

Abstract—The various types of frequent pattern discovery

problem, namely, the frequent itemset, sequence and graph mining
problems are solved in different ways which are, however, in certain
aspects similar. The main approach of discovering such patterns can
be classified into two main classes, namely, in the class of the level-
wise methods and in that of the database projection-based methods.
The level-wise algorithms use in general clever indexing structures
for discovering the patterns. In this paper a new approach is proposed
for discovering frequent sequences and tree-like patterns efficiently
that is based on the level-wise issue. Because the level-wise
algorithms spend a lot of time for the subpattern testing problem, the
new approach introduces the idea of using automaton theory to solve
this problem.

Keywords—Frequent pattern discovery, graph mining, pushdown
automaton, sequence mining, state machine, tree mining.

I. INTRODUCTION
HE problem of discovering frequent patterns can be
divided in many classes regarding the type of the pattern

searched for. Two types of patterns are in the focus of this
paper, namely, sequences and trees that are often the target of
recent data mining researches.

Frequent sequence mining is used in several real world
problems like DNA sequence mining, WEB log mining,
customer sequence mining and many more. Also frequent
trees are useful in many applications where the data cannot be
modeled with simple transactions like itemsets or sequences,
but more complex structures are needed such as trees (HTML
and XML structures, user navigation patterns, chemical
compounds etc.).

The algorithms that solve the frequent pattern mining
problem are similar in the two mentioned field. Both in
sequence discovery and in tree pattern discovery the two main
approaches are the level-wise and the database projection-

Manuscript received August 25, 2005. This work was supported by the

fund of the Hungarian Academy of Sciences for control research and the
Hungarian National Research Fund (grant number: T042741).

R. Iváncsy is with the Department of Automation and Applied Informatics
and HAS-BUTE Control Research Group, Budapest University of Technology
and Economics, Goldmann Gy. ter 3, Budapest, Hungary, H-1111
(Corresponding author to provide phone: +36(1)4631668, e-mail:
renata.ivancsy@aut.bme.hu).

I. Vajk is with the Department of Automation and Applied Informatics and
HAS-BUTE Control Research Group, Budapest University of Technology and
Economics, Goldmann Gy. ter 3, Budapest, Hungary, H-1111 (e-mail:
vajk@aut.bme.hu).

based approaches. Both of them have their advantages and
disadvantages regarding the computational cost and memory
requirements. In general the level-wise methods are slower but
need less memory, while the memory requirements of the
database projection-based methods is high, and their execution
time is moderated.

Because in most cases the memory requirements of the
applications have to be limited, the new algorithms suggested
in this paper for solving both types of pattern mining problems
are based on the level-wise approach. The new idea of the
novel algorithms is to use automaton theory for discovering
the support of the candidate patterns efficiently.

The organization of the paper is as follows. Section II
introduces the problem of frequent sequence and tree mining.
Section III presents the backgrounds and motivations to the
new approach that uses automaton theory for the mining
process. In Sections IV-A and IV-B the details of creating the
automatons for sequence and tree mining are explained.
Experimental results are shown in Section V. Conclusion can
be found in Section VI.

II. PROBLEM DEFINITION
The problem of sequential pattern mining was first

introduced by Agrawal and Srikant in [1]. A sequence is
denoted by s=<s1, s2, …,sn>, where si is an itemset. An item
can occur in an itemset only once, but multiple times in a
sequence. A sequence <a1, a2, …,an> is contained by another
sequence <b1, b2, …, bm> if there exist integers i1< i2< …< in
such that a1⊆bi1, a2⊆bi2, …, an⊆bin.. The length of a sequence
is defined as the number of items in the whole sequence. If the
size of the sequence is k, then it is called k-sequence.

The support of a sequence s (denoted σ(s)) is the number of
sequence transactions which contain the sequence s. A
sequence is called frequent if it is contained by more
transactions than a user-given minimum support threshold,
(σmin). The task of sequential pattern mining is to discover the
frequent sequences in the database when given a user-defined
minimum support threshold.

In several applications the problem to be handle cannot be
modeled with such simple transactions like sequences, but
more complex structures are needed like graphs or trees.

A tree is an acyclic connected graph. A rooted, labeled tree
is a 5-tuple T(V, E, λ, fλ, v0) where (1) V is the set of nodes;
(2) E denotes the set of edges in a tree; (3) λ is the set of labels
for any node u ∈ V, (4) fλ is a function which maps for each

Automata Theory Approach for Solving
Frequent Pattern Discovery Problems

Renáta Iváncsy, and István Vajk

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:8, 2007

2562International Scholarly and Scientific Research & Innovation 1(8) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

8,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

53
87

.p
df

node a label (∀u∈V, fλ(u) ∈ λ); (5) v0 ∈ V is a dedicated node
in the tree called the root.

A tree is ordered if it is a rooted tree, and the children of
any node in the tree construct an ordered set. The size of a tree
equals to the number of vertices in the tree. A tree S(Vs, Es) is
an embedded subtree of T(Vt, Et) if Vs ⊆ Vt and a branch
appears in S if and only if the two vertices are on the same
path from the root to a leaf in T.

Given a database D containing trees, the support of a tree T
(σ(T)) is the number of the trees in D which has T as an
embedded subtree. In this case the number of the occurrences
of T in a given tree is irrelevant. Given a user specified
minimum support threshold (σmin) a tree is called frequent if it
is contained by more trees in the database than the threshold.

III. AUTOMATON THEORY
The two novel methods presented for solving the frequent

sequence and frequent tree mining problems are both level-
wise, and uses a “candidate generate and test” approach. The
main contribution of the novel methods presented in this paper
is how they determine the support of the candidates, i.e. how
the subpattern inclusion test is achieved.

The outline of the level-wise approach is as follows. The
algorithm discovers the 1-frequent pattern during one database
scan. The 2-candidates are created from the 1-frequent
patterns, and the support of the 2-candidates is determined
during a further database scan. In general, the k-candidates are
generated from the (k-1)-frequent patterns, and during a
database scan the support of the candidates is determined
(using subpattern inclusion test), and the infrequent patterns
are discarded.

Both proposed algorithms use basically different approach
for the subpattern inclusion test than the algorithms in the
related work. The most important sequential pattern mining
algorithms are the AprioriAll [1], GSP [2], SPIRIT [3],
SPADE [4], FreeSpan [5], PrefixSapn [6] and SPAM [7]
algorithms. The best-known tree miner algorithms are
TreeMiner [8], FREQT [9] and FreeTreeMiner [10]. The
contribution of the novel approach proposed in this paper is to
use automaton theory for testing the subpattern inclusion.

A. Subsequence Inclusion Test
For testing subsequence inclusion deterministic finite state

machines can be used.
Definition 1: A deterministic finite state machine is a 5-

tuple, (Q, ∑, δ, q0, F) consisting of:
• a finite set of states (Q),
• a finite set called the alphabet (∑),
• a transition function (δ: Q × ∑ Q),
• a start state (q0 ∈ Q),
• and a set of accept states (F ⊆ Q).

The state machine accepts the input string if the string
contains the candidate sequence. For this reason the sequences
are represented with strings from the alphabet ∑ =∑' ∪ {–},
where {–} is the character that separates the itemsets in the

sequence, and ∑' is the set of items which can appear in the
sequences. For example the string representation of the
sequence <(ab)(c)(de)> is ab–c–de.

Definition 2: Let C=c0,c1,…,cs be the string representation of a
candidate sequence of size k, where s+1 equals to the length of
the string C. The rules for generating a deterministic finite state
machine for the sequence C are given in Table I, where Qi (Qi ∈
Q, i=0…s+1) denotes the states of the machine, and ∑\ci denotes
all characters in the alphabet ∑ except ci and the following
conditions hold: Q0 = q0 and Qs+1 ∈ F.

TABLE I

TRANSITION FUNCTIONS OF THE FINITE STATE MACHINE OF THE CANDIDATE

SEQUENCE C=C0,C1,…,CS

The machine starts in the start state Q0. The further conditions

can be interpreted as follows. For each new character a new state
is created and the transition between the states contains the
character. These are represented in the state diagram of the finite
state machines as forward edges. There are several backward
edges as well. A backward edge is created between the state
having no transition with a minus sign and the state immediately
after the last minus sign so far. From each state there exist
transitions to all the items such that the state will be the same
(self loops). The accept state of the machine is the state for the
last item of the sequence. As an example Fig. 1 shows the state
diagram of the finite state machine for the sequence <(ab)(c)(de).

Fig. 1 State diagram for the sequence <(ab)(c)(de)

Proposition 1: The deterministic finite state machine created

for the candidate sequence C accepts the input string κ if and
only if κ contains C

Proof: In the one hand if κ contains C, then the automaton
gets into its accept state because of the forward edges, and
because there is no backward transition from the accept state it
remains there. On the other hand if κ does not contain C then
because of the backward edges the machine cannot access its
accept state. The self loops enables that items can be omitted
as defined in the subsequence definition.

B. Subtree Inclusion Test
Trees are more complex structures than sequences. The

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:8, 2007

2563International Scholarly and Scientific Research & Innovation 1(8) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

8,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

53
87

.p
df

subtree inclusion test cannot be achieved using deterministic
finite state machines because trees cannot be described with
regular languages. It means that the machine should be able to
count the length of a possible branch when searching for a
subtree in the input tree. It can be solved only when using
pushdown automaton instead of a state machine.

Definition 4: A pushdown automaton is a finite automaton
outfitted with access to a potentially unlimited amount of
memory called the stack. The pushdown automaton can be
defined with a 7-tuple as follows: P (Q, Σ, Γ, δ, q0, Z0, F)

• the final set of states, Q,
• the alphabet of the input, Σ,
• the alphabet of the stack, Γ,
• the set of transition functions, δ (Q × (Σ ∪ε) × Γ

Q × Γk)
• the start state, q0 ∈ Q
• the initial stack symbol, Z0 ∈ Γ
• the set of accept states, F ⊂ Q.

The automaton starts in its start state and the stack contains
only the initial symbol. When reading one character from the
input string, the set of transition functions are checked
whether one of them can be used. If there is a transition rule
which contains the state in which the automaton resides, and
the same symbol is on the top of the stack as in the rule, and
the same character is just read, the automaton moves into its
new state and a new symbol is pushed into the stack. By
default the symbol from the stack is removed, when it is used
by the transition function. If one wants to keep the symbol in
the stack, one has to push it again. The ε symbol is used when
no symbol is pushed into the stack. The input string is
accepted if the automaton is in an accept state after the last
character has been processed.

The new idea is to use a pushdown automaton for detecting
whether a tree is contained by another tree. Using this
approach the support counting of the candidates can be
achieved by processing the input tree only once. At the end of
the transaction the counters of those candidates should be
incremented whose automaton is in an accept state.

For this reason the trees are represented with strings as
follows. The string encoding τ is initialized to an empty sting,
τ = ∅. Afterwards the tree is traversed in preorder manner
starting at the root, and the label x of the current node is added
to the end of τ. Whenever the algorithm has to backtrack from
a child to its parent a {–} sign is added to τ. In this case it is
assumed that the {–} sign is not in the label set of the tree.
After the last label was reached the algorithm terminates,
which means that the algorithm does not traverse back to the
root as described in [8], thus the minus signs from the end of
the string are omitted. As an example Fig. 2 shows a tree with
its string encoding.

A

B

BC

D

A

A

B

BC

D

A τ = ABC–BA– – – D
Fig. 2 A sample tree with its tree encoding

The rules that have to be used for generating the pushdown

automaton for detecting a subtree in an input tree is described
in Table III. The notations for the rules can be found in Table
II. As described in Table III each state can have two
transitions which results in a different state. One of them is a
forward transition and the other is a backward transition. The
forward transition is used when the input tree seems to contain
the candidate. The backward transitions are for those cases
when the input tree does not contain the candidate yet.

TABLE II

NOTATIONS FOR THE RULES

TABLE III
RULES FOR CREATING A PUSHDOWN AUTOMATON FOR A CANDIDATE TREE

Proposition 5. Let π1 and π2 denote two trees with their string
encodings τ and κ respectively. The PDA created for τ
according to Table 2 accepts its inputκ if and only if π1 is an
embedded subtree of π2.
Proof. The proof is given constructively by describing the
process of the algorithm. The pushdown automaton for
detecting a tree in the input tree works as follows. The
automaton starts in its start state q00. It reads the characters of
the input string κ = κ0 κ1… κs one by one. If ·κi = τ0, the
automaton gets into its next state (q11) and the symbol and the
number of the start state as a structure (<κi,0>) are pushed
into the stack. In other cases the automaton remains in its start
state, and if ·κj∈λ, then the character is pushed, otherwise the
topmost symbol is popped. When the automaton is in an
arbitrary state qij , four possibilities exist. If the character just
read (κl) equals to the character expected by the given state,
then the automaton moves in its next state, and the character
and the state number are pushed if·κl∈λ, otherwise the
topmost symbol is popped. In other cases when the input

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:8, 2007

2564International Scholarly and Scientific Research & Innovation 1(8) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

8,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

53
87

.p
df

character κl was not expected, but it is in λ, only the character
is pushed into the stack and the automaton stays in its state. If
the input character is a minus sign and it is not expected, two
possibilities exist. The backward transition is used if the
topmost structure matches the structure assigned to the
backward transition. In other cases the self loop is used. In
both cases the topmost symbol is popped from the stack.
In order to better understand the process of the pushdown
automaton Fig. 3 shows a sample PDA for the tree τ = ABC–
BA– – –D. The notations on the arrows are in the following
form: Σ,Γ/ Γk, the first part of the expression (before the /
sign) shows which character has just been read and which
symbol is on the top of the stack. The second part denotes the
symbols that should be pushed into the stack. The * denotes
any symbol from the stack.

IV. SM-TREE AND PD-TREE STRUCTURES
In Section III the process is shown how an automaton has to

be created for detecting whether a candidate pattern (sequence
or tree) is contained by another pattern.

Using the finite state machines created for the candidate
sequences, and the pushdown automatons created for the
candidate trees, it becomes possible to process the transaction
in such way that its items are processed exactly once. When
processing the items of the transactions the current states of
the several finite state machines or pushdown automatons are
set according to their transition functions, and the counter of
those candidates are incremented whose state machine or
pushdown automaton is in the accept state after the last item
of the transaction was read. This means, however, that having
for instance 500.000 candidates, each time when an item is
read 500.000 transition functions have to be followed, which
can be very inefficient.

For this reason the state machines or the pushdown
automatons have to be joined in order to handle those states
together which are the same in the state machines or in the
pushdown automatons of the candidates. In this way the
computational cost of handling the automatons can be reduced
significantly. After joining at least two state machines, a new
object, namely, the State Machine-Tree (SM-Tree) is created.
And similarly, after joining at least two pushdown
automatons, a new object, called Pushdown Automaton-Tree
(PD-Tree) is created.

A. State Machine-Tree
Definition 6: Let M1 = (Q1, ∑, δ1, 01q , F1) and M2 = (Q2, ∑,

δ2, 02q , F2) be two finite state machines created for two

candidate sequences. The State Machine-Tree (SM-Tree)
created by joining these two finite state machines is defined as
follows: SM3 = M1 ⊗ M2 = (Q3, ∑, δ3, 03q , F3). The only

difference to the finite state machine is in the transition
function. The transition function of the State Machine-Tree is
defined as follows: 2

333 : QQ →∑×δ .
The definition of the transition function of the SM-Tree

means that there are states whose transition function results
not only one but two states. This means that processing the
machine, it can have more than one current states at a time.
The reason is that not only one candidate should be found
which is contained by the transaction but all of them at the
same time. For this reason using this machine is a bit different
than using a simple finite state machine. A list is needed in
order to keep track of the current states in the machine. When
a new item is read, the whole list is to be traversed, and for
each state a new state has to be found. This should be made by
applying the transition function to the given state and to the
most recent item. Two finite state machines can be joined if
they share a prefix in common. Because all the machines have
a start state which is in common in case of all the candidate
sequences, all the machines can be joined to establish an SM-
Tree.

The rules for joining two finite state machines are the
following. Let l1 and l2 denote the number of states of the two
state machines M1 and M2 respectively. The number of the
states of the SM-Tree is denoted with l3. Let r be the number
of those states in the two joined state machines which are the
same. Then the number of the states in the resulting State
Machine-Tree will be l3 = l1+l2-r-1. The states are created
from the states of the two finite state machines M1 and M2 as
shown in Eq.1.

⎩
⎨
⎧

≤≤
<≤

=
−− 3122

11
3

0
lilifQ

liifQ
Q

ri

i
i

 (1)
The accept states of the resulting State Machine-Tree are

the union of the accept states of M1 and M2 (Eq. 2). The start
states are joined, thus all the start states are the same as shown
in Eq. 3.

F3 ∈ Q3, F3 = F1 ∪ F2 (2)

03q =
01q =

02q (3)

The transition functions of M3 are created from the
transition functions of M1 and M2.

Proposition 7: The SM-Tree created for the candidate
sequences of the same size increments the counter of a
candidate sequence if and only if the candidate is contained by
the input sequence. Furthermore the SM-Tree increments the
counters of those and only those candidate sequences which
are contained by the input sequence. For this purpose the
items of the input sequence has to be read exactly once.

Proof: The first part of the proposition can be proven using
Proposition 3, because the SM-Tree is created from the

finite state machines created for the candidate sequences.
Using the tokens it accepts all the sequences which are
contained by the input. If from a state more than one transition
functions exist, then a token is placed on the new state and a
token remains on the given state such that later from this state
another transition function can be used.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:8, 2007

2565International Scholarly and Scientific Research & Innovation 1(8) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

8,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

53
87

.p
df

Fig. 3 Sample pushdown automaton for the candidate tree ABC–BA – – D

B. Pushdown Automaton-Tree
Similarly to the sequence mining, in subtree discovery is

also worth joining the several automatons of the candidates in
order to reduce computational cost. However, it is not trivial
how to join two pushdown automatons. It is expected that the
resulting object needs less memory, and its operation should
be more efficient than that of the separated automatons. One
of the most important considerations is the number of the
stack which has to be used. If this cannot be decreased, the
benefit of joining the PDA-s is questionable.

Definition 8: Let two pushdown automatons be given
P1(Q1, Σ1, Γ1, δ1, q01, Z01, F1) and P2(Q2, Σ2, Γ2, δ2, q02, Z02,
F2). The join operation on P1 and P2 results in a so-called
Pushdown Automaton-Tree (PD-Tree) which is defined as
follows: P3(Q3, Σ3, Γ3, δ3, q03, Z03, F3) where

• Q3 = Q1 ∪ Q2,
• Σ3 = Σ1 ∪ Σ2,
• Γ3 = extended Γ1 ∪ Γ2 as described later
• δ3 (Q3 × (Σ3 ∪ ε) × Γ3 Q3

2 × Γ3
k),

• q03 = q01 = q02
• Z03 = Z01 = Z02 and
• F3 = F1 ∪ F2.

As it can be seen from the definition, joining two pushdown
automatons results in a PD-Tree similarly to joining two state
machines that results in an SM-Tree. The rules for generating
the new states in the PD-Tree, the accept states and the start
states are identical when generating these for the SM-Tree
(Eqs. 1, 2 and 3). The only difference is in the stack symbols
and of course in the transition functions. In case of PD-Tree
the transition function results in not only one state but in some
cases also in two, however in case of PD-Tree also the content
of the stack has to be used.

The main problem one faces when joining two pushdown
automatons originates from the fact that during the process not
only one accept state exists but several, and using the tree all
accept states have to be accessed, i.e. all counters for those
trees have to be incremented which are contained by the input
tree. The other problematic fact is that because of space saving

only one stack has to be used, thus the characters pushed into
the stack are mixed up regarding the different candidate trees.
Furthermore because not only one active state exists at the
same time, but several, also when pushing a character into the
stack not only one state has to be inserted into the structure
but all from which a new state is reached. For this reason the
definition of the stack symbols has to be modified.

Definition 9: Let Γ3 = Z0 ∪ λ ∪ < λ,qi1,qi2,…,qip> denote the
stack symbols of the PD-Tree, where < λ,qi1,qi2,…,qip> is a
structure where {qi1,qi2,…,qip} (called state list) is the list of
all the states from which λ causes a forward transition in the
PD-Tree.

Proposition 10: The PD-Tree created for the candidate trees
increments the counters of a candidate tree if and only if the
candidate is contained by the input. Furthermore the counters
of all these candidates are incremented by processing the
characters of the input string exactly once only.

Proof. The modified definition of the stack symbols means
that for each label those states are stored in the stack from
which a transition were proceeded. This is necessary because
of the following. A state in the PD-Tree can have one forward
transition and one backward transition. The forward transition
is used independently of the content of the stack. The
backward transition is followed only when the stack contains
the same label as the label in the transition rule is. However
this is not the only condition, because the backward transition
has to be followed only, if using a backtracking in the tree
such a node is reached which causes that the candidate is not
possible to be contained by the input. In this case the
automaton gets in its previous state. Thus we have to know
which label has caused the forward step in order to know
which has to be caused the backward as well. This is marked
with the state in the simple PDA in case of single subtree
inclusion testing, and with a state list in case of the joined
PDAs.

Thus when processing the PD-Tree, when the automaton
reads a {–} character, for each state, the possible state for a
backward transition has to be calculated, and it has to be
checked whether it is contained in the topmost state list of the

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:8, 2007

2566International Scholarly and Scientific Research & Innovation 1(8) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

8,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

53
87

.p
df

stack. If it is contained, the automaton must step back,
otherwise it remains in the current state or it also steps
forward as well.

V. EXPERIMENTAL RESULTS
The simulations were executed on a Pentium 4 CPU,

2.4GHz, and 1GB of RAM computer. The SM-Tree and the
GSP algorithm was implemented in C++, the PD-Tree
algorithm in C{\#}. The SPAM was downloaded from the
Himalaya Data Mining Project's website1. The Pushdown-
Automatons algorithm is an implementation of the pushdown
automatons for each candidate without joining them.

Fig. 4 shows the execution time of the GSP, SPAM and
SM-Tree algorithms in logarithmic scale. It can be seen well
that the SM-Tree algorithm is the fastest one. Fig. 5 shows the
execution time of the PushdownAutomatons and the PD-Tree
algorithms. It is obvious that the PD-Tree is an order of
magnitude faster than the PushdownAutomatons. The reason
for that can be observed on Fig. 6 where the number of active
states is depicted which were checked for possible transitions
during the mining process.

Fig. 4 Execution time of the GSP, SPAM and SM-Tree algorithms

Fig. 5 Execution time of the PushdownAutomatons and the PD-Tree

1 http://www.cs.cornell.edu/database/himalaya

Fig. 6 Number of active states during the mining process

VI. CONCLUSION
This paper presented a novel approach to frequent pattern

mining, namely, using automaton theory for subpattern
inclusion testing. The method of constructing the automatons
for the candidates was presented. In order to handle the
several automatons efficiently two new structures (SM-Tree
and PD-Tree) were presented that arises by joining the
automatons. Experimental results presented the efficiency of
the new algorithms.

REFERENCES
[1] R. Agrawal and R. Srikant, “Mining sequential patterns,” in ICDE ’95:

Proceedings of the Eleventh International Conference on Data
Engineering. Washington, DC, USA: IEEE Computer Society, 1995, pp.
3–14.

[2] R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations
and performance improvements,” in Proc. of the 5th International
Conference on Extending Database Technology, 1996.

[3] M. N. Garofalakis, R. Rastogi, and K. Shim, “Spirit: Sequential pattern
mining with regular expression constraints.” in VLDB, M. P. Atkinson,
M. E. Orlowska, P. Valduriez, S. B. Zdonik, and M. L. Brodie, Eds.
Morgan Kaufmann, 1999, pp. 223–234.

[4] M. J. Zaki, “Spade: An efficient algorithm for mining frequent
sequences,” Machine Learning, vol. 42, no. 1-2, pp. 31–60, 2001.

[5] J. Han, J. Pei, and B. M.-A. et al., “Freespan: frequent pattern-projected
sequential pattern mining,” in KDD ’00: Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and data
mining. New York, NY, USA: ACM Press, 2000, pp. 355–359.

[6] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C.
Hsu, “PrefixSpan mining sequential patterns efficiently by prefix
projected pattern growth,” in In Proc. of Int. Conf. on Data Engineering,
2001, pp. 215–226.

[7] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential pattern mining
using a bitmap representation,” in In Proc. of the 8th ACM SIGKDD
Int.Conf. on Knowledge Discovery and Data Mining, 2002, pp. 429–
435.

[8] M. Zaki, “Efficiently mining frequent trees in a forest,” in Proc. of the
8th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, July 2002, pp. 71–80.

[9] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Satamoto, and S. Arikawa,
“Efficient substructure discovery from large semi-structured data.” In
SDM, R. L. Grossman, J. Han, V. Kumar, H. Mannila, and R. Motwani,
Eds. SIAM, 2002.

[10] U. Rckert and S. Kramer, “Frequent free tree discovery in graph data,” in
SAC ’04: Proceedings of the 2004 ACM symposium on Applied
computing. New York, NY, USA: ACM Press, 2004, pp. 564–570.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:8, 2007

2567International Scholarly and Scientific Research & Innovation 1(8) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

8,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

53
87

.p
df

	v8-21.pdf
	v8-22.pdf
	v8-23.pdf
	v8-24.pdf
	v8-25.pdf
	v8-26.pdf
	v8-27.pdf
	v8-28.pdf
	v8-29.pdf
	v8-30.pdf
	v8-31.pdf
	v8-32.pdf
	v8-33.pdf
	v8-34.pdf
	v8-35.pdf
	v8-36.pdf
	v8-37.pdf
	v8-38.pdf
	v8-39.pdf
	v8-40.pdf

