Search results for: Magnetic properties
2842 Impact of Fly Ash-Based Geopolymer Modification on the High-Temperature Properties of Bitumen
Authors: Burak Yigit Katanalp, Murat Tastan, Perviz Ahmedzade, Çigdem Canbay Turkyilmaz, Emrah Turkyilmaz
Abstract:
This study evaluated the mechanical and rheological performance of fly ash-based geopolymer at high temperatures. A series of laboratory tests were conducted on neat bitumen and three modified bitumen samples, which incorporated fly ash-based geopolymer at various percentages. Low-calcium fly ash was used as the alumina-silica source. The dynamic shear rheometer and rotational viscometer were employed to determine high-temperature properties, while conventional tests such as penetration and softening point were used to evaluate the physical properties of bitumen. Short-term aging resistance of the samples was assessed using the rolling thin film oven. The results show that geopolymer has a compromising effect on bitumen properties, with improved stiffness, enhanced mechanical strength, and increased thermal susceptibility of the asphalt binder.
Keywords: Bitumen, geopolymer, rutting, dynamic mechanical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742841 Structural and Optical Properties of CdSiP2 and CdSiAs2 Nonlinear Optical Materials
Authors: N. N. Omehe
Abstract:
CdSiP2 and CdsiAs2 are nonlinear optical materials for near and mid-infrared applications. Density functional theory has been applied to study the structure, band gap, and optical properties of these materials. The pseudopotential method was used in the form of projector augmented wave (PAW) and norm-conserving, the band structure calculations yielded a band gap of 1.55 eV and 0.88 eV for CdSiP2 and CdsiAs2 respectively. The values of ε1(ω) from the doelectric function calculations are 15 and 14.9 CdSiP2 and CdsiAs2 respectively.
Keywords: Band structure, chalcopyrite, near-infrared materials, mid-infrared materials, nonlinear material, optical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402840 The Influence of Zeolitic Spent Refinery Admixture on the Rheological and Technological Properties of Steel Fiber Reinforced Self-Compacting Concrete
Authors: Ž. Rudžionis, P. Grigaliūnas, D. Vaičiukynienė
Abstract:
By planning this experimental work to investigate the effect of zeolitic waste on rheological and technological properties of self-compacting fiber reinforced concrete, we had an intention to draw attention to the environmental factor. Large amount of zeolitic waste, as secondary raw materials are not in use properly and large amount of it is collected without a clear view of its usage in future. The principal aim of this work is to assure, that zeolitic waste admixture takes positive effect to the self-compacting fiber reinforced concrete mixes stability, flowability and other properties by using the experimental research methods. In addition to that a research on cement and zeolitic waste mortars were implemented to clarify the effect of zeolitic waste on properties of cement paste and stone. Primary studies indicates that zeolitic waste characterizes clear pozzolanic behavior, do not deteriorate and in some cases ensure positive rheological and mechanical characteristics of self-compacting concrete mixes.
Keywords: Self compacting concrete, steel fiber reinforced concrete, zeolitic waste, rheological properties of concrete, slump flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17792839 Investigation of Dynamic Mechanical Properties of Jute/Carbon Reinforced Composites
Authors: H. Sezgin, O. B. Berkalp, R. Mishra, J. Militky
Abstract:
In the last few decades, due to their advanced properties, there has been an increasing interest in hybrid composite materials. In this study, the effect of different stacking sequences of jute and carbon fabric plies on dynamic mechanical properties of composite laminates were investigated. Vacuum bagging system was used to fabricate the composite samples. Each composite laminate was reinforced with two plies of jute fabric and two plies of carbon fabric by varying the position of layers. Dynamic mechanical analyzer (DMA) was used to examine the dynamic mechanical properties of composite laminates with increasing temperature. Results showed that the composite sample, which has carbon fabric at the outer layers, has the highest storage and loss modulus. Besides, it was observed that glass transition temperature (Tg) of samples are close to each other and at about 75 °C.
Keywords: Differential scanning calorimetry dynamic mechanical analysis, textile reinforced composites, thermogravimetric analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18382838 The Effect of Addition of Dioctyl Terephthalate and Calcite on the Tensile Properties of Organoclay/Linear Low Density Polyethylene Nanocomposites
Authors: A. Gürses, Z. Eroğlu, E. Şahin, K. Güneş, Ç. Doğar
Abstract:
In recent years, polymer/clay nanocomposites have generated great interest in the polymer industry as a new type of composite material because of their superior properties, which includes high heat deflection temperature, gas barrier performance, dimensional stability, enhanced mechanical properties, optical clarity and flame retardancy when compared with the pure polymer or conventional composites. The investigation of change of the tensile properties of organoclay/linear low density polyethylene (LLDPE) nanocomposites with the use of Dioctyl terephthalate (DOTP) (as plasticizer) and calcite (as filler) has been aimed. The composites and organoclay synthesized were characterized using the techniques such as XRD, HRTEM and FTIR techniques. The spectroscopic results indicate that platelets of organoclay were well dispersed within the polymeric matrix. The tensile properties of the composites were compared considering the stress-strain curve drawn for each composite and pure polymer. It was observed that the composites prepared by adding the plasticizer at different ratios and a certain amount of calcite exhibited different tensile behaviors compared to pure polymer.
Keywords: Linear low density polyethylene, nanocomposite, organoclay, plasticizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14452837 Representing Data without Lost Compression Properties in Time Series: A Review
Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan
Abstract:
Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.
Keywords: Compression properties, uncertainty, uncertain time series, mining technique, weather prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16202836 Towards the Design of Gripper Independent of Substrate Surface Structures
Authors: Annika Schmidt, Ausama Hadi Ahmed, Carlo Menon
Abstract:
End effectors for robotic systems are becoming more and more advanced, resulting in a growing variety of gripping tasks. However, most grippers are application specific. This paper presents a gripper that interacts with an object’s surface rather than being dependent on a defined shape or size. For this purpose, ingressive and astrictive features are combined to achieve the desired gripping capabilities. The developed prototype is tested on a variety of surfaces with different hardness and roughness properties. The results show that the gripping mechanism works on all of the tested surfaces. The influence of the material properties on the amount of the supported load is also studied and the efficiency is discussed.Keywords: Claw, dry adhesion, insects, material properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13512835 Physical Properties of Nine Nigerian Staple Food Flours Related to Bulk Handling and Processing
Authors: Ogunsina Babatunde, Aregbesola Omotayo, Adebayo Adewale, Odunlami Johnson
Abstract:
The physical properties of nine Nigerian staple food flours related to bulk handling and processing were investigated following standard procedures. The results showed that the moisture content, bulk density, angle of repose, water absorption capacity, swelling index, dispersability, pH and wettability of the flours ranged from 9.95 to 11.98%, 0.44 to 0.66 g/cm3, 31.43 to 39.65o, 198.3 to 291.7 g of water/100 g of sample, 5.53 to 7.63, 60.3 to 73.8%, 4.43 to 6.70, and 11 to 150 s. The particle size analysis of the flour samples indicated significant differences (p<0.05). The least gelation concentration of the flour samples ranged from 6 to 14%. The colour of the flours fell between light and saturated, with the exception of cassava, millet and maize flours which appear dark and dull. The properties of food flours depend largely on the inherent property of the food material and may influence their functional behaviour as food materials.
Keywords: Properties, staple food flours, Nigeria, cereals, tuber, root crops, fruits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23112834 Rheological Properties of Polysulfone-Sepiolite Nanocomposites
Authors: Nilay Tanrıver, Birgül Benli, Nilgün Kızılcan
Abstract:
Polysulfone (PSU) is a specialty engineering polymer having various industrial applications. PSU is especially used in waste water treatment membranes due to its good mechanical properties, structural and chemical stability. But it is a hydrophobic material and therefore its surface aim to pollute easily. In order to resolve this problem and extend the properties of membrane, PSU surface is rendered hydrophilic by addition of the sepiolite nanofibers. Sepiolite is one of the natural clays, which is a hydrate magnesium silicate fiber, also one of the well known layered clays of the montmorillonites where has several unique channels and pores within. It has also moisture durability, strength and low price. Sepiolite channels give great capacity of absorption and good surface properties. In this study, nanocomposites of commercial PSU and Sepiolite were prepared by solvent mixing method. Different organic solvents and their mixtures were used. Rheological characteristics of PSU-Sepiolite solvent mixtures were analyzed, the solubility of nanocomposite content in those mixtures were studied.
Keywords: Nanocomposite, polysulfone, rheology, sepiolite, solution mixing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30742833 The Effects of Tissue Optical Parameters and Interface Reflectivity on Light Diffusion in Biological Tissues
Authors: MA. Ansari
Abstract:
In cancer progress, the optical properties of tissues like absorption and scattering coefficient change, so by these changes, we can trace the progress of cancer, even it can be applied for pre-detection of cancer. In this paper, we investigate the effects of changes of optical properties on light penetrated into tissues. The diffusion equation is widely used to simulate light propagation into biological tissues. In this study, the boundary integral method (BIM) is used to solve the diffusion equation. We illustrate that the changes of optical properties can modified the reflectance or penetrating light.Keywords: Diffusion equation, boundary element method, refractive index
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20172832 Flow Properties of Wood Pulp Suspensions in Pipes
Authors: M. Sumida
Abstract:
The flow of suspensions of wood pulp fibers in circular pipes has been investigated experimentally. The flow characteristics of pulp suspensions are discussed with regard to five flow regimes designated by the author. In particular, the effects of the shear stress at the pipe wall on the disruption and dispersion of networks of pulp fibers are examined. The values of the disruptive and dispersive shear stresses are formulated as simple expressions depending on only the fiber concentration. Furthermore, the flow properties of the suspensions are described using the yield shear stress.
Keywords: Fiber Concentration, Flow Properties, Pulp Suspension, Yield Shear Stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32862831 Development of Impressive Tensile Properties of Hybrid Rolled Ta0.5Nb0.5Hf0.5ZrTi1.5 Refractory High Entropy Alloy
Authors: M. Veeresham
Abstract:
The microstructure, texture, phase stability, and tensile properties of annealed Ta0.5Nb0.5Hf0.5ZrTi1.5 alloy have been investigated in the present research. The alloy was severely hybrid-rolled up to 93.5% thickness reduction, subsequently rolled samples subjected to an annealing treatment at 800 °C and 1000 °C temperatures for 1 h. Consequently, the rolled condition and both annealed temperatures have a body-centered cubic (BCC) structure. Furthermore, quantitative texture measurements (orientation distribution function (ODF) analysis) and microstructural examinations (analytical electron backscatter diffraction (EBSD) maps) permitted to establish a good relationship between annealing texture and microstructure and universal testing machine (UTM) utilized for obtaining the mechanical properties. Impressive room temperature tensile properties combination with the tensile strength (1380 MPa) and (24.7%) elongation is achieved for the 800 °C heat-treated condition. The evolution of the coarse microstructure featured in the case of 1000 °C annealed temperature ascribed to the influence of high thermal energy.
Keywords: Refractory high entropy alloys, hybrid-rolling, recrystallization, microstructure, tensile properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6792830 Characterising Effects of Applied Loads on the Mechanical Properties of Formed Steel Sheets
Authors: Esther T. Akinlabi, Stephen A. Akinlabi
Abstract:
The purpose of this research study is to investigate the manner in which various loads affect the mechanical properties of the formed mild steel plates. The investigation focuses on examining the cross-sectional area of the metal plate at the centre of the formed mild steel plate. Six mild steel plates were deformed with different loads. The loads applied on the plates had a magnitude of 5 kg, 10 kg, 15 kg, 20 kg, 25 kg and 30 kg. The radius of the punching die was 120 mm and the loads were applied at room temperature. The investigations established that the applied load causes the Vickers microhardness at the cross-sectional area of the plate to increase due to strain hardening. Hence, the percentage increase of the hardness due to the load was found to be directly proportional to the increase in the load. Furthermore, the tensile test results for the parent material showed that the average Ultimate Tensile Strength (UTS) for the three samples was 308 MPa while the average Yield Strength and Percentage Elongation were 227 MPa and 38 % respectively. Similarly, the UTS of the formed components increased after the deformation of the plate, as such it can be concluded that the forming loads alter the mechanical properties of the materials by improving and strengthening the material properties.
Keywords: Applied load, forming and Mechanical Properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14272829 Homogeneity of Microstructure and Mechanical Properties in Horizontal Continuous Cast Billet
Authors: V. Arbabi , I. Ebrahimzadeh, H. Ghanbari, M.M. Kaykha
Abstract:
Horizontal continuous casting is widely used to produce semi-finished non-Ferrous products. Homogeneity in the metallurgical characteristics and mechanical properties for this product is vital for industrial application. In the present work, the microstructure and mechanical properties of a horizontal continuous cast two-phase brass billet have been studied. Impact strength and hardness variations were examined and the phase composition and porosity studied with image analysis software. Distinct differences in mechanical properties were observed between the upper, middle and lower parts of the billet, which are explained in terms of the morphology and size of the phase in the microstructure. Hardness variation in the length of billet is higher in upper area but impact strength is higher in lower areas.Keywords: Horizontal Continuous Casting, Two-phase brasses, CuZn40Al1 alloy, Microstructure, Impact Strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21812828 Investigation of Electrical, Thermal and Structural Properties on Polyacrylonitrile Nano-Fiber
Authors: N. Demirsoy, N. Uçar, A. Önen, N. Kızıldağ, Ö. F. Vurur, O. Eren, İ. Karacan
Abstract:
Polymer composite nano-fibers including (1, 3 wt %) silver nano-particles have been produced by electrospinning method. Polyacrylonitrile/N,N-dimethylformamide (PAN/DMF) solution have been prepared and the amount of silver nitrate have been adjusted to PAN weight. Silver nano-particles were obtained from reduction of silver ions into silver nano-particles by chemical reduction by hydrazine hydroxide (N2H5OH). The different amount of silver salt was loaded into polymer matrix to obtain polyacrylonitrile composite nano-fiber containing silver nano-particles. The effect of the amount of silver nano-particles on the properties of composite nano-fiber web was investigated. Electrical conductivity, mechanical properties, thermal properties were examined by Microtest LCR Meter 6370 (0.01 mΩ-100 MΩ), Tensile tester, Differential scanning calorimeter DSC (Q10) and SEM respectively. Also antimicrobial efficiency test (ASTM E2149-10) was done against to Staphylococcus aureus bacteria. It has been seen that breaking strength, conductivity, antimicrobial effect, enthalpy during cyclization increase by use of silver nano-particles while the diameter of nano-fiber decreases.
Keywords: Composite polyacrylonitrile nano-fiber, electrical conductivity, electrospinning, mechanical and thermal properties, silver nano-particles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26042827 The Biomechanical Properties of the Different Modalities of Surgically Corrected Coarctation of the Aorta in Neonates and Infants
Authors: Elina Ligere, Valts Ozolins, Lauris Smits, Normunds Sikora, Ivars Melderis, Laila Feldmane, Aris Lacis, Vladimir Kasyanov
Abstract:
Biomechanical properties of infantile aorta in vitro in cases of different standard anastomoses: end-to-end (ETE), extended anastomosis end-to-end (EETE) and subclavian flap aortoplasty (SFA) used for surgical correction of coarctation were analyzed to detect the influence of the method on the biomechanics of infantile aorta and possible changes in haemodinamics. 10 specimens of native aorta, 3 specimens with ETE, 4 EEET and 3 SFA were investigated. The experiments showed a non-linear relationship between stress and strain in the infantile aorta, the modulus of elasticity of the aortic wall increased with the increase of inner pressure. In the case of anastomosis end-to-end the modulus was almost constant, relevant to the modulus of elasticity of the aorta with the inner pressure 100-120 mmHg. The anastomoses EETE and SFA showed elastic properties closer to native aorta, the stiffness of ETE did not change with the changes in inner pressure.Keywords: biomechanics, coarctation, mechanical properties, neonatal aorta
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20082826 Thermal Cracking Approach Investigation to Improve Biodiesel Properties
Authors: Roghaieh Parvizsedghy, Seyyed Mojtaba Sadrameli
Abstract:
Biodiesel as an alternative diesel fuel is steadily gaining more attention and significance. However, there are some drawbacks while using biodiesel regarding its properties that requires it to be blended with petrol based diesel and/or additives to improve the fuel characteristics. This study analyses thermal cracking as an alternative technology to improve biodiesel characteristics in which, FAME based biodiesel produced by transesterification of castor oil is fed into a continuous thermal cracking reactor at temperatures range of 450-500°C and flowrate range of 20-40 g/hr. Experiments designed by response surface methodology and subsequent statistical studies show that temperature and feed flowrate significantly affect the products yield. Response surfaces were used to study the impact of temperature and flowrate on the product properties. After each experiment, the produced crude bio-oil was distilled and diesel cut was separated. As shorter chain molecules are produced through thermal cracking, the distillation curve of the diesel cut fitted more with petrol based diesel curve in comparison to the biodiesel. Moreover, the produced diesel cut properties adequately pose within property ranges defined by the related standard of petrol based diesel. Cold flow properties, high heating value as the main drawbacks of the biodiesel are improved by this technology. Thermal cracking decreases kinematic viscosity, Flash point and cetane number.
Keywords: Biodiesel, castor oil, fuel properties, thermal cracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36732825 Study of Mechanical Properties of Aluminium Alloys on Normal Friction Stir Welding and Underwater Friction Stir Welding for Structural Applications
Authors: Lingaraju Dumpala, Laxmi Mohan Kumar Chintada, Devadas Deepu, Pravin Kumar Yadav
Abstract:
Friction stir welding is the new-fangled and cutting-edge technique in welding applications; it is widely used in the fields of transportation, aerospace, defense, etc. For thriving significant welding joints and properties of friction stir welded components, it is essential to carry out this advanced process in a prescribed systematic procedure. At this moment, Underwater Friction Stir Welding (UFSW) Process is the field of interest to do research work. In the continuous assessment, the study of UFSW process is to comprehend problems occurred in the past and the structure through which the mechanical properties of the welded joints can be value-added and contributes to conclude results an acceptable and resourceful joint. A meticulous criticism is given on how to modify the experimental setup from NFSW to UFSW. It can discern the influence of tool materials, feeds, spindle angle, load, rotational speeds and mechanical properties. By expending the DEFORM-3D simulation software, the achieved outcomes are validated.
Keywords: Underwater friction stir welding, al alloys, mechanical properties, normal friction stir welding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10992824 The Effects of Applied Negative Bias Voltage on Structure and Optical Properties of α-C:H Films
Authors: X. L. Zhou, S. Tunmee, I. Toda, K. Komatsu, S. Ohshio, H. Saitoh
Abstract:
Hydrogenated amorphous carbon (a-C:H) films have been synthesized by a radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) technique with different bias voltage from 0.0 to -0.5 kV. The Raman spectra displayed the polymer-like hydrogenated amorphous carbon (PLCH) film with 0.0 to -0.1 and a-C:H films with -0.2 to -0.5 kV of bias voltages. The surface chemical information of all films were studied by X-ray photoelectron spectroscopy (XPS) technique, presented to C-C (sp2 and sp3) and C-O bonds, and relative carbon (C) and oxygen (O) atomics contents. The O contamination had affected on structure and optical properties. The true density of PLCH and a-C:H films were characterized by X-ray refractivity (XRR) method, showed the result as in the range of 1.16-1.73 g/cm3 that depending on an increasing of bias voltage. The hardness was proportional to the true density of films. In addition, the optical properties i.e. refractive index (n) and extinction coefficient (k) of these films were determined by a spectroscopic ellipsometry (SE) method that give formation to in 1.62-2.10 (n) and 0.04-0.15 (k) respectively. These results indicated that the optical properties confirmed the Raman results as presenting the structure changed with applied bias voltage increased.
Keywords: Negative bias voltage, a-C:H film, Oxygen contamination, Optical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54502823 Investigation of Moisture Management Properties of Cotton and Blended Knitted Fabrics
Authors: N. S. Achour, M. Hamdaoui, S. Ben Nasrallah, A. Perwuelz
Abstract:
The main idea of this work is to investigate the effect of knitted fabrics characteristics on moisture management properties. Wetting and transport properties of single jersey, Rib 1&1 and English Rib fabrics made out of cotton and blended Cotton/Polyester yarns were studied. The dynamic water sorption of fabrics was investigated under same isothermal and terrestrial conditions at 20±2°C-65±4% by using the Moisture Management Tester (MMT) which can be used to quantitatively measure liquid moisture transfer in one step in a fabric in multidirections: Absorption rate, moisture absorbing time of the fabric's inner and outer surfaces, one-way transportation capability, the spreading/drying rate, the speed of liquid moisture spreading on fabric's inner and outer surfaces are measured, recorded and discussed. The results show that fabric’s composition and knit’s structure have a significant influence on those phenomena.Keywords: Knitted fabrics characteristics, moisture management properties, multidirections, the Moisture Management Tester.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31502822 Physical Properties of Uranium Dinitride UN2 by Using Density Functional Theory (DFT and DFT+U)
Authors: T. Zergoug, S.H. Abaidia, A. Nedjar, M. Y. Mokeddem
Abstract:
Physical properties of uranium dinitride (UN2) were investigated in detail using first principle calculations based on density functional theory (DFT). To study the strong correlation effects due to 5f uranium valence electrons, the on-site coulomb interaction correction U via the Hubbard-like term (DFT+U) was employed. The UN2 structural, mechanical and thermodynamic properties were calculated within DFT and Various U of DFT+U approach. The Perdew–Burke–Ernzerhof (PBE.5.2) version of the generalized gradient approximation (GGA) is used to describe the exchange-correlation with the projector-augmented wave (PAW) pseudo potentials. A comparative study shows that results are improved by using the Hubbard formalism for a certain U value correction like the structural parameter. For some physical properties the variation versus Hubbard-U is strong like Young modulus but for others it is weakly noticeable such as bulk modulus. We noticed also that from U=7.5 eV, elastic results don’t agree with the cubic cell because of the C44 values which turn out to be negative.
Keywords: Ab initio, bulk modulus, DFT, DFT + U.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25582821 The High Strength Biocompatible Wires of Commercially Pure Titanium
Abstract:
COMTES FHT has been active in a field of research and development of high-strength wires for quite some time. The main material was pure titanium. The primary goal of this effort is to develop a continuous production process for ultrafine and nanostructured materials with the aid of severe plastic deformation (SPD). This article outlines mechanical and microstructural properties of the materials and the options available for testing the components made of these materials. Ti Grade 2 and Grade 4 wires are the key products of interest. Ti Grade 2 with ultrafine to nano-sized grain shows ultimate strength of up to 1050 MPa. Ti Grade 4 reaches ultimate strengths of up to 1250 MPa. These values are twice or three times as higher as those found in the unprocessed material. For those fields of medicine where implantable metallic materials are used, bulk ultrafine to nanostructured titanium is available. It is manufactured by SPD techniques. These processes leave the chemical properties of the initial material unchanged but markedly improve its final mechanical properties, in particular, the strength. Ultrafine to nanostructured titanium retains all the significant and, from the biological viewpoint, desirable properties that are important for its use in medicine, i.e. those properties which made pure titanium the preferred material also for dental implants.Keywords: CONFORM SPD, ECAP, titanium, rotary swaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9872820 Effect of Replacement of Unripe Banana Flour for Rice Flour on Physical Properties and Resistant Starch Content of Rice Noodle
Authors: W. Tiboonbun, M. Sungsri-in, A. Moongngarm
Abstract:
This work was conducted to improve the level of resistant starch (RS) in a rice noodle using unripe banana flour and to investigate the effect of substitution of unripe banana flour for rice flour on the physical properties of rice noodle. In order to prepare rice noodles, the unripe banana flour were replaced the rice flour with different degrees of substitutions including 0, 20, 40, 60, 80, and 100%. The results indicated that substitution of unripe banana flour was significantly affected the viscosity properties of noodle flour, color, cooking loss, RS and total starch content of noodle. It was found that the noodle prepared from 100% unripe banana indicated the greatest changes on the viscosity properties and color profiles. It also showed the highest values of cooking loss (2.53%), tensile strength (129.03%), and RS content (13.15%).Keywords: Banana flour, Rice noodle, Resistant starch, Unripebanana flour
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29952819 Ablation, Mechanical and Thermal Properties of Fiber/Phenolic Matrix Composites
Authors: N. Winya, S. Chankapoe, C. Kiriratnikom
Abstract:
In this study, an ablation, mechanical and thermal properties of a rocket motor insulation from phenolic/ fiber matrix composites forming a laminate with different fiber between fiberglass and locally available synthetic fibers. The phenolic/ fiber matrix composites was mechanics and thermal properties by means of tensile strength, ablation, TGA and DSC. The design of thermal insulation involves several factors.Determined the mechanical properties according to MIL-I-24768: Density >1.3 g/cm3, Tensile strength >103 MPa and Ablation <0.14 mm/s to optimization formulation of phenolic binder, fiber glass reinforcement and other ingredients were conducted after that the insulation prototype was formed and cured. It was found that the density of phenolic/fiberglass composites and phenolic/ synthetic fiber composite was 1.66 and 1.41 g/cm3 respectively. The ablative of phenolic/fiberglass composites and phenolic/ synthetic fiber composite was 0.13 and 0.06 mm/s respectively.
Keywords: Phenolic Resin, Ablation, Rocket Motor, Insulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43882818 Influence of the Granular Mixture Properties on the Rheological Properties of Concrete: Yield Stress Determination Using Modified Chateau et al. Model
Authors: Rachid Zentar, Mokrane Bala, Pascal Boustingorry
Abstract:
The prediction of the rheological behavior of concrete is at the center of current concerns of the concrete industry for different reasons. The shortage of good quality standard materials combined with variable properties of available materials imposes to improve existing models to take into account these variations at the design stage of concrete. The main reasons for improving the predictive models are, of course, saving time and cost at the design stage as well as to optimize concrete performances. In this study, we will highlight the different properties of the granular mixtures that affect the rheological properties of concrete. Our objective is to identify the intrinsic parameters of the aggregates which make it possible to predict the yield stress of concrete. The work was done using two typologies of grains: crushed and rolled aggregates. The experimental results have shown that the rheology of concrete is improved by increasing the packing density of the granular mixture using rolled aggregates. The experimental program realized allowed to model the yield stress of concrete by a modified model of Chateau et al. through a dimensionless parameter following Krieger-Dougherty law. The modelling confirms that the yield stress of concrete depends not only on the properties of cement paste but also on the packing density of the granular skeleton and the shape of grains.
Keywords: Crushed aggregates, intrinsic viscosity, packing density, rolled aggregates, slump, yield stress of concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5952817 Estimation of Aquifer Properties Using Pumping Tests: Case Study of Pydibhimavaram Industrial Area, Srikakulam, India
Authors: G. Venkata Rao, P. Kalpana, R. Srinivasa Rao
Abstract:
Adequate and reliable estimates of aquifer parameters are of utmost importance for proper management of vital groundwater resources. At present scenario, the ground water is polluted because of industrial waste disposed over the land and the contaminants are transported in the aquifer from one area to another area, which is depending on the characteristics of the aquifer and contaminants. To know the contaminant transport, the accurate estimation of aquifer properties is highly needed. Conventionally, these properties are estimated through pumping tests carried out on water wells. The occurrence and movement of ground water in the aquifer are characteristically defined by the aquifer parameters. The pumping (aquifer) test is the standard technique for estimating various hydraulic properties of aquifer systems, viz., transmissivity (T), hydraulic conductivity (K), storage coefficient (S) etc., for which the graphical method is widely used. The study area for conducting pumping test is Pydibheemavaram Industrial area near the coastal belt of Srikulam, AP, India. The main objective of the present work is to estimate the aquifer properties for developing contaminant transport model for the study area.Keywords: Aquifer, contaminant transport, hydraulic conductivity, industrial waste, pumping test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34102816 Brain Image Segmentation Using Conditional Random Field Based On Modified Artificial Bee Colony Optimization Algorithm
Authors: B. Thiagarajan, R. Bremananth
Abstract:
Tumor is an uncontrolled growth of tissues in any part of the body. Tumors are of different types and they have different characteristics and treatments. Brain tumor is inherently serious and life-threatening because of its character in the limited space of the intracranial cavity (space formed inside the skull). Locating the tumor within MR (magnetic resonance) image of brain is integral part of the treatment of brain tumor. This segmentation task requires classification of each voxel as either tumor or non-tumor, based on the description of the voxel under consideration. Many studies are going on in the medical field using Markov Random Fields (MRF) in segmentation of MR images. Even though the segmentation process is better, computing the probability and estimation of parameters is difficult. In order to overcome the aforementioned issues, Conditional Random Field (CRF) is used in this paper for segmentation, along with the modified artificial bee colony optimization and modified fuzzy possibility c-means (MFPCM) algorithm. This work is mainly focused to reduce the computational complexities, which are found in existing methods and aimed at getting higher accuracy. The efficiency of this work is evaluated using the parameters such as region non-uniformity, correlation and computation time. The experimental results are compared with the existing methods such as MRF with improved Genetic Algorithm (GA) and MRF-Artificial Bee Colony (MRF-ABC) algorithm.
Keywords: Conditional random field, Magnetic resonance, Markov random field, Modified artificial bee colony.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29482815 Effect of Amine-Functionalized Carbon Nanotubes on the Properties of CNT-PAN Composite Nanofibers
Authors: O. Eren, N. Ucar, A. Onen, N. Kızıldag, O. F. Vurur, N. Demirsoy, I. Karacan
Abstract:
PAN nanofibers reinforced with amine functionalized carbon nanotubes. The effect of amine functionalization and the effect of concentration of CNT on the conductivity and mechanical and morphological properties of composite nanofibers were examined. 1%CNT-NH2 loaded PAN/CNT nanofiber showed the best mechanical properties. Conductivity increased with the incorporation of carbon nanotubes. While an increase of concentration of CNT increases the diameter of nanofiber, the use of functionalized CNT results to decrease of diameter of nanofiber.
Keywords: Amine functionalized carbon nanotube, electrospinning, nanofiber, polyacrylonitrile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41822814 Measurement of Rheologic Properties of Soft Tissue (Muscle Tissue) by Myotonometer
Authors: Petr Šifta, Václav Bittner, Martin Kysela, Matěj Kolář
Abstract:
The purpose of the research described in this work is to answer how to measure the rheologic (viscoelastic) properties tendo–deformational characteristics of soft tissue. The method would also resemble muscle palpation examination as it is known in clinical practice. For this purpose, an instrument with the working name “myotonometer” has been used. At present, there is lack of objective methods for assessing the muscle tone by viscous and elastic properties of soft tissue. That is why we decided to focus on creating or finding quantitative and qualitative methodology capable to specify muscle tone.
Keywords: Rheologicproperties, tendo–deformational characteristics, viscosity, elasticity, hypertonus, spasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19952813 Multi-view Description of Real-Time Systems- Architecture
Authors: A. Bessam, M. T. Kimour
Abstract:
Real-time embedded systems should benefit from component-based software engineering to handle complexity and deal with dependability. In these systems, applications should not only be logically correct but also behave within time windows. However, in the current component based software engineering approaches, a few of component models handles time properties in a manner that allows efficient analysis and checking at the architectural level. In this paper, we present a meta-model for component-based software description that integrates timing issues. To achieve a complete functional model of software components, our meta-model focuses on four functional aspects: interface, static behavior, dynamic behavior, and interaction protocol. With each aspect we have explicitly associated a time model. Such a time model can be used to check a component-s design against certain properties and to compute the timing properties of component assemblies.Keywords: Real-time systems, Software architecture, software component, dependability, time properties, ADL, metamodeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635