Search results for: decision tree
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1736

Search results for: decision tree

1406 Artificial Intelligence Support for Interferon Treatment Decision in Chronic Hepatitis B

Authors: Alexandru George Floares

Abstract:

Chronic hepatitis B can evolve to cirrhosis and liver cancer. Interferon is the only effective treatment, for carefully selected patients, but it is very expensive. Some of the selection criteria are based on liver biopsy, an invasive, costly and painful medical procedure. Therefore, developing efficient non-invasive selection systems, could be in the patients benefit and also save money. We investigated the possibility to create intelligent systems to assist the Interferon therapeutical decision, mainly by predicting with acceptable accuracy the results of the biopsy. We used a knowledge discovery in integrated medical data - imaging, clinical, and laboratory data. The resulted intelligent systems, tested on 500 patients with chronic hepatitis B, based on C5.0 decision trees and boosting, predict with 100% accuracy the results of the liver biopsy. Also, by integrating the other patients selection criteria, they offer a non-invasive support for the correct Interferon therapeutic decision. To our best knowledge, these decision systems outperformed all similar systems published in the literature, and offer a realistic opportunity to replace liver biopsy in this medical context.

Keywords: Interferon, chronic hepatitis B, intelligent virtualbiopsy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
1405 Efficient Realization of an ADFE with a New Adaptive Algorithm

Authors: N. Praveen Kumar, Abhijit Mitra, C. Ardil

Abstract:

Decision feedback equalizers are commonly employed to reduce the error caused by intersymbol interference. Here, an adaptive decision feedback equalizer is presented with a new adaptation algorithm. The algorithm follows a block-based approach of normalized least mean square (NLMS) algorithm with set-membership filtering and achieves a significantly less computational complexity over its conventional NLMS counterpart with set-membership filtering. It is shown in the results that the proposed algorithm yields similar type of bit error rate performance over a reasonable signal to noise ratio in comparison with the latter one.

Keywords: Decision feedback equalizer, Adaptive algorithm, Block based computation, Set membership filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
1404 Tree-on-DAG for Data Aggregation in Sensor Networks

Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik

Abstract:

Computing and maintaining network structures for efficient data aggregation incurs high overhead for dynamic events where the set of nodes sensing an event changes with time. Moreover, structured approaches are sensitive to the waiting time that is used by nodes to wait for packets from their children before forwarding the packet to the sink. An optimal routing and data aggregation scheme for wireless sensor networks is proposed in this paper. We propose Tree on DAG (ToD), a semistructured approach that uses Dynamic Forwarding on an implicitly constructed structure composed of multiple shortest path trees to support network scalability. The key principle behind ToD is that adjacent nodes in a graph will have low stretch in one of these trees in ToD, thus resulting in early aggregation of packets. Based on simulations on a 2,000-node Mica2- based network, we conclude that efficient aggregation in large-scale networks can be achieved by our semistructured approach.

Keywords: Aggregation, Packet Merging, Query Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
1403 Specialization-based parallel Processing without Memo-trees

Authors: Hidemi Ogasawara, Kiyoshi Akama, Hiroshi Mabuchi

Abstract:

The purpose of this paper is to propose a framework for constructing correct parallel processing programs based on Equivalent Transformation Framework (ETF). ETF regards computation as In the framework, a problem-s domain knowledge and a query are described in definite clauses, and computation is regarded as transformation of the definite clauses. Its meaning is defined by a model of the set of definite clauses, and the transformation rules generated must preserve meaning. We have proposed a parallel processing method based on “specialization", a part of operation in the transformations, which resembles substitution in logic programming. The method requires “Memo-tree", a history of specialization to maintain correctness. In this paper we proposes the new method for the specialization-base parallel processing without Memo-tree.

Keywords: Parallel processing, Program correctness, Equivalent transformation, Specializer generation rule

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
1402 N-Sun Decomposition of Complete Graphs and Complete Bipartite Graphs

Authors: R. Anitha, R. S. Lekshmi

Abstract:

Graph decompositions are vital in the study of combinatorial design theory. Given two graphs G and H, an H-decomposition of G is a partition of the edge set of G into disjoint isomorphic copies of H. An n-sun is a cycle Cn with an edge terminating in a vertex of degree one attached to each vertex. In this paper we have proved that the complete graph of order 2n, K2n can be decomposed into n-2 n-suns, a Hamilton cycle and a perfect matching, when n is even and for odd case, the decomposition is n-1 n-suns and a perfect matching. For an odd order complete graph K2n+1, delete the star subgraph K1, 2n and the resultant graph K2n is decomposed as in the case of even order. The method of building n-suns uses Walecki's construction for the Hamilton decomposition of complete graphs. A spanning tree decomposition of even order complete graphs is also discussed using the labeling scheme of n-sun decomposition. A complete bipartite graph Kn, n can be decomposed into n/2 n-suns when n/2 is even. When n/2 is odd, Kn, n can be decomposed into (n-2)/2 n-suns and a Hamilton cycle.

Keywords: Hamilton cycle, n-sun decomposition, perfectmatching, spanning tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
1401 Automata Theory Approach for Solving Frequent Pattern Discovery Problems

Authors: Renáta Iváncsy, István Vajk

Abstract:

The various types of frequent pattern discovery problem, namely, the frequent itemset, sequence and graph mining problems are solved in different ways which are, however, in certain aspects similar. The main approach of discovering such patterns can be classified into two main classes, namely, in the class of the levelwise methods and in that of the database projection-based methods. The level-wise algorithms use in general clever indexing structures for discovering the patterns. In this paper a new approach is proposed for discovering frequent sequences and tree-like patterns efficiently that is based on the level-wise issue. Because the level-wise algorithms spend a lot of time for the subpattern testing problem, the new approach introduces the idea of using automaton theory to solve this problem.

Keywords: Frequent pattern discovery, graph mining, pushdownautomaton, sequence mining, state machine, tree mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
1400 On the Symbol Based Decision Feedback Equalizer

Authors: Mohammed Nafie

Abstract:

Decision Feedback equalizers (DFEs) usually outperform linear equalizers for channels with intersymbol interference. However, the DFE performance is highly dependent on the availability of reliable past decisions. Hence, in coded systems, where reliable decisions are only available after decoding the full block, the performance of the DFE will be affected. A symbol based DFE is a DFE that only uses the decision after the block is decoded. In this paper we derive the optimal settings of both the feedforward and feedback taps of the symbol based equalizer. We present a novel symbol based DFE filterbank, and derive its taps optimal settings. We also show that it outperforms the classic DFE in terms of complexity and/or performance.

Keywords: Coding, DFE, Equalization, Exponential Channelmodels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303
1399 Knowledge and Attitude among Women and Men in Decision Making on Pap Smear Screening in Kelantan, Malaysia

Authors: Siti Waringin Oon, Rashidah Shuib, Siti Hawa Ali, Nik Hazlina Nik Hussain, Juwita Shaaban, Harmy Mohd Yusoff

Abstract:

This paper explores the knowledge and attitude of women and men in decision making on pap smear screening. This qualitative study recruited 52 respondents with 44 women and 8 men, using the purposive sampling with snowballing technique through indepth interviews. This study demonstrates several key findings: Female respondents have better knowledge compared to male. Most of the women perceived that pap smear screening is beneficial and important, but to proceed with the test is still doubtful. Male respondents were supportive in terms of sending their spouses to the health facilities or give more freedom to their wives to choose and making decision on their own health due to prominent reason that women know best on their own health. It is expected that the results from this study will provide useful guideline for healthcare providers to prepare any action/intervention to provide an extensive education to improve people-s knowledge and attitude towards pap smear.

Keywords: Attitude, decision making, knowledge, pap smearscreening..

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2574
1398 Forecasting Stock Indexes Using Bayesian Additive Regression Tree

Authors: Darren Zou

Abstract:

Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.

Keywords: Bayesian, Forecast, Stock, BART.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
1397 A Branch and Bound Algorithm for Resource Constrained Project Scheduling Problem Subject to Cumulative Resources

Authors: A. Shirzadeh Chaleshtari, Sh. Shadrokh

Abstract:

Renewable and non-renewable resource constraints have been vast studied in theoretical fields of project scheduling problems. However, although cumulative resources are widespread in practical cases, the literature on project scheduling problems subject to these resources is scant. So in order to study this type of resources more, in this paper we use the framework of a resource constrained project scheduling problem (RCPSP) with finish-start precedence relations between activities and subject to the cumulative resources in addition to the renewable resources. We develop a branch and bound algorithm for this problem customizing precedence tree algorithm of RCPSP. We perform extensive experimental analysis on the algorithm to check its effectiveness and performance for solving different instances of the problem in question.

Keywords: Resource constrained project scheduling problem, cumulative resources, branch and bound algorithm, precedence tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2905
1396 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children

Authors: Norah Alshahrani, Abdulaziz Almaleh

Abstract:

Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD: Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by SVM, achieving 0.98% in the toddler dataset and 0.99% in the children dataset.

Keywords: Autism Spectrum Disorder, ASD, Machine Learning, ML, Feature Selection, Support Vector Machine, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 595
1395 Application of Intuitionistic Fuzzy Cross Entropy Measure in Decision Making for Medical Diagnosis

Authors: Shikha Maheshwari, Amit Srivastava

Abstract:

In medical investigations, uncertainty is a major challenging problem in making decision for doctors/experts to identify the diseases with a common set of symptoms and also has been extensively increasing in medical diagnosis problems. The theory of cross entropy for intuitionistic fuzzy sets (IFS) is an effective approach in coping uncertainty in decision making for medical diagnosis problem. The main focus of this paper is to propose a new intuitionistic fuzzy cross entropy measure (IFCEM), which aid in reducing the uncertainty and doctors/experts will take their decision easily in context of patient’s disease. It is shown that the proposed measure has some elegant properties, which demonstrates its potency. Further, it is also exemplified in detail the efficiency and utility of the proposed measure by using a real life case study of diagnosis the disease in medical science.

Keywords: Intuitionistic fuzzy cross entropy (IFCEM), intuitionistic fuzzy set (IFS), medical diagnosis, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
1394 Using the PARIS Method for Multiple Criteria Decision Making in Unmanned Combat Aircraft Evaluation and Selection

Authors: C. Ardil

Abstract:

Unmanned combat aircraft (UCA) are expanding significantly in several defense industries, along with artificial intelligence improvements in highly precise technology. UCA is crucial in military settings for targeting enemy elements, and objects. UCA is also utilized for highly precise reconnaissance and surveillance tasks. To select the best alternative for critical missions, a methodical and effective strategy for UCA selection is required. Multiple criteria decision-making (MCDM) methodologies are ideally equipped to handle the complexity of alternative aircraft selection. To analyze UCA alternatives for the selection process, an integrated methodology built on the objective criteria weights and preference analysis for reference ideal solution (PARIS). First, the weights of essential elements are determined using the average weight (AW), standard deviation (SW) and entropy weight (EW) approach. The weights of the evaluation criteria affect the decision-making process. The aircraft choices in the decision problem are then ranked using objective criteria weights along with the PARIS technique. The validation and sensitivity analysis of the proposed MCDM approach are discussed.

Keywords: unmanned combat aircraft (UCA), multiple criteria decision making, MCDM, PARIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 471
1393 Identification of Healthy and BSR-Infected Oil Palm Trees Using Color Indices

Authors: Siti Khairunniza-Bejo, Yusnida Yusoff, Nik Salwani Nik Yusoff, Idris Abu Seman, Mohamad Izzuddin Anuar

Abstract:

Most of the oil palm plantations have been threatened by Basal Stem Rot (BSR) disease which causes serious economic impact. This study was conducted to identify the healthy and BSRinfected oil palm tree using thirteen color indices. Multispectral and thermal camera was used to capture 216 images of the leaves taken from frond number 1, 9 and 17. Indices of normalized difference vegetation index (NDVI), red (R), green (G), blue (B), near infrared (NIR), green – blue (GB), green/blue (G/B), green – red (GR), green/red (G/R), hue (H), saturation (S), intensity (I) and thermal index (T) were used. From this study, it can be concluded that G index taken from frond number 9 is the best index to differentiate between the healthy and BSR-infected oil palm trees. It not only gave high value of correlation coefficient (R=-0.962), but also high value of separation between healthy and BSR-infected oil palm tree. Furthermore, power and S model developed using G index gave the highest R2 value which is 0.985.

Keywords: Oil palm, image processing, disease, leaves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2959
1392 Feature Extraction for Surface Classification – An Approach with Wavelets

Authors: Smriti H. Bhandari, S. M. Deshpande

Abstract:

Surface metrology with image processing is a challenging task having wide applications in industry. Surface roughness can be evaluated using texture classification approach. Important aspect here is appropriate selection of features that characterize the surface. We propose an effective combination of features for multi-scale and multi-directional analysis of engineering surfaces. The features include standard deviation, kurtosis and the Canny edge detector. We apply the method by analyzing the surfaces with Discrete Wavelet Transform (DWT) and Dual-Tree Complex Wavelet Transform (DT-CWT). We used Canberra distance metric for similarity comparison between the surface classes. Our database includes the surface textures manufactured by three machining processes namely Milling, Casting and Shaping. The comparative study shows that DT-CWT outperforms DWT giving correct classification performance of 91.27% with Canberra distance metric.

Keywords: Dual-tree complex wavelet transform, surface metrology, surface roughness, texture classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
1391 Improving University Operations with Data Mining: Predicting Student Performance

Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević

Abstract:

The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.

Keywords: Data mining, knowledge discovery in databases, prediction models, student success.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2538
1390 Decision Support for the Selection of Electric Power Plants Generated from Renewable Sources

Authors: Aumnad Phdungsilp, Teeradej Wuttipornpun

Abstract:

Decision support based upon risk analysis into comparison of the electricity generation from different renewable energy technologies can provide information about their effects on the environment and society. The aim of this paper is to develop the assessment framework regarding risks to health and environment, and the society-s benefits of the electric power plant generation from different renewable sources. The multicriteria framework to multiattribute risk analysis technique and the decision analysis interview technique are applied in order to support the decisionmaking process for the implementing renewable energy projects to the Bangkok case study. Having analyses the local conditions and appropriate technologies, five renewable power plants are postulated as options. As this work demonstrates, the analysis can provide a tool to aid decision-makers for achieving targets related to promote sustainable energy system.

Keywords: Analytic Hierarchy Process, Bangkok, MultiattributeRisk Analysis, Renewable Energy Technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
1389 On the Fast Convergence of DD-LMS DFE Using a Good Strategy Initialization

Authors: Y.Ben Jemaa, M.Jaidane

Abstract:

In wireless communication system, a Decision Feedback Equalizer (DFE) to cancel the intersymbol interference (ISI) is required. In this paper, an exact convergence analysis of the (DFE) adapted by the Least Mean Square (LMS) algorithm during the training phase is derived by taking into account the finite alphabet context of data transmission. This allows us to determine the shortest training sequence that allows to reach a given Mean Square Error (MSE). With the intention of avoiding the problem of ill-convergence, the paper proposes an initialization strategy for the blind decision directed (DD) algorithm. This then yields a semi-blind DFE with high speed and good convergence.

Keywords: Adaptive Decision Feedback Equalizer, PerformanceAnalysis, Finite Alphabet Case, Ill-Convergence, Convergence speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
1388 Evaluation of Robust Feature Descriptors for Texture Classification

Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo

Abstract:

Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.

Keywords: Texture classification, texture descriptor, SIFT, SURF, ORB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
1387 A Comparative Analysis of Multiple Criteria Decision Making Analysis Methods for Strategic, Tactical, and Operational Decisions in Military Fighter Aircraft Selection

Authors: C. Ardil

Abstract:

This paper considers a comparative analysis of multiple criteria decision making analysis methods for strategic, tactical, and operational decisions in military fighter aircraft selection for the air force fleet planning. The evaluation criteria governing the decision analysis process are determined from the literature for the three existing military combat aircraft. Military fighter aircraft selection problem is structured using "preference analysis for reference ideal solution (PARIS)” approach in multiple criteria decision analysis (MCDMA). Systematic comparisons were made with existing MCDMA methods (PARIS, and TOPSIS) to verify the stability and accuracy of the results obtained. The proposed integrated MCDMA systematic approach is expected to address the issues encountered in the aircraft selection process. The comparative analysis results show that the proposed method is an effective and accurate tool that can help analysts make better strategic, tactical, and operational decisions.

Keywords: aircraft, military fighter aircraft selection, multiple criteria decision making, multiple criteria decision making analysis, mean weight, entropy weight, MCDMA, PARIS, TOPSIS, Saab Gripen, Dassault Rafale, Eurofighter Typhoon

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 574
1386 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing ECG Based on ResNet and Bi-LSTM

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper presents sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for CHD prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, coronary heart disease, ECG, electrocardiogram, ResNet, sliding window.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 332
1385 Composite Kernels for Public Emotion Recognition from Twitter

Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang

Abstract:

The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.

Keywords: Public emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772
1384 Development of Decision Support System for House Evaluation and Purchasing

Authors: Chia-Yu Hsu, Julaimin Goh, Pei-Chann Chang

Abstract:

Home is important for Chinese people. Because the information regarding the house attributes and surrounding environments is incomplete in most real estate agency, most house buyers are difficult to consider the overall factors effectively and only can search candidates by sorting-based approach. This study aims to develop a decision support system for housing purchasing, in which surrounding facilities of each house are quantified. Then, all considered house factors and customer preferences are incorporated into Simple Multi-Attribute Ranking Technique (SMART) to support the housing evaluation. To evaluate the validity of proposed approach, an empirical study was conducted from a real estate agency. Based on the customer requirement and preferences, the proposed approach can identify better candidate house with consider the overall house attributes and surrounding facilities.

Keywords: decision support system, real estate, decision analysis, housing evaluation, SMART

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201
1383 Aircraft Selection Using Multiple Criteria Decision Making Analysis Method with Different Data Normalization Techniques

Authors: C. Ardil

Abstract:

This paper presents an original application of multiple criteria decision making analysis theory to the evaluation of aircraft selection problem. The selection of an optimal, efficient and reliable fleet, network and operations planning policy is one of the most important factors in aircraft selection problem. Given that decision making in aircraft selection involves the consideration of a number of opposite criteria and possible solutions, such a selection can be considered as a multiple criteria decision making analysis problem. This study presents a new integrated approach to decision making by considering the multiple criteria utility theory and the maximal regret minimization theory methods as well as aircraft technical, economical, and environmental aspects. Multiple criteria decision making analysis method uses different normalization techniques to allow criteria to be aggregated with qualitative and quantitative data of the decision problem. Therefore, selecting a suitable normalization technique for the model is also a challenge to provide data aggregation for the aircraft selection problem. To compare the impact of different normalization techniques on the decision problem, the vector, linear (sum), linear (max), and linear (max-min) data normalization techniques were identified to evaluate aircraft selection problem. As a logical implication of the proposed approach, it enhances the decision making process through enabling the decision maker to: (i) use higher level knowledge regarding the selection of criteria weights and the proposed technique, (ii) estimate the ranking of an alternative, under different data normalization techniques and integrated criteria weights after a posteriori analysis of the final rankings of alternatives. A set of commercial passenger aircraft were considered in order to illustrate the proposed approach. The obtained results of the proposed approach were compared using Spearman's rho tests. An analysis of the final rank stability with respect to the changes in criteria weights was also performed so as to assess the sensitivity of the alternative rankings obtained by the application of different data normalization techniques and the proposed approach.

Keywords: Normalization Techniques, Aircraft Selection, Multiple Criteria Decision Making, Multiple Criteria Decision Making Analysis, MCDMA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 585
1382 Financial Information and Collective Bargaining: Conflicting or Complementing?

Authors: Humayun Murshed, Shibly Abdullah

Abstract:

The research conducted in early seventies apparently assumed the existence of a universal decision model for union negotiators and furthermore tended to regard financial information as a ‘neutral’ input into a rational decision making process. However, research in the eighties began to question the neutrality of financial information as an input in collective bargaining rather viewing it as a potentially effective means for controlling the labour force. Furthermore, this later research also started challenging the simplistic assumptions relating particularly to union objectives which have underpinned the earlier search for universal union decision models. Despite the above developments there seems to be a dearth of studies in developing countries concerning the use of financial information in collective bargaining. This paper seeks to begin to remedy this deficiency. Utilising a case study approach based on two enterprises, one in the public sector and the other a multinational, the universal decision model is rejected and it is argued that the decision whether or not to use financial information is a contingent one and such a contingency is largely defined by the context and environment in which both union and management negotiators work. An attempt is also made to identify the factors constraining as well as promoting the use of financial information in collective bargaining, these being regarded as unique to the organisations within which the case studies are conducted.

Keywords: Collective Bargaining, Developing Countries, Disclosures, Financial Information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
1381 Aircraft Supplier Selection Process with Fuzzy Proximity Measure Method using Multiple Criteria Group Decision Making Analysis

Authors: C. Ardil

Abstract:

Being effective in every organizational activity has become necessary due to the escalating level of competition in all areas of corporate life. In the context of supply chain management, aircraft supplier selection is currently one of the most crucial activities. It is possible to choose the best aircraft supplier and deliver efficiency in terms of cost, quality, delivery time, economic status, and institutionalization if a systematic supplier selection approach is used. In this study, an effective multiple criteria decision-making methodology, proximity measure method (PMM), is used within a fuzzy environment based on the vague structure of the real working environment. The best appropriate aircraft suppliers are identified and ranked after the proposed multiple criteria decision making technique is used in a real-life scenario.

Keywords: Aircraft supplier selection, multiple criteria decision making, fuzzy sets, proximity measure method, Minkowski distance family function, Hausdorff distance function, PMM, MCDM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 342
1380 Application of Process Approach to Evaluate the Information Security Risk and its Implementation in an Iranian Private Bank

Authors: Isa Nakhai Kamal Abadi, Esmaeel Saberi, Ehsan Mirjafari

Abstract:

Every organization is continually subject to new damages and threats which can be resulted from their operations or their goal accomplishment. Methods of providing the security of space and applied tools have been widely changed with increasing application and development of information technology (IT). From this viewpoint, information security management systems were evolved to construct and prevent reiterating the experienced methods. In general, the correct response in information security management systems requires correct decision making, which in turn requires the comprehensive effort of managers and everyone involved in each plan or decision making. Obviously, all aspects of work or decision are not defined in all decision making conditions; therefore, the possible or certain risks should be considered when making decisions. This is the subject of risk management and it can influence the decisions. Investigation of different approaches in the field of risk management demonstrates their progress from quantitative to qualitative methods with a process approach.

Keywords: Risk Management, Information Security, Methodology, Probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
1379 The Ethio-Eritrea Claims Commission on Use of Force: Issue of Self-Defense or Violation of Sovereignty

Authors: Isaias Teklia Berhe

Abstract:

A decision that deals with international disputes, be it arbitral or judicial, has to properly reflect objectivity and coherence with existing rules of international law. This paper shows the decision of the Ethio-Eritrea Claims Commission on the jus ad bellum case is bereft of objectivity and coherence, which contributed a disservice to international law on many aspects. The Commission’s decision that holds Eritrea in contravention to Art 2(4) of the UN Charter based on Ethiopia’s contention is flawed. It fails to consider: the illegitimacy of an actual authority established over contested territory through hostile acts, the proper determination of effectivites under international law, the sanctity of colonially determined boundaries, Ethiopia’s prior firm political recognition and undergirds to respect colonial boundary, and Ethio-Eritrea Border Commission’s decision. The paper will also argue that the Commission confused Eritrea’s right of self-defense with the rule against the non-use of force to settle territorial disputes; wherefore its decision sanitizes or sterilizes unlawful change of territory resulted through unlawful use of force to the effect of advantaging aggressions. The paper likewise argues that the decision is so sacrilegious that it disregards the ossified legal finality of colonial boundaries. Moreover, its approach toward armed attack does not reflect the peculiarity of the jus ad bellum case rather it brings about definitional uncertainties and sustains the perception that the law on self-defense is unsettled.

Keywords: Armed attack, self-defense, territorial integrity, use of force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
1378 Estimating Shortest Circuit Path Length Complexity

Authors: Azam Beg, P. W. Chandana Prasad, S.M.N.A Senenayake

Abstract:

When binary decision diagrams are formed from uniformly distributed Monte Carlo data for a large number of variables, the complexity of the decision diagrams exhibits a predictable relationship to the number of variables and minterms. In the present work, a neural network model has been used to analyze the pattern of shortest path length for larger number of Monte Carlo data points. The neural model shows a strong descriptive power for the ISCAS benchmark data with an RMS error of 0.102 for the shortest path length complexity. Therefore, the model can be considered as a method of predicting path length complexities; this is expected to lead to minimum time complexity of very large-scale integrated circuitries and related computer-aided design tools that use binary decision diagrams.

Keywords: Monte Carlo circuit simulation data, binary decision diagrams, neural network modeling, shortest path length estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
1377 Decision Support System “Crop-9-DSS“ for Identified Crops

Authors: Ganesan V.

Abstract:

Application of Expert System in the area of agriculture would take the form of Integrated Crop Management decision aids and would encompass water management, fertilizer management, crop protection systems and identification of implements. In order to remain competitive, the modern farmer often relies on agricultural specialists and advisors to provide information for decision-making. An expert system normally composed of a knowledge base (information, heuristics, etc.), inference engine (analyzes knowledge base), and end user interface (accepting inputs, generating outputs). Software named 'CROP-9-DSS' incorporating all modern features like, graphics, photos, video clippings etc. has been developed. This package will aid as a decision support system for identification of pest and diseases with control measures, fertilizer recommendation system, water management system and identification of farm implements for leading crops of Kerala (India) namely Coconut, Rice, Cashew, Pepper, Banana, four vegetables like Amaranthus, Bhindi, Brinjal and Cucurbits. 'CROP-9-DSS' will act as an expert system to agricultural officers, scientists in the field of agriculture and extension workers for decision-making and help them in suggesting suitable recommendations.

Keywords: Diagnostic, inference engine, knowledge base and user interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3058