chosen uniformly at random

(without replacement) for masking. It is a 50/50 chance whether

one or two are chosen. When an image is chosen, there is an

80% chance to replace it with the mask token (MSK), a 10%
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Fig. 2 Depiction of our Pretraining and Finetuning phases; output blocks are not pictured but are detailed in corresponding sections

chance to replace it with a random image sampled uniformly

from the full dataset, and a 10% chance to leave it unchanged.

The chosen indices are recorded, and the elements of the

final transformer block’s output at those indices are passed

separately to Output Block 2. This block consists of a dense

layer with ReLu activation, then a second dense layer with

linear activation. The loss for MBM is calculated as the Mean

Squared Error between the output and the original chosen fMRI

image. In the case of two chosen images, the total MBM loss

is the average of the two individual MBM losses.

Note the inherent data augmentation of the MBM task.

There are ten fMRI images in each training sample, and the

result of each possible masking configuration yields a distinct

training sample. Thus MBM can effectively grow the size

of the training set by an order of magnitude if the model

is trained long enough. This gain is perhaps overlooked in

domains such as natural language processing where billions of

training samples are available. In fMRI studies, however, data

poverty is a consistent concern due to the financial and time

costs of scanning. While we make no specific claims about the

effects of this augmentation in this work, this potential benefit

built into the task is noteworthy.

C. Multitask Learning

Training on more than one task simultaneously, known

as Multitask Learning (MTL), has been shown to improve

downstream performance in several domains [53] by benefiting

from the underlying relationships between tasks, but to our

knowledge this has not previously been done when training on

fMRI data. In their thorough treatment of the brain’s musical

reward system, Salimpoor et al. [54] comment “music pleasure

is thought to rely on generation of expectations, anticipation of

their development and outcome, and violation or confirmation

of predictions.” In other words, the notion of “what comes

next” is intimately connected to the explicit values of voxel

activity. NTP and MBM embody these two concepts, so indeed

our multitask pretraining scheme is aligned with the literature.

The raw loss value of NTP for a single training sample

is, on average, at least an order of magnitude greater than

the loss value of MBM when training begins. Therefore the

parameter updates will certainly be dominated by NTP, stifling

any learning from MBM. Deriving a theoretically optimal way

to combine the two losses would be a significant endeavor,

so our total training loss for a single sample is merely the

weighted sum of our two loss values:

Emulti = α1 ∗ ENTP + α2 ∗ EMBM (2)

α1 + α2 = 1. (3)

These two weights are simply hyperparameters to be tuned.

We explore these and other hyperparameters in the Experiments

and Results section below.

D. Finetuning Task

Our supervised brain decoding task used for finetuning is

the Same Genre (SG) task. The goal of this task is binary

classification, predicting whether or not Seq1 corresponds to

listening to the same genre of music as Seq2. From the output

of the final transformer block, the transformed CLS token

is sent to Output Block 3. This block consists of a single

linear layer projecting down from 420 dimensions to 2, then

a softmax is applied to obtain probabilities for “No” (index

0) and “Yes” (index 1). The loss for SG is calculated as the

Cross-Entropy between the result of Output Block 3 and a

one-hot encoding of the ground truth. We made the finetuning

output block as simple as possible to ensure that the brunt of

the work is supported by the pretrained transformer blocks.
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TABLE I
BEST PERFORMING CONFIGURATION FOR THE TWO TRAINING REGIMENS

MULTI NTP

α1, α2 0.1, 0.9 N/A

LR 10−4 10−5

ATN HDS 2 2
F EXP 4 4

IV. EXPERIMENTS AND RESULTS

A. Hyperparameter Search

One of the most important questions to ask in the context

of multitask learning is whether the model would have been

better off with only one task. In particular, how much is the

performance on NTP impeded by having to learn MBM at the

same time? To explore this, we performed our hyperparameter

grid search for training on the multitask regimen as well as

NTP alone. Table I shows the best performing (i.e. achieved

the highest validation accuracy on NTP at some point during

training) configurations. We let the NTP task guide our search

because its binary accuracy is simply more interpretable than

any metric involving the MBM task. Nevertheless, the multitask

models’ performance on MBM is included in our analysis

below.

All training during grid search held out run 0 from the

dataset as a validation split. We applied a dropout rate of

0.1 in all transformer blocks. Models were trained for ten

epochs via backpropagation with the Adam optimizer with

β1 = 0.9, β2 = 0.999, and weight decay = 0.0001.

In general, fewer attention heads with more layers

outperformed the reverse. It is reassuring to obtain the same

value for attention heads and forward expansion on both

regimens. The best performing learning rate for NTP-only

is an order of magnitude smaller than for multitask, but this

is not surprising. NTP’s contribution to the loss is scaled by

α1 = 0.1, and in the most basic gradient descent, scaling the

loss function by a constant is functionally the same as scaling

the learning rate by that constant instead. The Adam optimizer

is a bit more complex, but the general idea holds.

B. Pretraining

After identifying the best performing hyperparameters for

both cases, we performed 12-fold cross validation for both

multitask and NTP-only, where each fold holds out one

of twelve runs from the dataset. It was unclear during

hyperparameter search whether a 3 or 4 layer model was

superior, so we considered both here. The same Adam

specifications as hyperparameter search were used. The exact

details of pretraining dataset construction can be found in the

Materials section below, but we note here that each fold has

10,000 training samples and 800 validation samples.

Results are presented in Table II. For each fold, we saved the

model’s state after the epoch with the highest NTP accuracy

on the validation split (“Best Val Acc” in the table). The “Best

Epoch” column contains the epoch in which this accuracy was

achieved. The MBM loss calculated on the validation split

after the Best Epoch is also given to consider the relationship

between the two tasks. We consider as a baseline that the MBM

training loss on the first training sample seen by a model is

around 0.4. The averages of each column are given in the last

row of the table.

Models with 3 layers outperformed on average on both

accuracies of interest as well as MBM Validation Loss, so

we proceeded to finetuning with the saved 3-layer models.

The exact details of finetuning dataset construction can be

found in the Materials section below, but as in the pretraining

phase, each fold has 10,000 training samples and 800 validation

samples.

C. Finetuning

We loaded the 12 3-layer models saved after their Best Epoch

during the Multitask and NTP-only regimens and trained them

for ten epochs on the Same Genre task described above. The

training data for each model hold out the same run as were held

out during pretraining as a validation split. Preliminary testing

showed that freezing the pretrained weights and updating only

the new output block was not a successful training strategy

for this work. Therefore all parameters were updated during

finetuning. To examine the benefit of transfer learning, we

also trained 12 “fresh” models. The fresh models are identical

to the other models used in finetuning but do not load any

pretrained weights.

The Adam optimizer parameters were the same as during

pretraining. We trained all 36 models with a Learning Rate

of 10−4 and then again with 10−5- the two learning rates

used during pretraining. Table III gives the 10−5 results. These

results outperformed the 10−4 results across the board so those

are not reported.

D. Discussion

The first point of interest is that the pretraining phase was

successful at all. fMRI data are a challenging domain and

paired-sequence transformers have not previously been used

in this domain, nor has multitask learning. Nevertheless, our

implementation is conclusively capable of learning these tasks.

The average best performance between the two regimens is

not significantly different (87.6% vs. 88.2%), which alleviates

concerns about MBM impeding the ability to learn NTP.

Moreover, it does not impede the speed at which the multitask

models achieve their best performance- about 8 epochs in both

cases. The multitask models are more volatile, with lower lows

but also higher highs. NTP-only achieves a highest validation

accuracy of 90.75%, but multitask runs achieve 92%, 93.5%,

and 94.875%, which is our first evidence of a synergistic benefit
from self-supervised multitask training on fMRI data.

Our supervised brain decoding task, Same Genre, was also

successful on both pretrained models and fresh models. The

models pretrained on NTP-only significantly outperformed the

fresh models, which is our first significant evidence of the
ability to perform transfer learning with our model from one
of our self-supervised pretraining tasks to a supervised brain
decoding task. The models pretrained on Multitask almost

exactly matched the baseline fresh models on average, but we

note a similar volatility to the pretraining phase. The average of

the Multitask models is dragged down by folds 4 (72.75%) and
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TABLE II
RESULTS OF 12-FOLD CROSS VALIDATION FOR MULTITASK (NTP AND MBM) AND NTP-ONLY PRETRAINING REGIMENS, ON 3 AND 4 LAYERS

Multitask (NTP and MBM) NTP Only
Heldout Run N Layers Best Val Acc Best Epoch MBM Val Loss Best Val. Acc Best Epoch

0
4 93.5% 8 0.00103 88.375% 6

3 88.125% 8 0.00048 88.25% 9

1
4 87.375% 9 0.00088 87.375% 8

3 90.6% 6 0.00051 88.375% 9

2
4 88.625% 4 0.00070 87.875% 9

3 88.75% 9 0.00037 89.375% 8

3
4 86.875% 7 0.00043 87.375% 8

3 89.5% 9 0.00118 87.75% 7

4
4 80.0% 3 0.00107 83.0% 8

3 80.5% 8 0.00045 90.75% 9

5
4 88.375% 9 0.00080 87.0% 9

3 90.75% 9 0.00040 87.75% 9

6
4 79.375% 8 0.00079 83.875% 6

3 84.125% 8 0.00051 87.75% 9

7
4 79.875% 3 0.00259 85.375% 9

3 85.625% 8 0.00071 89.25% 9

8
4 81.75% 6 0.00098 90.0% 9

3 94.875% 8 0.00083 90.125% 8

9
4 82.25% 9 0.00102 85.0% 8

3 85.0% 8 0.00076 84.75% 4

10
4 80.375% 5 0.00079 87.0% 9

3 92.0% 9 0.00077 87.25% 9

11
4 72.278% 1 0.00070 88.734% 9

3 82.152% 9 0.00032 87.468% 9

Average
4 83.388% 6 0.00098 86.749% 8.17

3 87.613% 8.25 0.00061 88.237% 8.25

TABLE III
RESULTS OF 12-FOLD CROSS VALIDATION FOR THREE FINETUNING REGIMENS ON THE SAME GENRE TASK: MULTITASK-PRETRAINED MODELS,

NTP-ONLY-PRETRAINED MODELS, AND FRESH MODELS

Multitask (NTP and MBM) NTP Only Fresh
Heldout Run Best Val Acc Best Epoch Best Val Acc Best Epoch Best Val. Acc Best Epoch
0 82.625% 7 94.75% 9 84.625% 8
1 86.625% 9 91.375% 9 88.75% 5
2 88.375% 9 94.0% 6 89.625% 6
3 93.0% 4 92.125% 8 89.5% 9
4 72.75% 9 93.25% 8 82.5% 6
5 89.5% 9 92.0% 5 86.5% 9
6 82.0% 9 91.0% 9 82.75% 9
7 98.25% 9 90.875% 5 82.5% 9
8 94.25% 9 95.375% 9 83.625% 6
9 78.125% 9 92.375% 9 83.125% 5
10 82.625% 7 91.875% 8 87.875% 8
11 81.392% 2 97.089% 8 83.291% 9
Average 85.793% 7.67 93.007% 7.75 85.389% 7.42

9 (78.125%). On the other hand, fold 7 achieves a staggering

98.25% validation accuracy, as well as 93% and 94.25%, all of

which exceed the fresh models’ best fold of 91.625%. NTP-only

reached a maximum of 97.089%, which is also short of the

Multitask maximum.

The relationship between pretraining performance and

finetuning performance is unclear. For example, the second

highest finetuning accuracy for Multitask was on folds 8, which

was the highest performance of the 3-layer models during

pretraining, indicating the positive relationship between the

two phases that we would expect. On the other hand, fold

7 had the best performing Multitask finetuning accuracy, or

rather the best finetuning accuracy of any regimen, while the

pretraining accuracy and MBM loss were both below average

on that fold. More work is required to properly identify a

relationship between the two phases.

V. CONCLUSIONS AND FUTURE WORK

In this work we presented two self-supervised tasks

for pretraining on sequences of fMRI data- Next Thought

Prediction, and Masked Brain Modeling. The results of our

pretraining phase demonstrated our paired-sequence transformer

architecture’s successful learning of those tasks, as well as the

first evidence of a synergistic benefit from multitask training on

fMRI data. The results of our finetuning phase demonstrated

transfer learning from NTP to a supervised brain decoding task,

establishing a proof of concept of our framework’s suitability

for transfer learning on fMRI data, in particular, in the absence

of an embedding layer.
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We observe the similarity between the Same Genre task and a

standard contrast analysis of genre in STG. Fundamentally, both

are asking if STG encodes different genres in different ways.

Our implementation answers this question in the affirmative

without the need for a contrast analysis. More generally, any

contrast analysis interested in the difference between two

conditions could be substituted by our model. Our upcoming

work aims to show that our model can detect such differences

which univariate approaches, such as contrast, fail to recognize.

Looking elsewhere, the experiments in this work do not

exploit a particular power of transformers for learning long

term dependencies. Increasing the sequence length would

of course reduce the size of the training set, and this was

our primary motivation for using a small sequence length

in these experiments, but there were also some restrictions

in the data collection protocol preventing us from wielding

longer sequences. This is discussed in detail in the Materials

section below. The Human Connectome Project (2013) [50] is a

prevailing candidate for future on long sequences of fMRI data

due to its overwhelming size and well-established benchmarks.

As stated above, we believe this paired-sequence framework

has potential for replacing or supplementing contrast analysis,

but there is also a great deal of work with fMRI

data, for example basic brain decoding, that cannot use

the paired-sequence structure. Our upcoming work has a

self-supervised pretraining task for only one sequence, which

generalizes immediately to common brain decoding tasks and

datasets.

VI. MATERIALS

A. Data Preprocessing

The training data for this work were built from the Music

Genre fMRI Dataset (2021) [52] available on the OpenNeuro

database. This dataset contains whole-brain images of five

subjects listening to 540 music pieces from 10 music genres.

We refer to the original paper [55] for the full details of data

collection, but much of it has been covered in this work as it

became relevant. We used the Brainlife (2017) [56] application

to conduct our suite of preprocessing for the Music Genre

dataset. The fMRIprep (2019) [57] preprocessing package

performed motion correction, field unwarping, normalization,

bias field correction, and brain extraction. Next, fMRIprep

mapped the 3-D images of each participant’s brain into a

standardized 3-D (96x114x96) vector space (MNI space) [58]

such that the various structural components of each brain

are at the same coordinates. This enables direct comparison

and analysis of BOLD signals in physically different brains.

In our case, MNI space facilitates among-subject training of

machine learning models. We refer to this standardized vector

space throughout the paper as the voxel space, where the

3-D coordinates correspond to 1x1x1mm3 cubes of brain

called voxels and the value at each coordinate is the BOLD

signal in that volume. To summarize, the voxel data used in

model training are the timeseries of 3-D BOLD signals after

preprocessing and mapping to MNI space. (Fig. 1).

B. Region of Interest

The full MNI space is several orders of magnitude too large

for our purposes, but more importantly we are only interested

in regions of the brain recruited during attentive listening

to music. The Superior Temporal Gyrus (STG) is the site

of the auditory cortex, which processes auditory information.

Angulo-Perkins et al. [59] showed preferential involvement of

STG in processing music in both musicians and non-musicians,

which fits our goal of learning from the Music Genre dataset.

STG has also been used to learn decoding models of complex

natural sounds [60], language [61], and even imagined sound

[37] from fMRI data. Therefore we chose to extract STG

from each subject’s voxel data. FSLEyes (2022) [62] is a

free application for viewing fMRI images and includes several

atlases for isolating structural ROIs in the brain with respect to

MNI space. We used the Harvard-Oxford cortical structure atlas

(HO atlas), some regions of which are shown as an example

in Fig. 4.

The HO atlas assigns a probability to each voxel of belonging

to each ROI. Therefore in order to extract STG, we needed

to choose a minimum probability threshold for inclusion in

STG. This threshold is a hyperparameter to be tuned in future

work, but in this work all datasets have a threshold of 23%.

We obtained our threshold by visual inspection of the resulting

regions. In their seminal work, Craddock et al. [63] used a

threshold of 25% with the HO atlas, so our visual inspection

method is only slightly more lenient.

The HO atlas labels anterior and posterior STG separately,

so we applied the threshold to both regions and concatenated

them. Voxels which met the threshold for inclusion in both
anterior and posterior are only included once and the greater

of the two probabilities is preserved. Fig. 3 shows the heatmap

corresponding to this union.

We proceed with only one of the two lateral STGs for

reduced model complexity and thus lower resource demand for

training. In our previous work [12], we successfully decoded a

particular auditory stimulus information from left-STG but not

right-STG, and this was our primary basis for choosing left

rather than right for these experiments. The number of voxels

in left-STG with inclusion threshold 23% is 413. However, to

perform multi-head attention, the dimension of the input to a

transformer must be evenly divisible by the number of attention

heads. Thus our inputs should have a dimension (i.e. number

of voxels) with a “nice” factorization to evaluate different

numbers of attention heads. The choice was between removing
the voxels with the lowest probabilities of inclusion above 23%
to reach 400, or inserting voxels with the highest probabilities

below 23% to reach 420. We chose the latter for its more

diverse factorization, that is, allowing for all of 2, 3, 4, 5, 6,

and 7 attention heads. We then performed linear detrending

across the full scan to each voxel and, finally, standardized

each voxel to mean zero across the full scan.

C. Creating the Training Data

The original dataset was collected by scanning while

15-second clips of music played with a 1.5 second repetition

time (TR). So each clip corresponds to 10 consecutive images in
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Fig. 3 Heatmaps for probability of voxel inclusion in STG; only probabilities greater than or equal to 23% are shown

Fig. 4 Heatmaps for probability of a particular voxel being included in a chosen region of interest; anterior STG (top) and Posterior STG (bottom) maps with a
minimum inclusion probability of 23% are overlayed on the Harvard-Oxford atlas

the dataset. There were no rest periods between clips. Therefore,

with the Same Genre task in mind, the most natural sequence

length for each of of the inputs to the model is 10, but we

chose 5 for more training data. Thus each sequence of 5 (5-seq)

for the SG task is either timesteps 1 through 5 or 6 through

10 of a music clip. All 5-seqs were extracted. For each 5-seq,

a positive and negative training sample was created. That is,

each 5-seq was inserted to the left of the SEP token, and a

5-seq with the same music genre was sampled uniformly at

random from the same subject’s data and placed to the right

of the SEP token to create a positive sample, similarly for

a negative sample. We have not yet trained this task when

the pairs are among-subject, but the models in this work are

trained on the collection of pairs from all subjects, resulting

in a within-among-subject hybrid. The size of our SG datasets

could be multiplied by making more positive and negative

samples, but that would of course multiply the training time,

and our results were already strong on this task.

We recall that the masking process for MBM is done when

an input arrives at the model, so creating a dataset for multitask

training reduces to creating a dataset for NTP-only. We needed

to use 5-seqs to make training data for the NTP task to have the

correct model specifications for finetuning on SG. All 5-seqs

were extracted and both a positive and negative within-subject

sample were created, as with SG. These 5-seqs could have

arbitrary start and end points and possibly overlap, but we chose

the same start and end points as for SG. This was because it

sets up an interesting challenge for the model to overcome.

When the 5-seq is images 1 through 5 for a music clip, the

positive sample for NTP is necessarily a positive sample for SG.

But when the 5-seq is images 6 through 10, the positive sample

for NTP is necessarily a negative sample for SG- that is, the

5-seq immediately following it must be for a different genre (a

genre never followed itself during scanning). In simple terms,

for half the samples where “yes” is the correct answer during

pretraining, “no” would be the correct answer during finetuning.

Thus this construction presented a meaningful hurdle for the

models to overcome during finetuning, they could not simply

follow the same pathways they learned during pretraining.

The training data for each fold of the cross-validation were

constructed by holding out one of the 12 runs labelled “Training

Run” in the original dataset. The inputs to the model contain

two 5-seqs, so inputs in the validation splits were constructed

by sampling both 5-seqs from the heldout run, and the training

splits did not sample from the heldout runs. Note that while

the dataset construction process was the same for pretraining

and finetuning, the datasets themselves are not the same. We

constructed a dataset for each fold of pretraining and finetuning.

Within each fold of pretraining, Multitask and NTP-only used

the same dataset in order to directly compare performance.

Similarly, for each fold of finetuning, the three regimens used

the same dataset.
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In addition to the 12 runs labelled “Training Run” in

the original dataset, there are six “Test Runs,” which were

constructed slightly differently. We emphasize here that the

words “training” and “test” in the original run labels have

no relation to our own training and validation splits. Each

“Training Run” corresponds to 40 different music clips, while

each “Test Run” corresponds to a sequence of 10 music clips

(one from each genre) repeated four times. When creating our

datasets, we only included 5-seqs from the first instance of

each clip in the “Test Runs,” and the others were discarded.

The result for each fold was 10000 total training samples and

400 validation samples.

Finally, we recall that our architecture does not have an

embedding layer. In NLP, the tokens are added as word

indices to the vocabulary and the embedding layer learns their

distributed representations [24]. Malkiel et al. [25] prepend a

CLS token to sequences of fMRI images and pass that sequence

through a learned embedding layer. But the original form of the

CLS token must have the same dimension as the fMRI images

in the sequence in order for the embedding layer to accept it.

They do not report what this original form was. Logically, the

tokens ought to be “far away” from the rest of the data in the

distributed space. Thus we simply reserved the first three of

the 420 dimensions for our tokens. The CLS, SEP, and MSK

tokens have a 1 in the zeroth, first, and second dimensions

respectively, and are zero elsewhere. Each fMRI image has

zero in those dimensions. Indeed, we had to remove the three

voxels with lowest probability of inclusion from each image

to make room for the tokens, and thus in practice only had

417 voxels in each image rather than 420. The success of our

training validates our implementation of these tokens without

an embedding space.
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