Search results for: Support Vector Machine Training
3731 Pruning Method of Belief Decision Trees
Authors: Salsabil Trabelsi, Zied Elouedi, Khaled Mellouli
Abstract:
The belief decision tree (BDT) approach is a decision tree in an uncertain environment where the uncertainty is represented through the Transferable Belief Model (TBM), one interpretation of the belief function theory. The uncertainty can appear either in the actual class of training objects or attribute values of objects to classify. In this paper, we develop a post-pruning method of belief decision trees in order to reduce size and improve classification accuracy on unseen cases. The pruning of decision tree has a considerable intention in the areas of machine learning.Keywords: machine learning, uncertainty, belief function theory, belief decision tree, pruning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19103730 Competence-Based Human Resources Selection and Training: Making Decisions
Authors: O. Starineca, I. Voronchuk
Abstract:
Human Resources (HR) selection and training have various implementation possibilities depending on an organization’s abilities and peculiarities. We propose to base HR selection and training decisions about on a competence-based approach. HR selection and training of employees are topical as there is room for improvement in this field; therefore, the aim of the research is to propose rational decision-making approaches for an organization HR selection and training choice. Our proposals are based on the training development and competence-based selection approaches created within previous researches i.e. Analytic-Hierarchy Process (AHP) and Linear Programming. Literature review on non-formal education, competence-based selection, AHP form our theoretical background. Some educational service providers in Latvia offer employees training, e.g. motivation, computer skills, accounting, law, ethics, stress management, etc. that are topical for Public Administration. Competence-based approach is a rational base for rational decision-making in both HR selection and considering HR training.Keywords: Competence-based selection, human resource, training, decision-making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11063729 A Hybrid Gene Selection Technique Using Improved Mutual Information and Fisher Score for Cancer Classification Using Microarrays
Authors: M. Anidha, K. Premalatha
Abstract:
Feature Selection is significant in order to perform constructive classification in the area of cancer diagnosis. However, a large number of features compared to the number of samples makes the task of classification computationally very hard and prone to errors in microarray gene expression datasets. In this paper, we present an innovative method for selecting highly informative gene subsets of gene expression data that effectively classifies the cancer data into tumorous and non-tumorous. The hybrid gene selection technique comprises of combined Mutual Information and Fisher score to select informative genes. The gene selection is validated by classification using Support Vector Machine (SVM) which is a supervised learning algorithm capable of solving complex classification problems. The results obtained from improved Mutual Information and F-Score with SVM as a classifier has produced efficient results.
Keywords: Gene selection, mutual information, Fisher score, classification, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11523728 Color Image Segmentation Using Kekre-s Algorithm for Vector Quantization
Authors: H. B. Kekre, Tanuja K. Sarode, Bhakti Raul
Abstract:
In this paper we propose segmentation approach based on Vector Quantization technique. Here we have used Kekre-s fast codebook generation algorithm for segmenting low-altitude aerial image. This is used as a preprocessing step to form segmented homogeneous regions. Further to merge adjacent regions color similarity and volume difference criteria is used. Experiments performed with real aerial images of varied nature demonstrate that this approach does not result in over segmentation or under segmentation. The vector quantization seems to give far better results as compared to conventional on-the-fly watershed algorithm.Keywords: Image Segmentation, , Codebook, Codevector, data compression, Encoding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21953727 Information System for Data Selection and New Information Acquisition for Reconfigurable Multifunctional Machine Tools
Authors: Sasho Guergov
Abstract:
The purpose of the paper is to develop an informationcontrol environment for overall management and self-reconfiguration of the reconfigurable multifunctional machine tool for machining both rotation and prismatic parts and high concentration of different technological operations - turning, milling, drilling, grinding, etc. For the realization of this purpose on the basis of defined sub-processes for the implementation of the technological process, architecture of the information-search system for machine control is suggested. By using the object-oriented method, a structure and organization of the search system based on agents and manager with central control are developed. Thus conditions for identification of available information in DBs, self-reconfiguration of technological system and entire control of the reconfigurable multifunctional machine tool are created.
Keywords: Information system, multifunctional machine tool, reconfigurable machine tool, search system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13293726 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals
Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty
Abstract:
A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient, but not the magnitude. A neural network with two hidden layers was then used to learn the coefficient magnitudes, along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.
Keywords: Quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883725 Vehicle Type Classification with Geometric and Appearance Attributes
Authors: Ghada S. Moussa
Abstract:
With the increase in population along with economic prosperity, an enormous increase in the number and types of vehicles on the roads occurred. This fact brings a growing need for efficiently yet effectively classifying vehicles into their corresponding categories, which play a crucial role in many areas of infrastructure planning and traffic management.
This paper presents two vehicle-type classification approaches; 1) geometric-based and 2) appearance-based. The two classification approaches are used for two tasks: multi-class and intra-class vehicle classifications. For the evaluation purpose of the proposed classification approaches’ performance and the identification of the most effective yet efficient one, 10-fold cross-validation technique is used with a large dataset. The proposed approaches are distinguishable from previous research on vehicle classification in which: i) they consider both geometric and appearance attributes of vehicles, and ii) they perform remarkably well in both multi-class and intra-class vehicle classification. Experimental results exhibit promising potentials implementations of the proposed vehicle classification approaches into real-world applications.
Keywords: Appearance attributes, Geometric attributes, Support vector machine, Vehicle classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42803724 Importance of Mobile Technology in Successful Adoption and Sustainability of a Chronic Disease Support System
Authors: Reza Ariaeinejad, Norm Archer
Abstract:
Self-management is becoming a new emphasis for healthcare systems around the world. But there are many different problems with adoption of new health-related intervention systems. The situation is even more complicated for chronically ill patients with disabilities, illiteracy, and impairment in judgment in addition to their conditions, or having multiple co-morbidities. Providing online decision support to manage patient health and to provide better support for chronically ill patients is a new way of dealing with chronic disease management. In this study, the importance of mobile technology through an m-Health system that supports self-management interventions including the care provider, family and social support, education and training, decision support, recreation, and ongoing patient motivation to promote adherence and sustainability of the intervention are discussed. A proposed theoretical model for adoption and sustainability of system use is developed, based on UTAUT2 and IS Continuance of Use models, both of which have been pre-validated through longitudinal studies. The objective of this paper is to show the importance of using mobile technology in adoption and sustainability of use of an m-Health system which will result in commercially sustainable self-management support for chronically ill patients.
Keywords: M-health, e-health, self-management, disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28313723 Novel Direct Flux and Torque Control of Optimally Designed 6 Phase Reluctance Machine with Special Current Waveform
Authors: E T. Rakgati, E. Matlotse
Abstract:
In this paper the principle, basic torque theory and design optimisation of a six-phase reluctance dc machine are considered. A trapezoidal phase current waveform for the machine drive is proposed and evaluated to minimise ripple torque. Low cost normal laminated salient-pole rotors with and without slits and chamfered poles are investigated. The six-phase machine is optimised in multi-dimensions by linking the finite-element analysis method directly with an optimisation algorithm; the objective function is to maximise the torque per copper losses of the machine. The armature reaction effect is investigated in detail and found to be severe. The measured and calculated torque performances of a 35 kW optimum designed six-phase reluctance dc machine drive are presented.
Keywords: Reluctance dc machine, current waveform, design optimisation, finite element analysis, armature reaction effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17283722 Extended Study on Removing Gaussian Noise in Mechanical Engineering Drawing Images using Median Filters
Authors: Low Khong Teck, Hasan S. M. Al-Khaffaf, Abdullah Zawawi Talib, Tan Kian Lam
Abstract:
In this paper, an extended study is performed on the effect of different factors on the quality of vector data based on a previous study. In the noise factor, one kind of noise that appears in document images namely Gaussian noise is studied while the previous study involved only salt-and-pepper noise. High and low levels of noise are studied. For the noise cleaning methods, algorithms that were not covered in the previous study are used namely Median filters and its variants. For the vectorization factor, one of the best available commercial raster to vector software namely VPstudio is used to convert raster images into vector format. The performance of line detection will be judged based on objective performance evaluation method. The output of the performance evaluation is then analyzed statistically to highlight the factors that affect vector quality.Keywords: Performance Evaluation, Vectorization, Median Filter, Gaussian Noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17033721 Efficient Block Matching Algorithm for Motion Estimation
Authors: Zong Chen
Abstract:
Motion estimation is a key problem in video processing and computer vision. Optical flow motion estimation can achieve high estimation accuracy when motion vector is small. Three-step search algorithm can handle large motion vector but not very accurate. A joint algorithm was proposed in this paper to achieve high estimation accuracy disregarding whether the motion vector is small or large, and keep the computation cost much lower than full search.Keywords: Motion estimation, Block Matching, Optical flow, Three step search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21673720 The Defects Reduction in Injection Molding by Fuzzy Logic based Machine Selection System
Authors: S. Suwannasri, R. Sirovetnukul
Abstract:
The effective machine-job assignment of injection molding machines is very important for industry because it is not only directly affects the quality of the product but also the performance and lifetime of the machine as well. The phase of machine selection was mostly done by professionals or experienced planners, so the possibility of matching a job with an inappropriate machine might occur when it was conducted by an inexperienced person. It could lead to an uneconomical plan and defects. This research aimed to develop a machine selection system for plastic injection machines as a tool to help in decision making of the user. This proposed system could be used both in normal times and in times of emergency. Fuzzy logic principle is applied to deal with uncertainty and mechanical factors in the selection of both quantity and quality criteria. The six criteria were obtained from a plastic manufacturer's case study to construct a system based on fuzzy logic theory using MATLAB. The results showed that the system was able to reduce the defects of Short Shot and Sink Mark to 24.0% and 8.0% and the total defects was reduced around 8.7% per month.Keywords: Injection molding machine, machine selection, fuzzy logic, defects in injection molding, matlab.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27553719 The Pedagogical Integration of Digital Technologies in Initial Teacher Training
Authors: Vânia Graça, Paula Quadros-Flores, Altina Ramos
Abstract:
The use of Digital Technologies in teaching and learning processes is currently a reality, namely in initial teacher training. This study aims at knowing the digital reality of students in initial teacher training in order to improve training in the educational use of ICT and to promote digital technology integration strategies in an educational context. It is part of the IFITIC Project "Innovate with ICT in Initial Teacher Training to Promote Methodological Renewal in Pre-school Education and in the 1st and 2nd Basic Education Cycle" which involves the School of Education, Polytechnic of Porto and Institute of Education, University of Minho. The Project aims at rethinking educational practice with ICT in the initial training of future teachers in order to promote methodological innovation in Pre-school Education and in the 1st and 2nd Cycles of Basic Education. A qualitative methodology was used, in which a questionnaire survey was applied to teachers in initial training. For data analysis, the techniques of content analysis with the support of NVivo software were used. The results point to the following aspects: a) future teachers recognize that they have more technical knowledge about ICT than pedagogical knowledge. This result makes sense if we consider the objective of Basic Education, so that the gaps can be filled in the Master's Course by students who wish to follow the teaching; b) the respondents are aware that the integration of digital resources contributes positively to students' learning and to the life of children and young people, which also promotes preparation in life; c) to be a teacher in the digital age there is a need for the development of digital literacy, lifelong learning and the adoption of new ways of teaching how to learn. Thus, this study aims to contribute to a reflection on the teaching profession in the digital age.
Keywords: Digital technologies, initial teacher training, pedagogical use of ICT, skills.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6003718 Design of a Permanent Magnet Synchronous Machine for the Hybrid Electric Vehicle
Authors: Arash Hassanpour Isfahani, Siavash Sadeghi
Abstract:
Permanent magnet synchronous machines are known as a good candidate for hybrid electric vehicles due to their unique merits. However they have two major drawbacks i.e. high cost and small speed range. In this paper an optimal design of a permanent magnet machine is presented. A reduction of permanent magnet material for a constant torque and an extension in speed and torque ranges are chosen as the optimization aims. For this purpose the analytical model of the permanent magnet synchronous machine is derived and the appropriate design algorithm is devised. The genetic algorithm is then employed to optimize some machine specifications. Finally the finite element method is used to validate the designed machine.Keywords: Design, Finite Element, Hybrid electric vehicle, Optimization, Permanent magnet synchronous machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41153717 Effect of Vibration Intervention on Leg-press Exercise
Authors: Youngkuen Cho, Seonhong Hwang, Jinyoung Min, Youngho Kim, Dohyung Lim, Hansung Kim
Abstract:
Many studies have emphasized the importance of resistive exercise to maintain a healthy human body, particular in prevention of weakening of physical strength. Recently, some studies advocated that an application of vibration as a supplementary means in a regular training was effective in encouraging physical strength. Aim of the current study was, therefore, to identify if an application of vibration in a resistive exercise was effective in encouraging physical strength as that in a regular training. A 3-dimensional virtual lower extremity model for a healthy male and virtual leg-press model were generated and synchronized. Dynamic leg-press exercises on a slide machine with/without extra load and on a footboard with vibration as well as on a slide machine with extra load were analyzed. The results of the current indicated that the application of the vibration on the dynamic leg-press exercise might be not greatly effective in encouraging physical strength, compared with the dynamic leg press exercise with extra load. It was, however, thought that the application of the vibration might be helpful to elderly individuals because the reduced maximum muscle strength appeared by the effect of the vibration may avoid a muscular spasm, which can be driven from a high muscle strength sometimes produced during the leg-press exercise with extra load.Keywords: Resistive exercise, leg-press exercise, muscle strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18873716 Monotonicity of Dependence Concepts from Independent Random Vector into Dependent Random Vector
Authors: Guangpu Chen
Abstract:
When the failure function is monotone, some monotonic reliability methods are used to gratefully simplify and facilitate the reliability computations. However, these methods often work in a transformed iso-probabilistic space. To this end, a monotonic simulator or transformation is needed in order that the transformed failure function is still monotone. This note proves at first that the output distribution of failure function is invariant under the transformation. And then it presents some conditions under which the transformed function is still monotone in the newly obtained space. These concern the copulas and the dependence concepts. In many engineering applications, the Gaussian copulas are often used to approximate the real word copulas while the available information on the random variables is limited to the set of marginal distributions and the covariances. So this note catches an importance on the conditional monotonicity of the often used transformation from an independent random vector into a dependent random vector with Gaussian copulas.
Keywords: Monotonic, Rosenblatt, Nataf transformation, dependence concepts, completely positive matrices, Gaussiancopulas
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12113715 Joint Adaptive Block Matching Search (JABMS) Algorithm
Authors: V.K.Ananthashayana, Pushpa.M.K
Abstract:
In this paper a new Joint Adaptive Block Matching Search (JABMS) algorithm is proposed to generate motion vector and search a best match macro block by classifying the motion vector movement based on prediction error. Diamond Search (DS) algorithm generates high estimation accuracy when motion vector is small and Adaptive Rood Pattern Search (ARPS) algorithm can handle large motion vector but is not very accurate. The proposed JABMS algorithm which is capable of considering both small and large motions gives improved estimation accuracy and the computational cost is reduced by 15.2 times compared with Exhaustive Search (ES) algorithm and is 1.3 times less compared with Diamond search algorithm.Keywords: Adaptive rood pattern search, Block matching, Diamond search, Joint Adaptive search, Motion estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16933714 High Impedance Fault Detection using LVQ Neural Networks
Authors: Abhishek Bansal, G. N. Pillai
Abstract:
This paper presents a new method to detect high impedance faults in radial distribution systems. Magnitudes of third and fifth harmonic components of voltages and currents are used as a feature vector for fault discrimination. The proposed methodology uses a learning vector quantization (LVQ) neural network as a classifier for identifying high impedance arc-type faults. The network learns from the data obtained from simulation of a simple radial system under different fault and system conditions. Compared to a feed-forward neural network, a properly tuned LVQ network gives quicker response.Keywords: Fault identification, distribution networks, high impedance arc-faults, feature vector, LVQ networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22143713 A New Stability Analysis and Stabilization of Discrete-Time Switched Linear Systems Using Vector Norms Approach
Authors: Marwen Kermani, Anis Sakly, Faouzi M'sahli
Abstract:
In this paper, we aim to investigate a new stability analysis for discrete-time switched linear systems based on the comparison, the overvaluing principle, the application of Borne-Gentina criterion and the Kotelyanski conditions. This stability conditions issued from vector norms correspond to a vector Lyapunov function. In fact, the switched system to be controlled will be represented in the Companion form. A comparison system relative to a regular vector norm is used in order to get the simple arrow form of the state matrix that yields to a suitable use of Borne-Gentina criterion for the establishment of sufficient conditions for global asymptotic stability. This proposed approach could be a constructive solution to the state and static output feedback stabilization problems.
Keywords: Discrete-time switched linear systems, Global asymptotic stability, Vector norms, Borne-Gentina criterion, Arrow form state matrix, Arbitrary switching, State feedback controller, Static output feedback controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16393712 Kinematic Parameter-Independent Modeling and Measuring of Three-Axis Machine Tools
Authors: Yung-Yuan Hsu
Abstract:
The primary objective of this paper was to construct a “kinematic parameter-independent modeling of three-axis machine tools for geometric error measurement" technique. Improving the accuracy of the geometric error for three-axis machine tools is one of the machine tools- core techniques. This paper first applied the traditional method of HTM to deduce the geometric error model for three-axis machine tools. This geometric error model was related to the three-axis kinematic parameters where the overall errors was relative to the machine reference coordinate system. Given that the measurement of the linear axis in this model should be on the ideal motion axis, there were practical difficulties. Through a measurement method consolidating translational errors and rotational errors in the geometric error model, we simplified the three-axis geometric error model to a kinematic parameter-independent model. Finally, based on the new measurement method corresponding to this error model, we established a truly practical and more accurate error measuring technique for three-axis machine tools.Keywords: Three-axis machine tool, Geometric error, HTM, Error measuring
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21223711 Recent Advances in Pulse Width Modulation Techniques and Multilevel Inverters
Authors: Satish Kumar Peddapelli
Abstract:
This paper presents advances in pulse width modulation techniques which refers to a method of carrying information on train of pulses and the information be encoded in the width of pulses. Pulse Width Modulation is used to control the inverter output voltage. This is done by exercising the control within the inverter itself by adjusting the ON and OFF periods of inverter. By fixing the DC input voltage we get AC output voltage. In variable speed AC motors the AC output voltage from a constant DC voltage is obtained by using inverter. Recent developments in power electronics and semiconductor technology have lead improvements in power electronic systems. Hence, different circuit configurations namely multilevel inverters have became popular and considerable interest by researcher are given on them. A fast space-vector pulse width modulation (SVPWM) method for five-level inverter is also discussed. In this method, the space vector diagram of the five-level inverter is decomposed into six space vector diagrams of three-level inverters. In turn, each of these six space vector diagrams of three-level inverter is decomposed into six space vector diagrams of two-level inverters. After decomposition, all the remaining necessary procedures for the three-level SVPWM are done like conventional two-level inverter. The proposed method reduces the algorithm complexity and the execution time. It can be applied to the multilevel inverters above the five-level also. The experimental setup for three-level diode-clamped inverter is developed using TMS320LF2407 DSP controller and the experimental results are analyzed.
Keywords: Five-level inverter, Space vector pulse wide modulation, diode clamped inverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77703710 Students’ Perception of Vector Representation in the Context of Electric Force and the Role of Simulation in Developing an Understanding
Authors: S. Shubha, B. N. Meera
Abstract:
Physics Education Research (PER) results have shown that students do not achieve the expected level of competency in understanding the concepts of different domains of Physics learning when taught by the traditional teaching methods, the concepts of Electricity and Magnetism (E&M) being one among them. Simulation being one of the valuable instructional tools renders an opportunity to visualize varied experiences with such concepts. Considering the electric force concept which requires extensive use of vector representations, we report here the outcome of the research results pertaining to the student understanding of this concept and the role of simulation in using vector representation. The simulation platform provides a positive impact on the use of vector representation. The first stage of this study involves eliciting and analyzing student responses to questions that probe their understanding of the concept of electrostatic force and this is followed by four stages of student interviews as they use the interactive simulations of electric force in one dimension. Student responses to the questions are recorded in real time using electronic pad. A validation test interview is conducted to evaluate students' understanding of the electric force concept after using interactive simulation. Results indicate lack of procedural knowledge of the vector representation. The study emphasizes the need for the choice of appropriate simulation and mode of induction for learning.
Keywords: Electric Force, Interactive, Representation, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22333709 Attitude and Knowledge of Primary Health Care Physicians and Local Inhabitants about Leishmaniasis and Sandfly in West Alexandria
Authors: Randa M. Ali, Naguiba F. Loutfy, Osama M. Awad
Abstract:
Leishmaniasis is the collective name for a number of diseases caused by protozoan flagellates of the genus Leishmania, which is transmitted by Phlebotomine sandfly, the disease has diverse clinical manifestations and found in many areas of the world, particularly in Africa, Latin America, South and Central Asia, the Mediterranean basin and the Middle East. This study was done to assess primary health care physicians’ knowledge (PHP) and attitude about leishmaniasis and to assess awareness of local inhabitants about the disease and its vector in four areas in west Alexandria, Egypt. It is a cross sectional survey that was conducted in four PHC units in west Alexandria. All physicians currently working in these units during the study period were invited to participate in the study; only 20 PHP completed the questionnaire. 60 local inhabitants were selected randomly from the four areas of the study, 15 from each area; Data was collected through two different specially designed questionnaires. Results showed that 11 (55%) percent of the physicians had satisfactory knowledge; they answered more than 9 (60%) questions out of a total 14 questions about leishmaniasis and sandfly. On the other hand when attitude of the primary health care physicians about leishmaniasis was measured, results showed that 17 (85%) had good attitude and 3 (15%) had poor attitude. The second questionnaire showed that the awareness of local inhabitants about leishmaniasis and sandfly as a vector of the disease is poor and needs to be corrected. (90%) of the interviewed inhabitants had not heard about leishmaniasis, Only 3 (5%) of them said they know sandfly and its role in transmission of leishmaniasis. Thus we conclude that knowledge and attitudes of physicians are acceptable. However, there is, room for improvement and could be done through formal training courses and distribution of guidelines. In addition to raising the awareness of primary health care physicians about the importance of early detection and notification of cases of leishmaniasis, health education for raising awareness of the public regarding the vector and the disease is necessary because related studies have demonstrated that for inhabitants to take enough protective measures against the vector, they should perceive that it is responsible for causing a disease.Keywords: Attitude, knowledge, PHP, leishmaniasis, sandfly, local inhabitants, inside and outside housing conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19343708 Does Material Choice Drive Sustainability of 3D Printing?
Authors: Jeremy Faludi, Zhongyin Hu, Shahd Alrashed, Christopher Braunholz, Suneesh Kaul, Leulekal Kassaye
Abstract:
Environmental impacts of six 3D printers using various materials were compared to determine if material choice drove sustainability, or if other factors such as machine type, machine size, or machine utilization dominate. Cradle-to-grave life-cycle assessments were performed, comparing a commercial-scale FDM machine printing in ABS plastic, a desktop FDM machine printing in ABS, a desktop FDM machine printing in PET and PLA plastics, a polyjet machine printing in its proprietary polymer, an SLA machine printing in its polymer, and an inkjet machine hacked to print in salt and dextrose. All scenarios were scored using ReCiPe Endpoint H methodology to combine multiple impact categories, comparing environmental impacts per part made for several scenarios per machine. Results showed that most printers’ ecological impacts were dominated by electricity use, not materials, and the changes in electricity use due to different plastics was not significant compared to variation from one machine to another. Variation in machine idle time determined impacts per part most strongly. However, material impacts were quite important for the inkjet printer hacked to print in salt: In its optimal scenario, it had up to 1/38th the impacts coreper part as the worst-performing machine in the same scenario. If salt parts were infused with epoxy to make them more physically robust, then much of this advantage disappeared, and material impacts actually dominated or equaled electricity use. Future studies should also measure DMLS and SLS processes / materials.
Keywords: 3D printing, Additive Manufacturing, Sustainability, Life-cycle assessment, Design for Environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36093707 Machine Scoring Model Using Data Mining Techniques
Authors: Wimalin S. Laosiritaworn, Pongsak Holimchayachotikul
Abstract:
this article proposed a methodology for computer numerical control (CNC) machine scoring. The case study company is a manufacturer of hard disk drive parts in Thailand. In this company, sample of parts manufactured from CNC machine are usually taken randomly for quality inspection. These inspection data were used to make a decision to shut down the machine if it has tendency to produce parts that are out of specification. Large amount of data are produced in this process and data mining could be very useful technique in analyzing them. In this research, data mining techniques were used to construct a machine scoring model called 'machine priority assessment model (MPAM)'. This model helps to ensure that the machine with higher risk of producing defective parts be inspected before those with lower risk. If the defective prone machine is identified sooner, defective part and rework could be reduced hence improving the overall productivity. The results showed that the proposed method can be successfully implemented and approximately 351,000 baht of opportunity cost could have saved in the case study company.Keywords: Computer Numerical Control, Data Mining, HardDisk Drive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13953706 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning
Authors: Y. A. Adla, R. Soubra, M. Kasab, M. O. Diab, A. Chkeir
Abstract:
Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals out of which 11 were chosen based on their Intraclass Correlation Coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, five features were introduced to the Linear Discriminant Analysis classifier and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90% respectively.
Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4543705 Improvement on a CNC Gantry Machine Structure Design for Higher Machining Speed Capability
Authors: Ahmed A. D. Sarhan, S. R. Besharaty, Javad Akbaria, M. Hamdi
Abstract:
The capability of CNC gantry milling machines in manufacturing long components has caused the expanded use of such machines. On the other hand, the machines’ gantry rigidity can reduce under severe loads or vibration during operation. Indeed, the quality of machining is dependent on the machine’s dynamic behavior throughout the operating process. For this reason, these types of machines have always been used widely and are not efficient. Therefore, they can usually be employed for rough machining and may not produce adequate surface finishing. In this paper, a CNC gantry milling machine with the potential to produce good surface finish has been designed and analyzed. The lowest natural frequency of this machine is 202 Hz corresponding to 12000 rpm at all motion amplitudes with a full range of suitable frequency responses. Meanwhile, the maximum deformation under dead loads for the gantry machine is 0.565*m, indicating that this machine tool is capable of producing higher product quality.
Keywords: Finite element, frequency response, gantry design, gantry machine, static and dynamic analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60343704 Risk Factors of Becoming NEET Youth in Iran: A Machine Learning Approach
Authors: Hamed Rahmani, Wim Groot
Abstract:
The term "youth not in employment, education or training (NEET)" refers to a combination of youth unemployment and school dropout. This study investigates the variables that increase the risk of becoming NEET in Iran. A selection bias-adjusted Probit model was employed using machine learning to identify these risk factors. We used cross-sectional data obtained from the Statistical Center of Iran and the Ministry of Cooperatives Labor and Social Welfare that are taken from the labor force survey conducted in the spring of 2021. We look at years of education, work experience, housework, the number of children under the age of 6 years in the home, family education, birthplace, and the amount of land owned by households. Results show that hours spent performing domestic chores enhance the likelihood of youth becoming NEET, and years of education, years of potential work experience decrease the chance of being NEET. The findings also show that female youth born in cities were less likely than those born in rural regions to become NEET.
Keywords: NEET youth, probit, CART, machine learning, unemployment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3503703 TeleMe Speech Booster: Web-Based Speech Therapy and Training Program for Children with Articulation Disorders
Authors: C. Treerattanaphan, P. Boonpramuk, P. Singla
Abstract:
Frequent, continuous speech training has proven to be a necessary part of a successful speech therapy process, but constraints of traveling time and employment dispensation become key obstacles especially for individuals living in remote areas or for dependent children who have working parents. In order to ameliorate speech difficulties with ample guidance from speech therapists, a website has been developed that supports speech therapy and training for people with articulation disorders in the standard Thai language. This web-based program has the ability to record speech training exercises for each speech trainee. The records will be stored in a database for the speech therapist to investigate, evaluate, compare and keep track of all trainees’ progress in detail. Speech trainees can request live discussions via video conference call when needed. Communication through this web-based program facilitates and reduces training time in comparison to walk-in training or appointments. This type of training also allows people with articulation disorders to practice speech lessons whenever or wherever is convenient for them, which can lead to a more regular training processes.
Keywords: Web-Based Remote Training Program, Thai Speech Therapy, Articulation Disorders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18593702 Optimized Vector Quantization for Bayer Color Filter Array
Authors: M. Lakshmi, J. Senthil Kumar
Abstract:
Digital cameras to reduce cost, use an image sensor to capture color images. Color Filter Array (CFA) in digital cameras permits only one of the three primary (red-green-blue) colors to be sensed in a pixel and interpolates the two missing components through a method named demosaicking. Captured data is interpolated into a full color image and compressed in applications. Color interpolation before compression leads to data redundancy. This paper proposes a new Vector Quantization (VQ) technique to construct a VQ codebook with Differential Evolution (DE) Algorithm. The new technique is compared to conventional Linde- Buzo-Gray (LBG) method.Keywords: Color Filter Array (CFA), Biorthogonal Wavelet, Vector Quantization (VQ), Differential Evolution (DE).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907