An Efficient Pixel Based Cervical Disc Localization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33090
An Efficient Pixel Based Cervical Disc Localization

Authors: J. Preetha, S. Selvarajan

Abstract:

When neck pain is associated with pain, numbness, or weakness in the arm, shoulder, or hand, further investigation is needed as these are symptoms indicating pressure on one or more nerve roots. Evaluation necessitates a neurologic examination and imaging using an MRI/CT scan. A degenerating disc loses some thickness and is less flexible, causing inter-vertebrae space to narrow. A radiologist diagnoses an Intervertebral Disc Degeneration (IDD) by localizing every inter-vertebral disc and identifying the pathology in a disc based on its geometry and appearance. Accurate localizing is necessary to diagnose IDD pathology. But, the underlying image signal is ambiguous: a disc’s intensity overlaps the spinal nerve fibres. Even the structure changes from case to case, with possible spinal column bending (scoliosis). The inter-vertebral disc pathology’s quantitative assessment needs accurate localization of the cervical region discs. In this work, the efficacy of multilevel set segmentation model, to segment cervical discs is investigated. The segmented images are annotated using a simple distance matrix.

Keywords: Intervertebral Disc Degeneration (IDD), Cervical Disc Localization, multilevel set segmentation.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1107167

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860

References:


[1] Uduma, F. U. (2011). Uncommon Types of Disc Hernia (A Report of Three Cases and Review of Literature). Global Journal of Medical Research, 11(2).
[2] Ohnishi, K., Miyamoto, K., Kanamori, Y., Kodama, H., Hosoe, H., & Shimizu, K. (2005). Anterior decompression and fusion for multiple thoracic disc herniation. Journal of Bone & Joint Surgery, British Volume, 87(3), 356-360.
[3] Boden, S. D. (1996). Current Concepts Review-The Use of Radiographic Imaging Studies in the Evaluation of Patients Who Have Degenerative Disorders of the Lumbar Spine*. The Journal of Bone & Joint Surgery, 78(1), 114-24.
[4] Key, J. A. (1945). The conservative and operative treatment of lesions of the intervertebral discs in the low back. Surgery, 17(2), 291-303.
[5] Teplick, J. G., & Haskin, M. E. (1985). Spontaneous regression of herniated nucleus pulposus. American journal of neuroradiology, 6(3), 331-335.
[6] Vinas, F. C., Wilner, H., & Rengachary, S. (2001). The spontaneous resorption of herniated cervical discs. Journal of clinical Neuroscience, 8(6), 542-546.
[7] Shi, R., Sun, D., Qiu, Z., & Weiss, K. L. (2007, May). An efficient method for segmentation of MRI spine images. In Complex Medical Engineering, 2007. CME 2007. IEEE/ICME International Conference on (pp. 713-717). IEEE.
[8] Peng, Z., Zhong, J., Wee, W., & Lee, J. H. (2006, January). Automated vertebra detection and segmentation from the whole spine MR images. In Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the (pp. 2527-2530). IEEE.
[9] Jensen, G. M. (1980). Biomechanics of the lumbar intervertebral disk: A review. Physical therapy, 60(6), 765-773.
[10] Williams, F. M. K., & Sambrook, P. N. (2011). Neck and back pain and intervertebral disc degeneration: role of occupational factors. Best Practice & Research Clinical Rheumatology, 25(1), 69-79.
[11] Alomari, R. S., Corso, J. J., & Chaudhary, V. (2011). Labeling of lumbar discs using both pixel-and object-level features with a two-level probabilistic model.Medical Imaging, IEEE Transactions on, 30(1), 1- 10.
[12] Glocker, B., Zikic, D., Konukoglu, E., Haynor, D. R., & Criminisi, A. (2013). Vertebrae Localization in Pathological Spine CT via Dense Classification from Sparse Annotations. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013 (pp. 262-270). Springer Berlin Heidelberg.
[13] Kelm, B. M., Zhou, S. K., Suehling, M., Zheng, Y., Wels, M., & Comaniciu, D. (2011). Detection of 3D spinal geometry using iterated marginal space learning. In Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging (pp. 96-105). Springer Berlin Heidelberg.
[14] Michopoulou, S., Boniatis, I., Costaridou, L., Cavouras, D., Panagiotopoulos, E., & Panayiotakis, G. (2009). Computer assisted characterization of cervical intervertebral disc degeneration in MRI. Journal of Instrumentation, 4(05), P05022.
[15] Alomari, R. S., Corso, J. J., Chaudhary, V., & Dhillon, G. (2009, June). Desiccation diagnosis in lumbar discs from clinical mri with a probabilistic model. In Biomedical Imaging: From Nano to Macro, 2009. ISBI'09. IEEE International Symposium on (pp. 546-549). IEEE.
[16] Ghosh, S., Malgireddy, M. R., Chaudhary, V., & Dhillon, G. (2012, May). A new approach to automatic disc localization in clinical lumbar mri: Combining machine learning with heuristics. In Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on (pp. 114- 117). IEEE.
[17] Koh, J., Scott, P. D., Chaudhary, V., & Dhillon, G. (2011, March). An automatic segmentation method of the spinal canal from clinical MR images based on an attention model and an active contour model. In Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on (pp. 1467-1471). IEEE.
[18] Schmidt, S., Kappes, J., Bergtholdt, M., Pekar, V., Dries, S., Bystrov, D., & Schnörr, C. (2007, January). Spine detection and labeling using a parts-based graphical model. In Information Processing in Medical Imaging (pp. 122-133). Springer Berlin Heidelberg.
[19] Jerebko, A. K., Schmidt, G. P., Zhou, X., Bi, J., Anand, V., Liu, J., ... & Krishnan, A. (2007, January). Robust parametric modeling approach based on domain knowledge for computer aided detection of vertebrae column metastases in MRI. In Information Processing in Medical Imaging (pp. 713-724). Springer Berlin Heidelberg.
[20] Wong, A., Mishra, A., Yates, J., Fieguth, P., Clausi, D. A., & Callaghan, J. P. (2009). Intervertebral disc segmentation and volumetric reconstruction from peripheral quantitative computed tomography imaging. Biomedical Engineering, IEEE Transactions on, 56(11), 2748- 2751.
[21] Glocker, B., Feulner, J., Criminisi, A., Haynor, D. R., & Konukoglu, E. (2012). Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012 (pp. 590-598). Springer Berlin Heidelberg.
[22] Oktay, A. B., & Akgul, Y. S. (2011). Localization of the Lumbar discs using machine learning and exact probabilistic inference. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011 (pp. 158-165). Springer Berlin Heidelberg.
[23] Bhole, C., Kompalli, S., & Chaudhary, V. (2009, February). Context sensitive labeling of spinal structure in MR images. In SPIE Medical Imaging (pp. 72603P-72603P). International Society for Optics and Photonics.
[24] Pekar, V., Bystrov, D., Heese, H. S., Dries, S. P., Schmidt, S., Grewer, R., ... & Van Muiswinkel, A. M. (2007). Automated planning of scan geometries in spine MRI scans. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2007 (pp. 601-608). Springer Berlin Heidelberg.
[25] Huang, S. H., Lai, S. H., & Novak, C. L. (2008, May). A statistical learning appproach to vertebra detection and segmentation from spinal MRI. InBiomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on (pp. 125-128). IEEE.
[26] da Rocha Neto, A. R., Sousa, R., Barreto, G. D. A., & Cardoso, J. S. (2011). Diagnostic of pathology on the vertebral column with embedded reject option. InPattern Recognition and Image Analysis (pp. 588-595). Springer Berlin Heidelberg.
[27] Mumford, D., & Shah, J. (1989). Optimal approximations by piecewise smooth functions and associated variational problems. Communications on pure and applied mathematics, 42(5), 577-685.
[28] Morel, J. M., & Solimini, S. (1995). Variational methods in image segmentation. Birkhauser Boston Inc..
[29] Morel, J. M., & Solimini, S. (1989). Segmentation d'images par méthode variationnelle: une preuve constructive d'existence. Comptes rendus de l'Académie des sciences. Série 1, Mathématique, 308(15), 465-470.
[30] Jean-Michel, M. O., OLIMINI, S. S., & de Lattre, P. D. M. (1988). Segmentation of Images by Variational Methods: a Constructive Approach. Rev. Mat. Complut,1(1), 2-3.
[31] Massari, U., & Tamanini, I. (1993). On the finiteness of optimal partitions. Annali dell’Università’di Ferrara, 39(1), 167-185.
[32] Tamanini, I. (1996). Optimal approximation by piecewise constant functions. InVariational Methods for Discontinuous Structures (pp. 73- 85). Birkhäuser Basel.
[33] Tamanini, I., & Congedo, G. (1996). Optimal segmentation of unbounded functions. Rendiconti del Seminario Matematico della Università di Padova, 95, 153-174.
[34] Leonardi, G. P., & Tamanini, I. (1998). On minimizing partitions with infinitely many components. Annali dell’Università di Ferrara, 44(1), 41-57.