
Specialization-based parallel Processing without
Memo-trees

Hidemi Ogasawara, Kiyoshi Akama, and Hiroshi Mabuchi

Abstract—The purpose of this paper is to propose a framework for
constructing correct parallel processing programs based on Equivalent
Transformation Framework (ETF). ETF regards computation as In the
framework, a problem’s domain knowledge and a query are described
in definite clauses, and computation is regarded as transformation of
the definite clauses. Its meaning is defined by a model of the set of
definite clauses, and the transformation rules generated must preserve
meaning. We have proposed a parallel processing method based on
“specialization”, a part of operation in the transformations, which
resembles substitution in logic programming. The method requires
“Memo-tree”, a history of specialization to maintain correctness. In
this paper we proposes the new method for the specialization-base
parallel processing without Memo-tree.

Keywords—Parallel processing, Program correctness, Equivalent
transformation, Specializer generation rule

I. INTRODUCTION

As distributed-memory parallel processing computers
(DMPC), such as PC clusters, have become more popular,
parallel processing programs which run efficiently in such en-
vironment have been in great demand. Even it is not easy task
to guarantee correctness of a sequential processing program,
construction of a parallel processing program which achieves
efficiency and correctness is more difficult, because of the fact
that the program should control not only computation in each
computational node whose computational state is independent
from each other, but also interaction among the nodes. One
way to deal with this problem is to implement a correct
algorithm which has developed so far to a given problem,
but development of new algorithm might be required for new
problem domain or new computational environment. We have
proposed a new general framework for constructing parallel
processing programs which are correct and efficient [1], [2].

Our framework is based on Equivalent Transformation
Framework (ETF) [3] which regards computation as transfor-
mation of logical formulae. This framework consists of the
following three steps:

• define a problem
• construct Equivalent Transformation Rule (ETR)
• construct a program

In the first step, a given problem is defined in the two set
of definite clauses: domain knowledge of the problem, and
a query in the domain. Each ETR constructed in the second
step is a rule to transform the query clause. The equivalent
transformation (ET) defined by an ETR preserves “meaning”
of the query and the domain knowledge, i.e. a model of
the query before the transformation is equal to the queries
after the transformation. Given the ETRs and a computational
resource, e.g. single core CPU computer, multi-core CPU

computer, or DMPC, the program that executes ET defined
by the ETRs efficiently in the given resources is constructed.
Our framework is one instance of ETF where DMPC is given
as the computational resource.

From the cause of the difficulty in parallel processing
programming mentioned above, it is important to decide the
following two factors: computation in each node and com-
munication among the nodes. Transformation of the query by
an ETR application consists of two operation: specialization
and body atom replacement. The specialization is generalized
notion of substitution in logic programming (LP), and replace
a term in the query with another term. The body atom
replacement corresponds to resolution in LP. In the parallel
processing system proposed by Akama et al.[1] and Ogasawara
et al.[2], computations of information about specialisations
are processes in parallel, called Specialization-based Parallel
Processing (SBPP). The studies targeted DMPC architecture,
and proposed computation executed as follows by one master
role process and worker role processes.

• The master controls transformation of the query clause
• The master sends a part of the body atoms in the query to

a worker requests partial information about specialization
for the query clause

• The worker computes the requested the specialization
information and replies it to the master

• The master transforms the query clause based on the
received information

The difficulty in this process is correctness of the transfor-
mation executed in the last step. The specialization information
has been computed from the body atoms in the query clause
at the first step, Within the latency after sending the body
atoms before receiving the substitution information, other
transformations would be applied on the query in the master,
and the body atoms might be changed, or even be removed
when the specialization information is received. The studies
proposed the adjusting algorithm of the specialization informa-
tion received by specialization history within the latency. For
this adjustment, the system stores a specialization log called
“Memo-tree”.

In this paper, we propose a lightweight adjusting algorithm
that does not use the Memo-tree.

II. EQUIVALENT TRANSFORMATION FRAMEWORK

A. Specialization System

A substitution in LP is defined by a set of bindings of
variables, and application of a substitution on an atom is
associated with a mapping on a set of atoms. “Specialization”

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1184International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

4,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

23
3.

pd
f

is the generalized notion of this substitution, and it defines a
partial mapping on a set of atoms. Like a most general unifier
in LP, two terms will be unified by a specializer.

A specialization system on a set A is defined by 4-tuples,
〈A,G,S, μ〉, where A is called a set of objects, G is an inter-
pretation domain, and S is a set of specializations. 〈A,G,S, μ〉
satisfies the following conditions.

1) μ : S ⇒ partial map(A)
2) ∀s1, s2 ∈ S,∃s ∈ S : μ(s) = μ(s2) ◦ μ(s1)
3) ∃s ∈ S,∀a ∈ A : μ(s)(a) = a
4) G ⊆ A

The first condition is that a specialization s provides a partial
mapping on A. This partial mapping defines the effects of
application of the specialization. The second condition is the
existence of the composition of any two specializations.

For example, substitution in LP is defined as a specialization
system as follows. Consider a set of atoms A, a set of ground
atoms G, and a set of bindings S. Substitution of terms is then
defined by μ(θ) where θ ∈ S. Note that this mapping is not
on terms. μ(θ) maps an atom to another atom by replacing a
variable in the atom with a term. By redefining 〈A,G,S, μ〉, an
extended substitution, like substitution on structured variable
used in Constraint Logic Programming, becomes available.

B. Equivalent Transformation

Based on a set of atoms defined by a specialization system,
a class of definite clause is defined. In ETF, a problem is
defined by a set of definite clauses. Let P be a set of definite
clauses. M(P), the model of P , is a set of head atoms of a
clause whose head atoms are grounded, and whose body atom
set is empty or a subset of M(P). Equivalent Transformation
theory is a computational theory that defines computation as
a transformation of P . Equivalency in ET means that a model
of P before and after a transformation is equivalent.

To solve a problem in ETF, P is divided into a domain
knowledge part of the problem and queries of the problem.
The query is represented by the special definite clause called
“ans clause,” whose predicate of the head atom is “ans.”
The answer of the problem is provided as the grounded ans
clauses by transforming them. ET Rule (ETR) defines these
transformations, which have the following pattern:

atom list1, {condition list} ⇒ {execute list}, atom list2.

The left side of “⇒” is called the head, and the right side, the
body. Some rule, called a multiple-body rule, has multiple bod-
ies. The “atom list1,” is called head atoms, and “atom list2,”
body atoms. Both are lists of atoms. The “condition list”
and “execute list” are lists of atoms that are user-defined
predicates or built-in predicates.

An ETR is applied to an ans clause in the following steps.

(a) The rule head check: Test the existence of atoms that
match atom list1, and execute {condition list}. If the
test or the execution fails, the rule is not applied.

(b) The ans clause specialization: Execute {execute list}
of the rule. First, the ans clause is specialized by the
specialization that is computed by step (a). The execution

t0

t3

t2

A1

A2
E1

E2

Master Worker 1 Worker 2

t1

Fig. 1. Example of SBPP

of {execute list} then specializes the ans clause. If the
execution fails, then the ans clause is deleted.

(c) Replacing body atoms in the ans clause: Replace the
atoms in the ans clause that match the atom list1 in step
(a) with atom list2.

If a multiple-body rule is matched in step (a), the ans clause
is copied and each body is applied to each ans clause in steps
(b) and (c).

III. SPECIALIZATION-BASED PARALLEL PROCESSING

A. SBPP with Memo-tree

The second step in the application process of ETR can
be divided into the following two parts: computation of spe-
cialization to be applied and application of the specialization
computed. The former part does not affect the ans clause, and
can be executed in the other process. In SBPP, each worker
computes this information in parallel. The master requests
information about specialization by sending a set of body atom
that will be match with ETR. After receiving the specialization
information from a worker, it transforms the ans clause, i.e.
specializes the ans clause, and replaces its body atoms.

For example, in Fig. 1 the master sends the body atom
set A1 to Worker 1 at t0 and A2 to Worker 2 at t1, and
receives the specialization information E1 from Worker 1 at
t2 and E2 from Worker 2 at t3. E1 is computed by Worker
1 from A1, and E2 by Worker 2 from A2. The specialization
based on E1 is applied on the ans clause at t2, and the other
specialization based on E2 is applied on the ans clause at
t3, which has been specialized at t2. Note that application of
a specialization based on the response message (E2) on the
ans clause does not guarantee correctness, because within the
latency after sending A2 before receiving E2. A2 might be
transformed. Let a specialization applied within this latency
be γ. E2 is computed from A2, but if γ was applied before
t3, a specialization computed from A2γ would not be E2, and
the specialization based on E2 would not be correct.

To maintain correctness of computation, Akama et al.[1]
and Ogasawara et al.[2] propose SBPP algorithm which uses
“Memo-tree”, a log which contains history of communication
between the master and the workers and specialization applied
on Master’s ans clauses. In the system, the information
about specialization is represented by “specializer”, an atom
with two arguments. It means the first argument should be

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1185International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

4,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

23
3.

pd
f

Master Worker 1 Worker 2

t1 p2(v,…)

t0
p1(v,…)

t2
v/g1

t3
v/g2

H⇐p1(v,…),p2(v,…).
ans clause

H⇐p1(g1,…),p2(g1,…).
ans clause

H⇐p1(?,…),p2(?,…).
ans clause

Fig. 2. Difficulty of SBPP

specialized to the second arguments. When the master receives
a specializer E computed from a body atom that has been sent
to Worker at time t, the master specializes E by a sequence
of specializations that has been applied on the ans clause
after t. Then it adds the specialized E in the body atoms,
and applies the specialization represented by it. In this method
maintenance of specialization history in the master is required,
We introduce the other lighter algorithm.

B. SBPP without Memo-tree

Before introducing a new algorithm for SBPP, we indicates
the difficulty of SBPP again using an example illustrated in
Fig. 2. Assume the master has the following ans clause in the
beginning:

H ⇐ p1(v), p2(v).

The master sends p1(v) to the worker 1 at t0, and p2(v) to
the worker 2 at t1. The worker 1 computes v/g1, a correct
specialization for p1(v), and returns it to the master at t2. The
correctness of v/g1 means that application of the specialization
v/g1 on an ans clause which includes p1(v) in its body
preserves its meaning. After receiving v/g1 at t2, the master
applies this specialization on the ans clause:

H ⇐ p1(g1), p2(g1).

While this specialization is executed, the worker 2 computes
v/g2, a correct specialization for p2(v), and returns it to
the master at t3. Because v in the ans clause has been
specialized to g1 when the master receives v/g2, the master
cannot specialize v any more. The former algorithm adjusts
v/g2 by the v/g1 before the specialization based on v/g2 is
applied.

One of the major function of the adjustment is to identify a
term in the master that corresponds a receiving specialization,
e.g. to identify g1 in the master that corresponds v/g2 arriving
from the worker 2 at t3. The new algorithm solves this
problem by introducing a “term list atom” which records this

correspondence. A term list atom is vl(id , termlist) where id

is a unique identifier and termlist is a list of terms.
We explains application of term list atoms using the example

of Fig.2. The clocks from t0 to t3 corresponds to the time
series of interactions of the master and the workers in Fig.
2. “[M → W] :” denotes the item following it is sent from the
master to a worker, and “[W→ M] :” denotes its reverse.

t0 Instead of sending the body atom p1(v) to the worker
1 in the original process flow of Fig.2, the master
generates the unique identifier i1, and creates a term
list atom vl(i1, {v}) from the identifier and a list of
variables in p1(v) that is to be sent to a worker. Then
master adds this term list atom to the ans clause:

H ⇐ p1(v), p2(v), vl(i1, [v]).

Also the master sends the copies of the body atom
and the term list atom:

[M→ W] : p1(vc1), vl(i1, [vc1])

The “copy” of an atom is the same atom except
variables in it are renamed to new unique variables.

t1 The master generates the unique identifier i2, and
creates a term list atom vl(i2, [v]) from the identifier
and a term list in p2(v). Then master adds this term
list atom to the ans clause:

H ⇐ p1(v), p2(v), vl(i1, [v]), vl(i2, [v]).

Also the master sends the copies of the body atom
and the term list atom:

[M→ W] : p2(vc2), vl(i2, [vc2])

t2 The worker 1 computes the specialization vc1/g1

from p1(vc1), instead of v/g1. It returns a term list
atom with the same identifier and the result of the
specialization vc1/g1:

[W→ M] : vl(i1, [g1])

The master receives it and extracts the term list atom
with the same identifier from the ans clause:

vl(i1, [v])

By matching these two term list atoms, it becomes
clear that the g1 and v was the same term(v at t0),
and that should be unified. So the master applies the
specialization v/g1 on the ans clause:

H ⇐ p1(g1), p2(g1), vl(i2, [g1]).

Note that vl(i1, [v]) is removed.
t3 The worker 1 computes the specialization vc2/g2

from p2(vc2). It returns a term list atom:

[W→ M] : vl(i2, [g2])

The master receives it and extracts the term list atom
with the same identifier from the ans clause:

vl(i2, [g1])

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1186International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

4,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

23
3.

pd
f

By matching these two term list atoms, it becomes
clear that the g2 and g1 are specialized values for the
same variable, v at t1, and that should be unified. So
the master computes the most general unifier θ of g2

and g1, and applies it on the ans clause:

H ⇐ p1(g1θ), p2(g1θ).

The main feature of this method is the identification method
of a term in the ans clause and a term arriving from a worker,
e.g. g1 and g2 in the above example. The two terms must
be equal because both comes from the same variable in the
former ans clause. We introduces eqaul atom to represent this
equality constraint. In the following subsection, we describes
the algorithm of the master and the workers, then we discuss
this equality constraint based on specialization systems.

C. Master/Worker Algorithm for SBPP

Let C be an ans clause in the master. head(C) denotes
the head atom of C, and body(C) a set of body atoms
of C. Let A be a set of atoms, and E be a specializer
that represents specialization information. gen(A) denotes a
specializer computed a set of atoms A, and spec(E) denotes
a specialization represented by E. C⊕A denotes the following
definite clause:

head(C)⇐ body(C) ∪A.

and C �A denotes the following definite clause:

head(C)⇐ body(C)−A.

Algorithm 1, 2 show the algorithms of Master and Worker’s
process. The next subsection discusses the unification of lr and
ls in the master.

D. Equality Constraint in Specialization System

The important part of the master’s algorithm is the step
which resolve an an equality constraint atom eqaul(ls, lr),
i.e. computes θ which unifies lr and ls. Since lr and ls are
lists of terms with equal length, the unification of them is
achieved by unification of each element in lr and ls, and
this unification process of two terms depends on a definition
of equality of the terms. We discuss this equality processing
based on Specialization System using Constraint Satisfaction
Problems (CSP) as examples.

The Constraint Satisfaction Problem (CSP) is a class of
problems defined by a set of variables, a domain of values, and
a set of constraints. Its solution is a binding for all variables
that satisfy the constraints. In ET, a query is defined by an ans
clause with a head atom whose arguments are the variables in
CSP, and a set of constraints for its body. In SBPP system
to solve CSP, a constraint will be sent to a worker, and
specialization for variables in the constraint will be sent to
the master. Since variable operation, i.e. equality processing
in SBPP, is important in solving CSP in SBPP, we illustrate
application of Specialization System for CSP.

One example of CSP is the puzzle “OEKAKI-LOGIC (PIC-
A-PIX)” [4] (Fig. 3). A cell on the board corresponds to

Algorithm 1 Master process

{Initialize}
C ← a given ans clause
while C is not grounded do
{Send a body atom and a term list atom.}
b← a body atom in C
w ← an idle worker
if b and w exists then

i← a new unique identifier
l← a list of variables in b
vs ← vl(i, l)
v′

s
← a copy of vs

Send b, v′

s
to w

C ← C ⊕ {vs}.
end if
{Receive a response from a worker.}
while a response from a worker exists do

vl(i, lr)← a response
vl(i, ls)← a vl atom in C with the identifier i
C ← C � {vl(i, ls)}.
C ← C ⊕ {eqaul(ls, lr)}.
Apply a ETR which solves eqaul(ls, lr).

end while
end while

Algorithm 2 Worker process
loop

Receive b, vl(i, l) from Master
γ ← spec(gen(b))
Send vl(i, l)γ to Master

end loop

a variable, and its domain of values is {black,white}. A
constraint of the puzzle corresponds to one row or column.
A list of numbers at end of a row (or column) describes
a constraint that each sequence of black cells whose length
corresponds each number is located in the row (or column)
separated by one or more white cells from its neighbour black
sequences. Because a variable in PIC-A-PIX is to be bound
to black, white, or another variable, we define equality of the
two terms in PIC-A-PIX, i.e. unification of the tow terms in
the following three cases:

1) unify a variable and a constant
2) unify a variable and another variable
3) unify a constant and another constant

The final case will be failed if the two constants are different,
like black and white. These operation on a variable is equal
to LP’s binding. Note that if a variable is not bound to black
(or white), then it must be bound to white (or black).

Another example is Sudoku [5] (Fig. 4). It resembles PIC-A-
PIX, but the domain of values is 1 to 9, and a row (column,
or box) is to a constraint. Sudoku’s constraint is alldiff or
alldifferent, a constraint that each argument has different value
from other variables [6]. In contrast to PIC-A-PIX, though a
value of a variable will not be decided by one negative infor-
mation about the variable (like “a variable X is not 6”), such

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1187International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

4,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

23
3.

pd
f

1

3 5 3 5 1 1

2

1 3

5

3

4

2

1

2

1

3 5 3 5 1 1

2

1 3

5

3

4

2

1

2

Fig. 3. PIC-A-PIX example

8 7 1 5

2 4 9

9 3 7 4

8 1 4 6

6 1

7 9 3 8

2 4 1 5

7 5 3

5 8 7 4

6 8 4 7 9 1 2 5 3

5 7 2 3 4 8 9 6 1

9 3 1 5 2 6 8 7 4

8 2 3 1 7 4 5 9 6

4 9 6 2 8 5 1 3 7

7 1 5 9 6 3 4 2 8

2 4 4 6 3 9 7 1 5

1 6 7 4 5 2 3 8 9

3 5 9 8 1 7 6 4 2

Fig. 4. Sudoku example

negative information plays important role in solving Sudoku.
It is efficient and natural to extend a specialization system
of PIC-A-PIX by introducing structures into a variable to
carry additional information about its value. We call a variable
without additional information “pure variable,” and a variable
with the additional information “candidate set variable.” The
candidate set variable contains a set of constants that may
be a value of the variable, which is usually represented by a
“member” predicate:

member(∗a, [∗a|])← .
member(∗a, [| ∗X])← member(∗a, ∗X).

For example, assume a variable ∗x will be a value 1, 2, or 3,
i.e. “member(∗x, [1, 2, 3])”. In a candidate set variable, this
information is represented by “∗x : [1, 2, 3]”.

Equality of two terms in Sudoku is defined by the definition
of member. Unification of two terms is categorized int the
following 6 cases:

1) unify a pure variable to a constant
2) unify a pure variable to another pure variable
3) unify a constant to another constant
4) unify a pure variable to a candidate set variable
5) unify a candidate set variable to a constant
6) unify a candidate set variable to another candidate set

variable
The first three cases are same as PIC-A-PIX. In the 4th case,
the pure variable is bound to the candidate set variable. In the
5th case, if the constant is not a member of the candidate set,
then this case fails, else the variable is bound to the constant.
The final case is equal a set of three predicates. For example,
equality of the following two variables

∗x : [1, 2, 3]
∗y : [2, 3, 4]

is equal to the equality of *x and *y with the following two
constraints:

member(∗x, [1, 2, 3])
member(∗y, [2, 3, 4])

If the intersection of the both candidate set is not empty, then
the variable are bound by the other unique variable with the

intersection as its candidate set. If the intersection is empty,
this case fails. In the above example, ∗x and ∗y are unified
by the following specializer:

{∗x : [1, 2, 3]/∗z : [2, 3], ∗y : [2, 3, 4]/∗z : [2, 3]}.

E. Example of SBPP

We explain the method using alldiff with 4 arguments.
Assume that the following ans clause which has two alldiff
atoms in its body exists in the master:

ans(∗x : [1, 2, 3, 4], ∗y : [1, 2, 3, 4], ∗z : [1, 2, 3, 4])
⇐ alldiff(∗x : [1, 2, 3, 4], 3, ∗y : [1, 2, 3, 4], 1),

alldiff(∗x : [1, 2, 3, 4], 2, 1, ∗z : [1, 2, 3, 4]).

1) Assume the master decides to send the first alldiff
atom to a worker with a term list atom. Let be generated
by the master. The master generates a term list atom with
the unique identifier i1, and adds it in the ans clause:
ans(∗x : [1, 2, 3, 4], ∗y : [1, 2, 3, 4], ∗z : [1, 2, 3, 4])
⇐ alldiff(∗x : [1, 2, 3, 4], 3, ∗y : [1, 2, 3, 4], 1),

vl(i1, [∗x : [1, 2, 3, 4], ∗y : [1, 2, 3, 4]]),
alldiff(∗x : [1, 2, 3, 4], 2, 1, ∗z : [1, 2, 3, 4]).

The master copies the alldiff atom and the term list atom
as follows:

[M→ W] : alldiff(∗y : [1, 2, 3, 4], 3, ∗t : [1, 2, 3, 4], 1),
vl(i1, [∗s : [1, 2, 3, 4], ∗t : [1, 2, 3, 4]])

and sends it a worker.
2) Before receiving a response from the worker, the ans

clause would be specialized by other rules, or responses
from other workers, e.g. the master at t2 in Fig. 2.
Assume the following specialization γ is applied:

γ: {∗x : [1, 2, 3, 4]/∗u : [3, 4]}

Then the ans clause becomes as follows:
ans(∗u : [3, 4], ∗y : [1, 2, 3, 4], ∗z : [1, 2, 3, 4])
⇐ alldiff(∗u : [3, 4], 3, ∗y : [1, 2, 3, 4], 1),

vl(i1, [∗u : [3, 4], ∗y : [1, 2, 3, 4]]),
alldiff(∗u : [3, 4], 2, 1, ∗z : [1, 2, 3, 4]).

3) Assume the master receives the following response from
the worker:

[W→ M] : vl(i1, [∗v : [2, 4], ∗w : [2, 4]])

Then the master retrieves the following variable list atom
which has the same identifier i1;

vl(i1, [∗u : [3, 4], ∗y : [1, 2, 3, 4]])

and removes this from the ans clause. To unify the two
term lists, the master adds an equality constraint atom
to the ans clause:

ans(∗u : [3, 4], ∗y : [1, 2, 3, 4], ∗z : [1, 2, 3, 4])
⇐ alldiff(∗u : [3, 4], 3, ∗y : [1, 2, 3, 4], 1),

eqaul([∗u : [3, 4], ∗y : [1, 2, 3, 4]],
[∗v : [2, 4], ∗w : [2, 4]]),

alldiff(∗u : [3, 4], 2, 1, ∗z : [1, 2, 3, 4]).

4) To solve the equality of the two lists, i.e. the equality of
∗v and ∗u , and of ∗w and ∗y, the master applies ETRs,
and specializes the ans clause by θ as the follows:

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1188International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

4,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

23
3.

pd
f

TABLE I
EXECUTION TIME OF SBPP SYSTEM IN SUDOKU SOLVING

Number of Workers Mean (sec) (SD)

1 25.255 (0.276)

2 24.303 (0.832)

3 22.829 (1.001)

4 22.279 (0.390)

5 23.577 (0.711)

θ: {∗v : [2, 4]/∗m : [4], ∗u : [3, 4]/∗m : [4],
∗w : [2, 4]/∗n : [2, 4], ∗y : [1, 2, 3, 4]/∗n : [2, 4]}

By this application, the ans clause becomes as follows:
ans(∗m : [4], ∗n : [2, 4], ∗z : [1, 2, 3, 4])
⇐ alldiff(∗m : [4], 3, ∗n : [2, 4], 1),

alldiff(∗m : [4], 2, 1, ∗z : [1, 2, 3, 4]).

F. Performance

The system is divided into the master and worker subsys-
tems. Each system has two modules: the domain dependent
module and the domain independent module. The domain
independent module supports communication, process control
and the domain dependent module management. Another
important role of this module in the master is management of
task allocation to each worker. The domain dependent module
supports domain knowledge, i.e. its specialization system,
ETR, gen and spec for each domain. Another important role
of the master’s module is to select atoms to be sent to a
worker and its timing. The system is implemented in ETI,
ETR interpreter. It uses OpenMPI library for process controls
and communication between the master and the workers.

The performance of the system in solving a Sudoku problem
(25 × 25 cells on the board) by two 4-core CPUs (Xeon
W5590) is show in Table I. The problem is solved in one
master with 1 to 5 workers. We measured execution time 10
times for each condition. The effect of parallel processing
appears in 1 to 4 workers condition, though the effect seems
to stop in 5 workers condition.

IV. CONCLUSION

In this paper, we discussed the parallel processing frame-
work based on distributed computation of the specialization.
We proposed the new implementation of SBPP. Our approach
based on ETF has some similarities with parallel logic pro-
gramming languages [7], [8], [9]. These languages are mainly
based on AND/OR parallelism because the problems and
computations in LP is represented by multiple independent
goals and candidate clauses.

Though SBPP resembles AND parallelism, SBPP processes
specialization information in parallel, and the use of the
specialization in our parallel processing framework gives the
advantage by extending the limitation of the binding in LP.
The rich representation allowed by the specialization provides
efficient communications between the master and the workers.
These features of SBPP are appropriate to solving constraint
satisfaction problems, which involves massive computations

of variable bindings. SBPP’s performance is presented using
Sudoku, a CSP problem in which the specialization is more
helpful than substitution in LP.

The advantage of using ETF as our framework for parallel
processing programming is that it provides the base of the
program generation from a problem definition while guaran-
teeing correctness. In the many parallel logic programming
languages, the executable codes of parallel processing systems
are to be written by programmers. The languages adopt the
extra features for the programmers to control parallel processes
easily, e.g. the guard part in LP to simplify OR-parallelism,
the binding limitation of variables in the guard part, and
the mode declarations for specification of input and output.
Though these features resolve some complications in parallel
processing programming, they may complicates examinations
of the correctness of the programs, because they are not
included in first-order logic that is the base of LP’s correctness.
Based on the correctness of SBPP with Memo-tree presented
by Akama et al., we will construct a theory of the SBPP
without Memo-tree.

REFERENCES

[1] K. Akama, E. Nantajeewarawat, and H. Ogasawara, “Generation of
correct parallel programs based on specializer generation transforma-
tions,” in Proceedings of the 7th international conference on intelligent
technologies, 2006.

[2] H. Ogasawara, K. Akama, and H. Mabuchi, “Parallel processing frame-
work based on distributed computation of specialization,” International
Journal of Innovative Computing, Information and Control, vol. 6, no. 5,
pp. 2371–2381, 2010.

[3] K. Akama and E. Nantajeewarawat, “Formalization of the equivalent
transformation computation models,” Journal of Advanced Computational
Intelligence and Intelligent Informatics, vol. 10, no. 3, pp. 245–259, 2006.

[4] Conceptis-Limited. (2005) Pic-a-pix help. [Online]. Available:
http://www.conceptispuzzles.com/online/pap/help.htm

[5] Nikoli. (2010) Sudoku outline. [Online]. Available:
http://www.nikoli.co.jp/en/puzzles/sudoku/index text.htm

[6] W.-J. van Hoeve and I. Katriel, “Global constraints,” in Handbook of
Constraint Programming, F. Rossi, P. van Beek, and T. Walsh, Eds.
ELSEVIER, 2006, ch. 6, pp. 169–208.

[7] J. C. de Kergommeaux, “Parallel logic programming systems,” ACM
Computing Surveys, vol. 26, no. 3, 1994.

[8] G. Gupta, E. Pontelli, K. A. M. Ali, M. Carlsson, and M. V.
Hermenegildo, “Parallel execution of prolog programs: a survey,” Pro-
gramming Languages and Systems, vol. 23, no. 4, pp. 472–602, 2001.

[9] B. Ramkumar and L. V. Kalé, “Machine independent and and or parallel
execution of logic programs: Part i-the binding environment,” IEEE Trans.
Parallel Distrib. Syst., vol. 5, no. 2, pp. 170–180, 1994.

Chukyo University, Toyota Aichi 470-0393, Japan.
e-mail: hidemi@sist.chukyo-u.ac.jp

Sapporo 060-0811, Japan, e-mail: akama@iic.hokodai.ac.jp

Prefectural University, Takizawa, Iwate 020-0193, Japan
e-mail: mabu@soft.iwate-pu.ac.jp

Hidemi Ogasawara: School of Information Science and Technology,

Kiyoshi Akama: Information Initiative Center,Hokkaido University,

.Hiroshi Mabuchi: Faculty of Software and Information Science, Iwate

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:4, 2009

1189International Scholarly and Scientific Research & Innovation 3(4) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

4,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

23
3.

pd
f

