
 

 

  
Abstract—The various types of frequent pattern discovery 

problem, namely, the frequent itemset, sequence and graph mining 
problems are solved in different ways which are, however, in certain 
aspects similar. The main approach of discovering such patterns can 
be classified into two main classes, namely, in the class of the level-
wise methods and in that of the database projection-based methods. 
The level-wise algorithms use in general clever indexing structures 
for discovering the patterns. In this paper a new approach is proposed 
for discovering frequent sequences and tree-like patterns efficiently 
that is based on the level-wise issue. Because the level-wise 
algorithms spend a lot of time for the subpattern testing problem, the 
new approach introduces the idea of using automaton theory to solve 
this problem. 
 

Keywords—Frequent pattern discovery, graph mining, pushdown 
automaton, sequence mining, state machine, tree mining. 

I. INTRODUCTION 
HE problem of discovering frequent patterns can be 
divided in many classes regarding the type of the pattern 

searched for. Two types of patterns are in the focus of this 
paper, namely, sequences and trees that are often the target of 
recent data mining researches. 

Frequent sequence mining is used in several real world 
problems like DNA sequence mining, WEB log mining, 
customer sequence mining and many more. Also frequent 
trees are useful in many applications where the data cannot be 
modeled with simple transactions like itemsets or sequences, 
but more complex structures are needed such as trees (HTML 
and XML structures, user navigation patterns, chemical 
compounds etc.). 

The algorithms that solve the frequent pattern mining 
problem are similar in the two mentioned field. Both in 
sequence discovery and in tree pattern discovery the two main 
approaches are the level-wise and the database projection-
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based approaches. Both of them have their advantages and 
disadvantages regarding the computational cost and memory 
requirements. In general the level-wise methods are slower but 
need less memory, while the memory requirements of the 
database projection-based methods is high, and their execution 
time is moderated. 

Because in most cases the memory requirements of the 
applications have to be limited, the new algorithms suggested 
in this paper for solving both types of pattern mining problems 
are based on the level-wise approach. The new idea of the 
novel algorithms is to use automaton theory for discovering 
the support of the candidate patterns efficiently.  

The organization of the paper is as follows. Section II 
introduces the problem of frequent sequence and tree mining. 
Section III presents the backgrounds and motivations to the 
new approach that uses automaton theory for the mining 
process. In Sections IV-A and IV-B the details of creating the 
automatons for sequence and tree mining are explained. 
Experimental results are shown in Section V. Conclusion can 
be found in Section VI. 

II. PROBLEM DEFINITION 
The problem of sequential pattern mining was first 

introduced by Agrawal and Srikant in [1]. A sequence is 
denoted by s=<s1, s2, …,sn>, where si is an itemset. An item 
can occur in an itemset only once, but multiple times in a 
sequence. A sequence <a1, a2, …,an> is contained by another 
sequence <b1, b2, …, bm> if there exist integers i1< i2< …< in 
such that a1⊆bi1, a2⊆bi2, …, an⊆bin.. The length of a sequence 
is defined as the number of items in the whole sequence. If the 
size of the sequence is k, then it is called k-sequence.  

The support of a sequence s (denoted σ(s)) is the number of 
sequence transactions which contain the sequence s. A 
sequence is called frequent if it is contained by more 
transactions than a user-given minimum support threshold, 
(σmin). The task of sequential pattern mining is to discover the 
frequent sequences in the database when given a user-defined 
minimum support threshold.  

In several applications the problem to be handle cannot be 
modeled with such simple transactions like sequences, but 
more complex structures are needed like graphs or trees. 

A tree is an acyclic connected graph. A rooted, labeled tree 
is a 5-tuple T(V, E, λ, fλ, v0) where (1) V is the set of nodes; 
(2) E denotes the set of edges in a tree; (3) λ is the set of labels 
for any node u ∈ V, (4) fλ is a function which maps for each 
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node a label (∀u∈V, fλ(u) ∈ λ); (5) v0 ∈ V is a dedicated node 
in the tree called the root. 

A tree is ordered if it is a rooted tree, and the children of 
any node in the tree construct an ordered set. The size of a tree 
equals to the number of vertices in the tree. A tree S(Vs, Es) is 
an embedded subtree of T(Vt, Et) if Vs ⊆ Vt and a branch 
appears in S if and only if the two vertices are on the same 
path from the root to a leaf in T. 

Given a database D containing trees, the support of a tree T 
(σ(T)) is the number of the trees in D which has T as an 
embedded subtree. In this case the number of the occurrences 
of T in a given tree is irrelevant. Given a user specified 
minimum support threshold (σmin) a tree is called frequent if it 
is contained by more trees in the database than the threshold. 

III. AUTOMATON THEORY 
The two novel methods presented for solving the frequent 

sequence and frequent tree mining problems are both level-
wise, and uses a “candidate generate and test” approach. The 
main contribution of the novel methods presented in this paper 
is how they determine the support of the candidates, i.e. how 
the subpattern inclusion test is achieved.  

The outline of the level-wise approach is as follows. The 
algorithm discovers the 1-frequent pattern during one database 
scan. The 2-candidates are created from the 1-frequent 
patterns, and the support of the 2-candidates is determined 
during a further database scan. In general, the k-candidates are 
generated from the (k-1)-frequent patterns, and during a 
database scan the support of the candidates is determined 
(using subpattern inclusion test), and the infrequent patterns 
are discarded. 

Both proposed algorithms use basically different approach 
for the subpattern inclusion test than the algorithms in the 
related work. The most important sequential pattern mining 
algorithms are the AprioriAll [1], GSP [2], SPIRIT [3], 
SPADE [4], FreeSpan [5], PrefixSapn [6] and SPAM [7] 
algorithms. The best-known tree miner algorithms are 
TreeMiner [8], FREQT [9] and FreeTreeMiner [10]. The 
contribution of the novel approach proposed in this paper is to 
use automaton theory for testing the subpattern inclusion. 

A. Subsequence Inclusion Test 
For testing subsequence inclusion deterministic finite state 

machines can be used. 
Definition 1: A deterministic finite state machine is a 5-

tuple, (Q, ∑, δ, q0, F) consisting of: 
• a finite set of states (Q), 
• a finite set called the alphabet (∑), 
• a transition function (δ: Q × ∑  Q), 
• a start state (q0 ∈ Q), 
• and a set of accept states (F ⊆ Q). 

The state machine accepts the input string if the string 
contains the candidate sequence. For this reason the sequences 
are represented with strings from the alphabet ∑ =∑' ∪ {–}, 
where {–} is the character that separates the itemsets in the 

sequence, and ∑' is the set of items which can appear in the 
sequences. For example the string representation of the 
sequence <(ab)(c)(de)> is ab–c–de. 

Definition 2: Let C=c0,c1,…,cs be the string representation of a 
candidate sequence of size k, where s+1 equals to the length of 
the string C. The rules for generating a deterministic finite state 
machine for the sequence C are given in Table I, where Qi (Qi ∈ 
Q, i=0…s+1) denotes the states of the machine, and ∑\ci denotes 
all characters in the alphabet ∑ except ci and the following 
conditions hold: Q0 = q0 and Qs+1 ∈ F. 

 
TABLE I 

TRANSITION FUNCTIONS OF THE FINITE STATE MACHINE OF THE CANDIDATE 

SEQUENCE C=C0,C1,…,CS 

 
 
The machine starts in the start state Q0. The further conditions 

can be interpreted as follows. For each new character a new state 
is created and the transition between the states contains the 
character. These are represented in the state diagram of the finite 
state machines as forward edges. There are several backward 
edges as well. A backward edge is created between the state 
having no transition with a minus sign and the state immediately 
after the last minus sign so far. From each state there exist 
transitions to all the items such that the state will be the same 
(self loops). The accept state of the machine is the state for the 
last item of the sequence. As an example Fig. 1 shows the state 
diagram of the finite state machine for the sequence <(ab)(c)(de). 

 

 
Fig. 1 State diagram for the sequence <(ab)(c)(de) 

 
Proposition 1: The deterministic finite state machine created 

for the candidate sequence C accepts the input string κ if and 
only if κ contains C 

Proof: In the one hand if κ contains C, then the automaton 
gets into its accept state because of the forward edges, and 
because there is no backward transition from the accept state it 
remains there. On the other hand if κ does not contain C then 
because of the backward edges the machine cannot access its 
accept state. The self loops enables that items can be omitted 
as defined in the subsequence definition.  

B. Subtree Inclusion Test 
Trees are more complex structures than sequences. The 
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subtree inclusion test cannot be achieved using deterministic 
finite state machines because trees cannot be described with 
regular languages. It means that the machine should be able to 
count the length of a possible branch when searching for a 
subtree in the input tree. It can be solved only when using 
pushdown automaton instead of a state machine. 

Definition 4: A pushdown automaton is a finite automaton 
outfitted with access to a potentially unlimited amount of 
memory called the stack. The pushdown automaton can be 
defined with a 7-tuple as follows: P (Q, Σ, Γ, δ, q0, Z0, F) 

• the final set of states, Q, 
• the alphabet of the input, Σ, 
• the alphabet of the stack, Γ, 
• the set of transition functions, δ (Q × (Σ ∪ε) × Γ  

Q × Γk) 
• the start state, q0 ∈ Q 
• the initial stack symbol, Z0 ∈ Γ 
• the set of accept states, F ⊂ Q.  

The automaton starts in its start state and the stack contains 
only the initial symbol. When reading one character from the 
input string, the set of transition functions are checked 
whether one of them can be used. If there is a transition rule 
which contains the state in which the automaton resides, and 
the same symbol is on the top of the stack as in the rule, and 
the same character is just read, the automaton moves into its 
new state and a new symbol is pushed into the stack. By 
default the symbol from the stack is removed, when it is used 
by the transition function. If one wants to keep the symbol in 
the stack, one has to push it again. The ε symbol is used when 
no symbol is pushed into the stack. The input string is 
accepted if the automaton is in an accept state after the last 
character has been processed. 

The new idea is to use a pushdown automaton for detecting 
whether a tree is contained by another tree. Using this 
approach the support counting of the candidates can be 
achieved by processing the input tree only once. At the end of 
the transaction the counters of those candidates should be 
incremented whose automaton is in an accept state. 

For this reason the trees are represented with strings as 
follows. The string encoding τ is initialized to an empty sting, 
τ = ∅. Afterwards the tree is traversed in preorder manner 
starting at the root, and the label x of the current node is added 
to the end of τ. Whenever the algorithm has to backtrack from 
a child to its parent a {–} sign is added to τ. In this case it is 
assumed that the {–} sign is not in the label set of the tree. 
After the last label was reached the algorithm terminates, 
which means that the algorithm does not traverse back to the 
root as described in [8], thus the minus signs from the end of 
the string are omitted. As an example Fig. 2 shows a tree with 
its string encoding. 

A

B

BC

D

A

A

B

BC

D

A  τ = ABC–BA– – – D 
Fig. 2 A sample tree with its tree encoding 

 
The rules that have to be used for generating the pushdown 

automaton for detecting a subtree in an input tree is described 
in Table III. The notations for the rules can be found in Table 
II. As described in Table III each state can have two 
transitions which results in a different state. One of them is a 
forward transition and the other is a backward transition. The 
forward transition is used when the input tree seems to contain 
the candidate. The backward transitions are for those cases 
when the input tree does not contain the candidate yet. 

 
TABLE II 

NOTATIONS FOR THE RULES 

 
 

TABLE III 
RULES FOR CREATING A PUSHDOWN AUTOMATON FOR A CANDIDATE TREE 

 
 
Proposition 5. Let π1 and π2 denote two trees with their string 
encodings τ and κ respectively. The PDA created for τ 
according to Table 2 accepts its inputκ  if and only if π1 is an 
embedded subtree of π2.  
Proof. The proof is given constructively by describing the 
process of the algorithm. The pushdown automaton for 
detecting a tree in the input tree works as follows. The 
automaton starts in its start state q00. It reads the characters of 
the input string κ = κ0 κ1… κs one by one. If ·κi = τ0, the 
automaton gets into its next state (q11) and the symbol and the 
number of the start state as a structure (<κi,0>) are pushed 
into the stack. In other cases the automaton remains in its start 
state, and if ·κj∈λ, then the character is pushed, otherwise the 
topmost symbol is popped. When the automaton is in an 
arbitrary state qij , four possibilities exist. If the character just 
read (κl) equals to the character expected by the given state, 
then the automaton moves in its next state, and the character 
and the state number are pushed if·κl∈λ, otherwise the 
topmost symbol is popped. In other cases when the input 
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character κl was not expected, but it is in λ, only the character 
is pushed into the stack and the automaton stays in its state. If 
the input character is a minus sign and it is not expected, two 
possibilities exist. The backward transition is used if the 
topmost structure matches the structure assigned to the 
backward transition. In other cases the self loop is used. In 
both cases the topmost symbol is popped from the stack.  
In order to better understand the process of the pushdown 
automaton Fig. 3 shows a sample PDA for the tree τ = ABC–
BA– – –D. The notations on the arrows are in the following 
form: Σ,Γ/ Γk, the first part of the expression (before the / 
sign) shows which character has just been read and which 
symbol is on the top of the stack. The second part denotes the 
symbols that should be pushed into the stack. The * denotes 
any symbol from the stack. 

IV. SM-TREE AND PD-TREE STRUCTURES 
In Section III the process is shown how an automaton has to 

be created for detecting whether a candidate pattern (sequence 
or tree) is contained by another pattern.  

Using the finite state machines created for the candidate 
sequences, and the pushdown automatons created for the 
candidate trees, it becomes possible to process the transaction 
in such way that its items are processed exactly once. When 
processing the items of the transactions the current states of 
the several finite state machines or pushdown automatons are 
set according to their transition functions, and the counter of 
those candidates are incremented whose state machine or 
pushdown automaton is in the accept state after the last item 
of the transaction was read. This means, however, that having 
for instance 500.000 candidates, each time when an item is 
read 500.000 transition functions have to be followed, which 
can be very inefficient. 

For this reason the state machines or the pushdown 
automatons have to be joined in order to handle those states 
together which are the same in the state machines or in the 
pushdown automatons of the candidates. In this way the 
computational cost of handling the automatons can be reduced 
significantly. After joining at least two state machines, a new 
object, namely, the State Machine-Tree (SM-Tree) is created. 
And similarly, after joining at least two pushdown 
automatons, a new object, called Pushdown Automaton-Tree 
(PD-Tree) is created. 

A. State Machine-Tree 
Definition 6: Let M1 = (Q1, ∑, δ1, 01q , F1) and M2 = (Q2, ∑, 

δ2, 02q , F2) be two finite state machines created for two 

candidate sequences. The State Machine-Tree (SM-Tree) 
created by joining these two finite state machines is defined as 
follows: SM3 = M1 ⊗ M2 = (Q3, ∑, δ3, 03q , F3). The only 

difference to the finite state machine is in the transition 
function. The transition function of the State Machine-Tree is 
defined as follows: 2

333 : QQ →∑×δ .  
The definition of the transition function of the SM-Tree 

means that there are states whose transition function results 
not only one but two states. This means that processing the 
machine, it can have more than one current states at a time. 
The reason is that not only one candidate should be found 
which is contained by the transaction but all of them at the 
same time. For this reason using this machine is a bit different 
than using a simple finite state machine. A list is needed in 
order to keep track of the current states in the machine. When 
a new item is read, the whole list is to be traversed, and for 
each state a new state has to be found. This should be made by 
applying the transition function to the given state and to the 
most recent item. Two finite state machines can be joined if 
they share a prefix in common. Because all the machines have 
a start state which is in common in case of all the candidate 
sequences, all the machines can be joined to establish an SM-
Tree. 

The rules for joining two finite state machines are the 
following. Let l1 and l2 denote the number of states of the two 
state machines M1 and M2 respectively. The number of the 
states of the SM-Tree is denoted with l3. Let r be the number 
of those states in the two joined state machines which are the 
same. Then the number of the states in the resulting State 
Machine-Tree will be l3 = l1+l2-r-1. The states are created 
from the states of the two finite state machines M1 and M2 as 
shown in Eq.1. 

 

⎩
⎨
⎧

≤≤
<≤

=
−− 3122

11
3

0
lilifQ

liifQ
Q

ri

i
i

             (1) 
The accept states of the resulting State Machine-Tree are 

the union of the accept states of M1 and M2 (Eq. 2). The start 
states are joined, thus all the start states are the same as shown 
in Eq. 3. 

F3 ∈ Q3, F3 = F1 ∪ F2               (2) 

03q =
01q =

02q                  (3) 

The transition functions of M3 are created from the 
transition functions of M1 and M2. 

Proposition 7: The SM-Tree created for the candidate 
sequences of the same size increments the counter of a 
candidate sequence if and only if the candidate is contained by 
the input sequence. Furthermore the SM-Tree increments the 
counters of those and only those candidate sequences which 
are contained by the input sequence. For this purpose the 
items of the input sequence has to be read exactly once.  

Proof: The first part of the proposition can be proven using 
Proposition 3, because the SM-Tree is created from the 

finite state machines created for the candidate sequences. 
Using the tokens it accepts all the sequences which are 
contained by the input. If from a state more than one transition 
functions exist, then a token is placed on the new state and a 
token remains on the given state such that later from this state 
another transition function can be used. 
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Fig. 3 Sample pushdown automaton for the candidate tree ABC–BA – – D 

 

B.  Pushdown Automaton-Tree 
Similarly to the sequence mining, in subtree discovery is 

also worth joining the several automatons of the candidates in 
order to reduce computational cost. However, it is not trivial 
how to join two pushdown automatons. It is expected that the 
resulting object needs less memory, and its operation should 
be more efficient than that of the separated automatons. One 
of the most important considerations is the number of the 
stack which has to be used. If this cannot be decreased, the 
benefit of joining the PDA-s is questionable. 

Definition 8: Let two pushdown automatons be given 
P1(Q1, Σ1, Γ1, δ1, q01, Z01, F1) and P2(Q2, Σ2, Γ2, δ2, q02, Z02, 
F2). The join operation on P1 and P2 results in a so-called 
Pushdown Automaton-Tree (PD-Tree) which is defined as 
follows: P3(Q3, Σ3, Γ3, δ3, q03, Z03, F3) where  

• Q3 = Q1 ∪ Q2,  
• Σ3 = Σ1 ∪ Σ2,  
• Γ3 = extended Γ1 ∪ Γ2 as described later  
• δ3 (Q3 × (Σ3 ∪ ε) × Γ3  Q3

2 × Γ3
k),  

• q03 = q01 = q02  
• Z03 = Z01 = Z02 and  
• F3 = F1 ∪ F2.  

As it can be seen from the definition, joining two pushdown 
automatons results in a PD-Tree similarly to joining two state 
machines that results in an SM-Tree. The rules for generating 
the new states in the PD-Tree, the accept states and the start 
states are identical when generating these for the SM-Tree 
(Eqs. 1, 2 and 3). The only difference is in the stack symbols 
and of course in the transition functions. In case of PD-Tree 
the transition function results in not only one state but in some 
cases also in two, however in case of PD-Tree also the content 
of the stack has to be used.  

The main problem one faces when joining two pushdown 
automatons originates from the fact that during the process not 
only one accept state exists but several, and using the tree all 
accept states have to be accessed, i.e. all counters for those 
trees have to be incremented which are contained by the input 
tree. The other problematic fact is that because of space saving 

only one stack has to be used, thus the characters pushed into 
the stack are mixed up regarding the different candidate trees. 
Furthermore because not only one active state exists at the 
same time, but several, also when pushing a character into the 
stack not only one state has to be inserted into the structure 
but all from which a new state is reached. For this reason the 
definition of the stack symbols has to be modified. 

Definition 9: Let Γ3 = Z0 ∪ λ ∪ < λ,qi1,qi2,…,qip> denote the 
stack symbols of the PD-Tree, where < λ,qi1,qi2,…,qip> is a 
structure where {qi1,qi2,…,qip} (called state list) is the list of 
all the states from which λ causes a forward transition in the 
PD-Tree. 

Proposition 10: The PD-Tree created for the candidate trees 
increments the counters of a candidate tree if and only if the 
candidate is contained by the input. Furthermore the counters 
of all these candidates are incremented by processing the 
characters of the input string exactly once only.  

Proof. The modified definition of the stack symbols means 
that for each label those states are stored in the stack from 
which a transition were proceeded. This is necessary because 
of the following. A state in the PD-Tree can have one forward 
transition and one backward transition. The forward transition 
is used independently of the content of the stack. The 
backward transition is followed only when the stack contains 
the same label as the label in the transition rule is. However 
this is not the only condition, because the backward transition 
has to be followed only, if using a backtracking in the tree 
such a node is reached which causes that the candidate is not 
possible to be contained by the input. In this case the 
automaton gets in its previous state. Thus we have to know 
which label has caused the forward step in order to know 
which has to be caused the backward as well. This is marked 
with the state in the simple PDA in case of single subtree 
inclusion testing, and with a state list in case of the joined 
PDAs.  

Thus when processing the PD-Tree, when the automaton 
reads a {–} character, for each state, the possible state for a 
backward transition has to be calculated, and it has to be 
checked whether it is contained in the topmost state list of the 
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stack. If it is contained, the automaton must step back, 
otherwise it remains in the current state or it also steps 
forward as well. 

V.  EXPERIMENTAL RESULTS 
The simulations were executed on a Pentium 4 CPU, 

2.4GHz, and 1GB of RAM computer. The SM-Tree and the 
GSP algorithm was implemented in C++, the PD-Tree 
algorithm in C{\#}. The SPAM was downloaded from the 
Himalaya Data Mining Project's website1. The Pushdown-
Automatons algorithm is an implementation of the pushdown 
automatons for each candidate without joining them. 

Fig. 4 shows the execution time of the GSP, SPAM and 
SM-Tree algorithms in logarithmic scale. It can be seen well 
that the SM-Tree algorithm is the fastest one. Fig. 5 shows the 
execution time of the PushdownAutomatons and the PD-Tree 
algorithms. It is obvious that the PD-Tree is an order of 
magnitude faster than the PushdownAutomatons. The reason 
for that can be observed on Fig. 6 where the number of active 
states is depicted which were checked for possible transitions 
during the mining process. 
 
 

 
Fig. 4 Execution time of the GSP, SPAM and SM-Tree algorithms 

 
 

 
Fig. 5 Execution time of the PushdownAutomatons and the PD-Tree 

 
1 http://www.cs.cornell.edu/database/himalaya 

 
Fig. 6 Number of active states during the mining process 

 

VI.  CONCLUSION 
This paper presented a novel approach to frequent pattern 

mining, namely, using automaton theory for subpattern 
inclusion testing. The method of constructing the automatons 
for the candidates was presented. In order to handle the 
several automatons efficiently two new structures (SM-Tree 
and PD-Tree) were presented that arises by joining the 
automatons. Experimental results presented the efficiency of 
the new algorithms. 
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