Search results for: complex geometries
1342 Hybrid Energy Supply with Dominantly Renewable Option for Small Industrial Complex
Authors: Tomislav Stambolic, Anton Causevski
Abstract:
The deficit of power for electricity demand reaches almost 30% for consumers in the last few years. This reflects with continually increasing the price of electricity, and today the price for small industry is almost 110Euro/MWh. The high price is additional problem for the owners in the economy crisis which is reflected with higher price of the goods. The paper gives analyses of the energy needs for real agro complex in Macedonia, private vinery with capacity of over 2 million liters in a year and with self grapes and fruits fields. The existing power supply is from grid with 10/04 kV transformer. The geographical and meteorological condition of the vinery location gives opportunity for including renewable as a power supply option for the vinery complex. After observation of the monthly energy needs for the vinery, the base scenario is the existing power supply from the distribution grid. The electricity bill in small industry has three factors: electricity in high and low tariffs in kWh and the power engaged for the technological process of production in kW. These three factors make the total electricity bill and it is over 110 Euro/MWh which is the price near competitive for renewable option. On the other side investments in renewable (especially photovoltaic (PV)) has tendency of decreasing with price of near 1,5 Euro/W. This means that renewable with PV can be real option for power supply for small industry capacities (under 500kW installed power). Therefore, the other scenarios give the option with PV and the last one includes wind option. The paper presents some scenarios for power supply of the vinery as the followings: • Base scenario of existing conventional power supply from the grid • Scenario with implementation of renewable of Photovoltaic • Scenario with implementation of renewable of Photovoltaic and Wind power The total power installed in a vinery is near 570 kW, but the maximum needs are around 250kW. At the end of the full paper some of the results from scenarios will be presented. The paper also includes the environmental impacts of the renewable scenarios, as well as financial needs for investments and revenues from renewable.Keywords: Energy, Power Supply, Renewable, Efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15181341 Visual Inspection of Work Piece with a Complex Shape by Means of Robot Manipulator
Authors: A. Y. Bani Hashim, N. S. A. Ramdan
Abstract:
Inconsistency in manual inspection is real because humans get tired after some time. Recent trends show that automatic inspection is more appealing for mass production inspections. In such as a case, a robot manipulator seems the best candidate to run a dynamic visual inspection. The purpose of this work is to estimate the optimum workspace where a robot manipulator would perform a visual inspection process onto a work piece where a camera is attached to the end effector. The pseudo codes for the planned path are derived from the number of tool transit points, the delay time at the transit points, the process cycle time, and the configuration space that the distance between the tool and the work piece. It is observed that express start and swift end are acceptable in a robot program because applicable works usually in existence during these moments. However, during the mid-range cycle, there are always practical tasks programmed to be executed. For that reason, it is acceptable to program the robot such as that speedy alteration of actuator displacement is avoided. A dynamic visual inspection system using a robot manipulator seems practical for a work piece with a complex shape.
Keywords: Robot manipulator, Visual inspection, Work piece, Trajectory planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16611340 Performances Comparison of Neural Architectures for On-Line Speed Estimation in Sensorless IM Drives
Authors: K.Sedhuraman, S.Himavathi, A.Muthuramalingam
Abstract:
The performance of sensor-less controlled induction motor drive depends on the accuracy of the estimated speed. Conventional estimation techniques being mathematically complex require more execution time resulting in poor dynamic response. The nonlinear mapping capability and powerful learning algorithms of neural network provides a promising alternative for on-line speed estimation. The on-line speed estimator requires the NN model to be accurate, simpler in design, structurally compact and computationally less complex to ensure faster execution and effective control in real time implementation. This in turn to a large extent depends on the type of Neural Architecture. This paper investigates three types of neural architectures for on-line speed estimation and their performance is compared in terms of accuracy, structural compactness, computational complexity and execution time. The suitable neural architecture for on-line speed estimation is identified and the promising results obtained are presented.Keywords: Sensorless IM drives, rotor speed estimators, artificial neural network, feed- forward architecture, single neuron cascaded architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14581339 Experimental Investigation of Plane Jets Exiting Five Parallel Channels with Large Aspect Ratio
Authors: Laurentiu Moruz, Jens Kitzhofer, Mircea Dinulescu
Abstract:
The paper aims to extend the knowledge about jet behavior and jet interaction between five plane unventilated jets with large aspect ratio (AR). The distance between the single plane jets is two times the channel height. The experimental investigation applies 2D Particle Image Velocimetry (PIV) and static pressure measurements. Our study focuses on the influence of two different outlet nozzle geometries (triangular shape with 2 x 7.5° and blunt geometry) with respect to variation of Reynolds number from 5500 - 12000. It is shown that the outlet geometry has a major influence on the jet formation in terms of uniformity of velocity profiles downstream of the sudden expansion. Furthermore, we describe characteristic regions like converging region, merging region and combined region. The triangular outlet geometry generates most uniform velocity distributions in comparison to a blunt outlet nozzle geometry. The blunt outlet geometry shows an unstable behavior where the jets tend to attach to one side of the walls (ceiling) generating a large recirculation region on the opposite side. Static pressure measurements confirm the observation and indicate that the recirculation region is connected to larger pressure drop.
Keywords: 2D particle image velocimetry, parallel jet interaction, pressure drop, sudden expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8771338 A Nano-Scaled SRAM Guard Band Design with Gaussian Mixtures Model of Complex Long Tail RTN Distributions
Authors: Worawit Somha, Hiroyuki Yamauchi
Abstract:
This paper proposes, for the first time, how the challenges facing the guard-band designs including the margin assist-circuits scheme for the screening-test in the coming process generations should be addressed. The increased screening error impacts are discussed based on the proposed statistical analysis models. It has been shown that the yield-loss caused by the misjudgment on the screening test would become 5-orders of magnitude larger than that for the conventional one when the amplitude of random telegraph noise (RTN) caused variations approaches to that of random dopant fluctuation. Three fitting methods to approximate the RTN caused complex Gamma mixtures distributions by the simple Gaussian mixtures model (GMM) are proposed and compared. It has been verified that the proposed methods can reduce the error of the fail-bit predictions by 4-orders of magnitude.Keywords: Mixtures of Gaussian, Random telegraph noise, EM algorithm, Long-tail distribution, Fail-bit analysis, Static random access memory, Guard band design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18411337 Production of the Protein-Vitamin Complex from Wheat Germ
Authors: Gulmira Kenenbay, Urishbay Chomanov, Tamara Tultabayeva, Aruzhan Shoman
Abstract:
Wheat germ has a balanced amino acid composition of the protein, which is well digested by enzymes in the gastrointestinal tract of humans, a high content of vitamins, minerals and unsaturated acids. Introduction components grain food products will enrich their biologically important substances, giving these products a number of valuable properties and reducing their caloric. A complex natural system of substances in foods will help replenish the body's need of essential nutrients, increasing its resistance to the harmful effects of the environment, prolong life. In this regard, there was a need for the development of production technology of protein complexes from wheat germ and then applying them in food, particularly in the dairy industry. Experimental studies were conducted to determine the number of herbal supplements on the sensory characteristics of the product. Studies have been conducted to determine the optimal process parameters of water activity and moisture content of the investigational product.
Keywords: Wheat germ, sensory characteristics of the product, water activity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19951336 Investigating the UAE Residential Valuation System: A Framework for Analysis
Authors: Simon Huston, Ebraheim Lahbash, Ali Parsa
Abstract:
The development of the United Arab Emirates (UAE) into a regional trade, tourism, finance and logistics hub has transformed its real estate markets. However, speculative activity and price volatility remain concerns. UAE residential market values (MV) are exposed to fluctuations in capital flows and migration which, in turn, are affected by geopolitical uncertainty, oil price volatility and global investment market sentiment. Internally, a complex interplay between administrative boundaries, land tenure, building quality and evolving location characteristics fragments UAE residential property markets. In short, the UAE Residential Valuation System (UAE-RVS) confronts multiple challenges to collect, filter and analyze relevant information in complex and dynamic spatial and capital markets. A robust (RVS) can mitigate the risk of unhelpful volatility, speculative excess or investment mistakes. The research outlines the institutional, ontological, dynamic and epistemological issues at play. We highlight the importance of system capabilities, valuation standard salience and stakeholders trust.
Keywords: Valuation, property rights, information, institutions, trust, salience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23731335 Facial Expressions Recognition from Complex Background using Face Context and Adaptively Weighted sub-Pattern PCA
Authors: Md. Zahangir Alom, Mei-Lan Piao, Md. Ashraful Alam, Nam Kim, Jae-Hyeung Park
Abstract:
A new approach for facial expressions recognition based on face context and adaptively weighted sub-pattern PCA (Aw-SpPCA) has been presented in this paper. The facial region and others part of the body have been segmented from the complex environment based on skin color model. An algorithm has been proposed to accurate detection of face region from the segmented image based on constant ratio of height and width of face (δ= 1.618). The paper also discusses on new concept to detect the eye and mouth position. The desired part of the face has been cropped to analysis the expression of a person. Unlike PCA based on a whole image pattern, Aw-SpPCA operates directly on its sub patterns partitioned from an original whole pattern and separately extracts features from them. Aw-SpPCA can adaptively compute the contributions of each part and a classification task in order to enhance the robustness to both expression and illumination variations. Experiments on single standard face with five types of facial expression database shows that the proposed method is competitive.
Keywords: Aw-SpPC, Expressoin Recognition, Face context, Face Detection, PCA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17211334 Gabriel-constrained Parametric Surface Triangulation
Authors: Oscar E. Ruiz, Carlos Cadavid, Juan G. Lalinde, Ricardo Serrano, Guillermo Peris-Fajarnes
Abstract:
The Boundary Representation of a 3D manifold contains FACES (connected subsets of a parametric surface S : R2 -! R3). In many science and engineering applications it is cumbersome and algebraically difficult to deal with the polynomial set and constraints (LOOPs) representing the FACE. Because of this reason, a Piecewise Linear (PL) approximation of the FACE is needed, which is usually represented in terms of triangles (i.e. 2-simplices). Solving the problem of FACE triangulation requires producing quality triangles which are: (i) independent of the arguments of S, (ii) sensitive to the local curvatures, and (iii) compliant with the boundaries of the FACE and (iv) topologically compatible with the triangles of the neighboring FACEs. In the existing literature there are no guarantees for the point (iii). This article contributes to the topic of triangulations conforming to the boundaries of the FACE by applying the concept of parameterindependent Gabriel complex, which improves the correctness of the triangulation regarding aspects (iii) and (iv). In addition, the article applies the geometric concept of tangent ball to a surface at a point to address points (i) and (ii). Additional research is needed in algorithms that (i) take advantage of the concepts presented in the heuristic algorithm proposed and (ii) can be proved correct.Keywords: surface triangulation, conforming triangulation, surfacesampling, Gabriel complex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16621333 Investigations of Free-to-Roll Motions and its Active Control under Pitch-up Maneuvers
Authors: Tanveer A. Khan, Xue Y. Deng, Yan K. Wang, Xu Si-Wen
Abstract:
Experiments have been carried out at sub-critical Reynolds number to investigate free-to-roll motions induced by forebody and/or wings complex flow on a 30° swept back nonslender wings-slender body-model for static and dynamic (pitch-up) cases. For the dynamic (pitch-up) case it has been observed that roll amplitude decreases and lag increases with increase in pitching speed. Decrease in roll amplitude with increase in pitch rate is attributed to low disturbing rolling moment due to weaker interaction between forebody and wing flow components. Asymmetric forebody vortices dominate and control the roll motion of the model in dynamic case when non-dimensional pitch rate ≥ 1x10-2. Effectiveness of the active control scheme utilizing rotating nose with artificial tip perturbation is observed to be low in the angle of attack region where the complex flow over the wings has contributions from both forebody and wings.Keywords: Artificial Tip Perturbation, ExperimentalInvestigations, Forebody Asymmetric Vortices, Non-slender Wings-Body Model, Wing Rock
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15201332 The Use of Fractional Brownian Motion in the Generation of Bed Topography for Bodies of Water Coupled with the Lattice Boltzmann Method
Authors: Elysia Barker, Jian Guo Zhou, Ling Qian, Steve Decent
Abstract:
A method of modelling topography used in the simulation of riverbeds is proposed in this paper which removes the need for datapoints and measurements of a physical terrain. While complex scans of the contours of a surface can be achieved with other methods, this requires specialised tools which the proposed method overcomes by using fractional Brownian motion (FBM) as a basis to estimate the real surface within a 15% margin of error while attempting to optimise algorithmic efficiency. This removes the need for complex, expensive equipment and reduces resources spent modelling bed topography. This method also accounts for the change in topography over time due to erosion, sediment transport, and other external factors which could affect the topography of the ground by updating its parameters and generating a new bed. The lattice Boltzmann method (LBM) is used to simulate both stationary and steady flow cases in a side-by-side comparison over the generated bed topography using the proposed method, and a test case taken from an external source. The method, if successful, will be incorporated into the current LBM program used in the testing phase, which will allow an automatic generation of topography for the given situation in future research, removing the need for bed data to be specified.
Keywords: Bed topography, FBM, LBM, shallow water, simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3061331 The Effect of Bottom Shape and Baffle Length on the Flow Field in Stirred Tanks in Turbulent and Transitional Flow
Authors: Jie Dong, Binjie Hu, Andrzej W Pacek, Xiaogang Yang, Nicholas J. Miles
Abstract:
The effect of the shape of the vessel bottom and the length of baffles on the velocity distributions in a turbulent and in a transitional flow has been simulated. The turbulent flow was simulated using standard k-ε model and simulation was verified using LES whereas transitional flow was simulated using only LES. It has been found that both the shape of tank bottom and the baffles’ length has significant effect on the flow pattern and velocity distribution below the impeller. In the dished bottom tank with baffles reaching the edge of the dish, the large rotating volume of liquid was formed below the impeller. Liquid in this rotating region was not fully mixing. A dead zone was formed here. The size and the intensity of circulation within this zone calculated by k-ε model and LES were practically identical what reinforces the accuracy of the numerical simulations. Both types of simulations also show that employing full-length baffles can reduce the size of dead zone formed below the impeller. The LES was also used to simulate the velocity distribution below the impeller in transitional flow and it has been found that secondary circulation loops were formed near the tank bottom in all investigated geometries. However, in this case the length of baffles has smaller effect on the volume of rotating liquid than in the turbulent flow.Keywords: Baffles length, dished bottom, dead zone, flow field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20921330 Research on a Forest Fire Spread Simulation Driven by the Wind Field in Complex Terrain
Authors: Ying Shang, Chencheng Wang
Abstract:
The wind field is the main driving factor for the spread of forest fires. For the simulation results of forest fire spread to be more accurate, it is necessary to obtain more detailed wind field data. Therefore, this paper studied the mountainous fine wind field simulation method coupled with WRF (Weather Research and Forecasting Model) and CFD (Computational Fluid Dynamics) to realize the numerical simulation of the wind field in a mountainous area with a scale of 30 m and a small measurement error. Local topographical changes have an important impact on the wind field. Based on the Rothermel fire spread model, a forest fire in Idaho in the western United States was simulated. The historical data proved that the simulation results had a good accuracy. They showed that the fire spread rate will decrease rapidly with time and then reach a steady state. After reaching a steady state, the fire spread growth area will not only be affected by the slope, but will also show a significant quadratic linear positive correlation with the wind speed change.
Keywords: Wind field, numerical simulation, forest fire spread, fire behavior model, complex terrain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3781329 Confronting the Uncertainty of Systemic Innovation in Public Welfare Services
Authors: Harri Jalonen
Abstract:
Faced with social and health system capacity constraints and rising and changing demand for welfare services, governments and welfare providers are increasingly relying on innovation to help support and enhance services. However, the evidence reported by several studies indicates that the realization of that potential is not an easy task. Innovations can be deemed inherently complex to implement and operate, because many of them involve a combination of technological and organizational renewal within an environment featuring a diversity of stakeholders. Many public welfare service innovations are markedly systemic in their nature, which means that they emerge from, and must address, the complex interplay between political, administrative, technological, institutional and legal issues. This paper suggests that stakeholders dealing with systemic innovation in welfare services must deal with ambiguous and incomplete information in circumstances of uncertainty. Employing a literature review methodology and case study, this paper identifies, categorizes and discusses different aspects of the uncertainty of systemic innovation in public welfare services, and argues that uncertainty can be classified into eight categories: technological uncertainty, market uncertainty, regulatory/institutional uncertainty, social/political uncertainty, acceptance/legitimacy uncertainty, managerial uncertainty, timing uncertainty and consequence uncertainty.Keywords: Systemic innovation, uncertainty, welfare services
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16171328 Efficient Semi-Systolic Finite Field Multiplier Using Redundant Basis
Authors: Hyun-Ho Lee, Kee-Won Kim
Abstract:
The arithmetic operations over GF(2m) have been extensively used in error correcting codes and public-key cryptography schemes. Finite field arithmetic includes addition, multiplication, division and inversion operations. Addition is very simple and can be implemented with an extremely simple circuit. The other operations are much more complex. The multiplication is the most important for cryptosystems, such as the elliptic curve cryptosystem, since computing exponentiation, division, and computing multiplicative inverse can be performed by computing multiplication iteratively. In this paper, we present a parallel computation algorithm that operates Montgomery multiplication over finite field using redundant basis. Also, based on the multiplication algorithm, we present an efficient semi-systolic multiplier over finite field. The multiplier has less space and time complexities compared to related multipliers. As compared to the corresponding existing structures, the multiplier saves at least 5% area, 50% time, and 53% area-time (AT) complexity. Accordingly, it is well suited for VLSI implementation and can be easily applied as a basic component for computing complex operations over finite field, such as inversion and division operation.Keywords: Finite field, Montgomery multiplication, systolic array, cryptography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16461327 Optimization of Pretreatment and Enzymatic Saccharification of Cogon Grass Prior Ethanol Production
Authors: Jhalique Jane R. Fojas, Ernesto J. Del Rosario
Abstract:
The dilute acid pretreatment and enzymatic saccharification of lignocellulosic substrate, cogon grass (Imperata cylindrical, L.) was optimized prior ethanol fermentation using simultaneous saccharification and fermentation (SSF) method. The optimum pretreatment conditions, temperature, sulfuric acid concentration, and reaction time were evaluated by determining the maximum sugar yield at constant enzyme loading. Cogon grass, at 10% w/v substrate loading, has optimum pretreatment conditions of 126°C, 0.6% v/v H2SO4, and 20min reaction time. These pretreatment conditions were used to optimize enzymatic saccharification using different enzyme combinations. The maximum saccharification yield of 36.68mg/mL (71.29% reducing sugar) was obtained using 25FPU/g-cellulose cellulase complex combined with 1.1% w/w of cellobiase, ß-glucosidase, and 0.225% w/w of hemicellulase complex, after 96 hours of saccharification. Using the optimum pretreatment and saccharification conditions, SSF of treated substrates was done at 37°C for 120 hours using industrial yeast strain HBY3, Saccharomyces cerevisiae. The ethanol yield for cogon grass at 4% w/w loading was 9.11g/L with 5.74mg/mL total residual sugar.Keywords: Acid pretreatment, bioethanol, biomass, cogon grass, fermentation, lignocellylose, SSF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38901326 Design and Optimization of Parity Generator and Parity Checker Based On Quantum-dot Cellular Automata
Authors: Santanu Santra, Utpal Roy
Abstract:
Quantum-dot Cellular Automata (QCA) is one of the most substitute emerging nanotechnologies for electronic circuits, because of lower power consumption, higher speed and smaller size in comparison with CMOS technology. The basic devices, a Quantum-dot cell can be used to implement logic gates and wires. As it is the fundamental building block on nanotechnology circuits. By applying XOR gate the hardware requirements for a QCA circuit can be decrease and circuits can be simpler in terms of level, delay and cell count. This article present a modest approach for implementing novel optimized XOR gate, which can be applied to design many variants of complex QCA circuits. Proposed XOR gate is simple in structure and powerful in terms of implementing any digital circuits. In order to verify the functionality of the proposed design some complex implementation of parity generator and parity checker circuits are proposed and simulating by QCA Designer tool and compare with some most recent design. Simulation results and physical relations confirm its usefulness in implementing every digital circuit.
Keywords: Clock, CMOS technology, Logic gates, QCA Designer, Quantum-dot Cellular Automata (QCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 78361325 Analyzing the Relationship between the Systems Decisions Process and Artificial Intelligence: A Machine Vision Case Study
Authors: Mitchell J. McHugh, John J. Case
Abstract:
Systems engineering is a holistic discipline that seeks to organize and optimize complex, interdisciplinary systems. With the growth of artificial intelligence, systems engineers must face the challenge of leveraging artificial intelligence systems to solve complex problems. This paper analyzes the integration of systems engineering and artificial intelligence and discusses how artificial intelligence systems embody the systems decision process (SDP). The SDP is a four-stage problem-solving framework that outlines how systems engineers can design and implement solutions using value-focused thinking. This paper argues that artificial intelligence models can replicate the SDP, thus validating its flexible, value-focused foundation. The authors demonstrate this by developing a machine vision mobile application that can classify weapons to augment the decision-making role of an Army subject matter expert. This practical application was an end-to-end design challenge that highlights how artificial intelligence systems embody systems engineering principles. The impact of this research demonstrates that the SDP is a dynamic tool that systems engineers should leverage when incorporating artificial intelligence within the systems that they develop.
Keywords: Computer vision, machine learning, mobile application, systems engineering, systems decision process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18051324 Complex Flow Simulation Using a Partially Lagging One-Equation Turbulence Model
Authors: M. Elkhoury
Abstract:
A recently developed one-equation turbulence model has been successfully applied to simulate turbulent flows with various complexities. The model, which is based on the transformation of the k-ε closure, is wall-distance free and equipped with lagging destruction/dissipation terms. Test cases included shockboundary- layer interaction flows over the NACA 0012 airfoil, an axisymmetric bump, and the ONERA M6 wing. The capability of the model to operate in a Scale Resolved Simulation (SRS) mode is demonstrated through the simulation of a massive flow separation over a circular cylinder at Re= 1.2 x106. An assessment of the results against available experiments Menter (k-ε)1Eq and the Spalart- Allmaras model that belongs to the single equation closure family is made.Keywords: Turbulence modeling, complex flow simulation, scale adaptive simulation, one-equation turbulence model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14711323 Applying Similarity Theory and Hilbert Huang Transform for Estimating the Differences of Pig-s Blood Pressure Signals between Situations of Intestinal Artery Blocking and Unblocking
Authors: Jia-Rong Yeh, Tzu-Yu Lin, Jiann-Shing Shieh, Yun Chen
Abstract:
A mammal-s body can be seen as a blood vessel with complex tunnels. When heart pumps blood periodically, blood runs through blood vessels and rebounds from walls of blood vessels. Blood pressure signals can be measured with complex but periodic patterns. When an artery is clamped during a surgical operation, the spectrum of blood pressure signals will be different from that of normal situation. In this investigation, intestinal artery clamping operations were conducted to a pig for simulating the situation of intestinal blocking during a surgical operation. Similarity theory is a convenient and easy tool to prove that patterns of blood pressure signals of intestinal artery blocking and unblocking are surely different. And, the algorithm of Hilbert Huang Transform can be applied to extract the character parameters of blood pressure pattern. In conclusion, the patterns of blood pressure signals of two different situations, intestinal artery blocking and unblocking, can be distinguished by these character parameters defined in this paper.Keywords: Blood pressure, spectrum, intestinal artery, similarity theory and Hilbert Huang Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16251322 Fundamental Equation of Complete Factor Synergetics of Complex Systems with Normalization of Dimension
Authors: Li Zong-Cheng
Abstract:
It is by reason of the unified measure of varieties of resources and the unified processing of the disposal of varieties of resources, that these closely related three of new basic models called the resources assembled node and the disposition integrated node as well as the intelligent organizing node are put forth in this paper; the three closely related quantities of integrative analytical mechanics including the disposal intensity and disposal- weighted intensity as well as the charge of resource charge are set; and then the resources assembled space and the disposition integrated space as well as the intelligent organizing space are put forth. The system of fundamental equations and model of complete factor synergetics is preliminarily approached for the general situation in this paper, to form the analytical base of complete factor synergetics. By the essential variables constituting this system of equations we should set twenty variables respectively with relation to the essential dynamical effect, external synergetic action and internal synergetic action of the system.
Keywords: complex system, disposal of resources, completefactor synergetics, fundamental equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14191321 Utilizing Computational Fluid Dynamics in the Analysis of Natural Ventilation in Buildings
Authors: A. W. J. Wong, I. H. Ibrahim
Abstract:
Increasing urbanisation has driven building designers to incorporate natural ventilation in the designs of sustainable buildings. This project utilises Computational Fluid Dynamics (CFD) to investigate the natural ventilation of an academic building, SIT@SP, using an assessment criterion based on daily mean temperature and mean velocity. The areas of interest are the pedestrian level of first and fourth levels of the building. A reference case recommended by the Architectural Institute of Japan was used to validate the simulation model. The validated simulation model was then used for coupled simulations on SIT@SP and neighbouring geometries, under two wind speeds. Both steady and transient simulations were used to identify differences in results. Steady and transient results are agreeable with the transient simulation identifying peak velocities during flow development. Under a lower wind speed, the first level was sufficiently ventilated while the fourth level was not. The first level has excessive wind velocities in the higher wind speed and the fourth level was adequately ventilated. Fourth level flow velocity was consistently lower than those of the first level. This is attributed to either simulation model error or poor building design. SIT@SP is concluded to have a sufficiently ventilated first level and insufficiently ventilated fourth level. Future works for this project extend to modifying the urban geometry, simulation model improvements, evaluation using other assessment metrics and extending the area of interest to the entire building.Keywords: Buildings, CFD simulation, natural ventilation, urban airflow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13021320 Dynamic Stability Assessment of Different Wheel Sized Bicycles Based on Current Frame Design Practice with ISO Requirement for Bicycle Safety
Authors: Milan Paudel, Fook Fah Yap, Anil K. Bastola
Abstract:
The difficulties in riding small wheel bicycles and their lesser stability have been perceived for a long time. Although small wheel bicycles are designed using the similar approach and guidelines that have worked well for big wheel bicycles, the performance of the big wheelers and the smaller wheelers are markedly different. Since both the big wheelers and small wheelers have same fundamental geometry, most blame the small wheel for this discrepancy in the performance. This paper reviews existing guidelines for bicycle design, especially the front steering geometry for the bicycle, and provides a systematic and quantitative analysis of different wheel sized bicycles. A validated mathematical model has been used as a tool to assess the dynamic performance of the bicycles in term of their self-stability. The results obtained were found to corroborate the subjective perception of cyclists for small wheel bicycles. The current approach for small wheel bicycle design requires higher speed to be self-stable. However, it was found that increasing the headtube angle and selecting a proper trail could improve the dynamic performance of small wheel bicycles. A range of parameters for front steering geometry has been identified for small wheel bicycles that have comparable stability as big wheel bicycles. Interestingly, most of the identified geometries are found to be beyond the ISO recommended range and seem to counter the current approach of small wheel bicycle design. Therefore, it was successfully shown that the guidelines for big wheelers do not translate directly to small wheelers, but careful selection of the front geometry could make small wheel bicycles as stable as big wheel bicycles.
Keywords: Big wheel bicycle, design approach, ISO requirements, small wheel bicycle, stability and performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8481319 Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems
Authors: Li Shoutao, Gordon Lee
Abstract:
Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.Keywords: adaptive fuzzy neural inference, evolutionary tuning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15101318 Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA
Authors: T. Yamaguchi, M. Watanabe, M. Sasajima, C. Yuan, S. Maruyama, T. B. Ibrahim, H. Tomita
Abstract:
This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses.Keywords: Dynamic response, Nonlinear impact response, Finite Element analysis, Numerical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17201317 Bio-Heat Transfer in Various Transcutaneous Stimulation Models
Authors: Trevor E. Davis, Isaac Cassar, Yi-Kai Lo, Wentai Liu
Abstract:
This study models the use of transcutaneous electrical nerve stimulation on skin with a disk electrode in order to simulate tissue damage. The current density distribution above a disk electrode is known to be a dynamic and non-uniform quantity that is intensified at the edges of the disk. The non-uniformity is subject to change through using various electrode geometries or stimulation methods. One of these methods known as edge-retarded stimulation has shown to reduce this edge enhancement. Though progress has been made in modeling the behavior of a disk electrode, little has been done to test the validity of these models in simulating the actual heat transfer from the electrode. This simulation uses finite element software to couple the injection of current from a disk electrode to heat transfer described by the Pennesbioheat transfer equation. An example application of this model is studying an experimental form of stimulation, known as edge-retarded stimulation. The edge-retarded stimulation method will reduce the current density at the edges of the electrode. It is hypothesized that reducing the current density edge enhancement effect will, in turn, reduce temperature change and tissue damage at the edges of these electrodes. This study tests this hypothesis as a demonstration of the capabilities of this model. The edge-retarded stimulation proved to be safer after this simulation. It is shown that temperature change and the fraction of tissue necrosis is much greater in the square wave stimulation. These results bring implications for changes of procedures in transcutaneous electrical nerve stimulation and transcutaneous spinal cord stimulation as well.
Keywords: Bioheat transfer, Electrode, Neuroprosthetics, TENS, Transcutaneous stimulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22871316 Enhancing the Effectiveness of Air Defense Systems through Simulation Analysis
Authors: F. Felipe
Abstract:
Air Defense Systems contain high-value assets that are expected to fulfill their mission for several years - in many cases, even decades - while operating in a fast-changing, technology-driven environment. Thus, it is paramount that decision-makers can assess how effective an Air Defense System is in the face of new developing threats, as well as to identify the bottlenecks that could jeopardize the security of the airspace of a country. Given the broad extent of activities and the great variety of assets necessary to achieve the strategic objectives, a systems approach was taken in order to delineate the core requirements and the physical architecture of an Air Defense System. Then, value-focused thinking helped in the definition of the measures of effectiveness. Furthermore, analytical methods were applied to create a formal structure that preliminarily assesses such measures. To validate the proposed methodology, a powerful simulation was also used to determine the measures of effectiveness, now in more complex environments that incorporate both uncertainty and multiple interactions of the entities. The results regarding the validity of this methodology suggest that the approach can support decisions aimed at enhancing the capabilities of Air Defense Systems. In conclusion, this paper sheds some light on how consolidated approaches of Systems Engineering and Operations Research can be used as valid techniques for solving problems regarding a complex and yet vital matter.Keywords: Air defense, effectiveness, system, simulation, decision-support.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4081315 Numerical Investigation of Delamination in Carbon-Epoxy Composite using Arcan Specimen
Authors: M. Nikbakht, N. Choupani
Abstract:
In this paper delamination phenomenon in Carbon-Epoxy laminated composite material is investigated numerically. Arcan apparatus and specimen is modeled in ABAQUS finite element software for different loading conditions and crack geometries. The influence of variation of crack geometry on interlaminar fracture stress intensity factor and energy release rate for various mixed mode ratios and pure mode I and II was studied. Also, correction factors for this specimen for different crack length ratios were calculated. The finite element results indicate that for loading angles close to pure mode-II loading, a high ratio of mode-II to mode-I fracture is dominant and there is an opposite trend for loading angles close to pure mode-I loading. It confirms that by varying the loading angle of Arcan specimen pure mode-I, pure mode-II and a wide range of mixed-mode loading conditions can be created and tested. Also, numerical results confirm that the increase of the mode- II loading contribution leads to an increase of fracture resistance in the CF/PEI composite (i.e., a reduction in the total strain energy release rate) and the increase of the crack length leads to a reduction of interlaminar fracture resistance in the CF/PEI composite (i.e., an increase in the total interlaminar strain energy release rate).Keywords: Fracture Mechanics, Mixed Mode, Arcan Specimen, Finite Element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19091314 Multi-Agent Based Modeling Using Multi-Criteria Decision Analysis and OLAP System for Decision Support Problems
Authors: Omar Boutkhoum, Mohamed Hanine, Tarik Agouti, Abdessadek Tikniouine
Abstract:
This paper discusses the intake of combining multi-criteria decision analysis (MCDA) with OLAP systems, to generate an integrated analysis process dealing with complex multi-criteria decision-making situations. In this context, a multi-agent modeling is presented for decision support systems by combining multi-criteria decision analysis (MCDA) with OLAP systems. The proposed modeling which consists in performing the multi-agent system (MAS) architecture, procedure and protocol of the negotiation model is elaborated as a decision support tool for complex decision-making environments. Our objective is to take advantage from the multi-agent system which distributes resources and computational capabilities across interconnected agents, and provide a problem modeling in terms of autonomous interacting component-agents. Thus, the identification and evaluation of criteria as well as the evaluation and ranking of alternatives in a decision support situation will be performed by organizing tasks and user preferences between different agents in order to reach the right decision. At the end, an illustrative example is conducted to demonstrate the function and effectiveness of our MAS modeling.Keywords: Multidimensional Analysis, OLAP Analysis, Multi-criteria Decision Analysis, Multi-Agent System, Decision Support System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18441313 Multilayer Adsorption as a Possible Transition State in Heterogeneous Hydrogenation of C=C Double Bonds
Authors: V. Heral
Abstract:
Ideas about the mechanism of heterogeneous catalytic hydrogenation are diverse. The Horiuti-Polanyi mechanism is most often referred to base on the idea of a semi-hydrogenated state. In our opinion, it does not represent a satisfactory explanation of the hydrogenation mechanism because, for example, (1) It neglects the fact that the bond of atomic hydrogen to the metal surface is strongly polarized, (2) It does not explain why a surface deprived of atomic hydrogen (by thermal desorption or by alkyne) loses isomerization capabilities, but hydrogenation capabilities remain preserved, (3) It was observed that during the hydrogenation of 1-alkenes, the reaction can be of the 0th order to hydrogen and to the alkene at the same time, which is excluded during the competitive adsorption of both reactants on the catalyst surface. We offer an alternative mechanism that satisfactorily explains many of the ambiguities: It is the idea of an independent course of olefin isomerization, catalyzed by acidic atomic hydrogen bonded on the surface of the catalyst, in addition to the hydrogenation itself, in which a two-layer complex appears on the surface of the catalyst: olefin bound to the surface and molecular hydrogen bound to it in the second layer. The rate-determining step of hydrogenation is the conversion of this complex into the final product. In our opinion, the Horiuti-Polanyi mechanism is flawed, and we naturally think that our two-layer theory better describes the experimental findings.
Keywords: Acidity of hydrogenation catalyst, Horiuti-Polanyi, hydrogenation, two-layer hydrogenation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57