Search results for: Shrinking sheet Unsteady flow.
2146 Towards Modeling for Crashes A Low-Cost Adaptive Methodology for Karachi
Authors: Mohammad Ahmed Rehmatullah
Abstract:
The aim of this paper is to discuss a low-cost methodology that can predict traffic flow conflicts and quantitatively rank crash expectancies (based on relative probability) for various traffic facilities. This paper focuses on the application of statistical distributions to model traffic flow and Monte Carlo techniques to simulate traffic and discusses how to create a tool in order to predict the possibility of a traffic crash. A low-cost data collection methodology has been discussed for the heterogeneous traffic flow that exists and a GIS platform has been proposed to thematically represent traffic flow from simulations and the probability of a crash. Furthermore, discussions have been made to reflect the dynamism of the model in reference to its adaptability, adequacy, economy, and efficiency to ensure adoption.
Keywords: Heterogeneous traffic data collection, Monte CarloSimulation, Traffic Flow Modeling, GIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14352145 Characterization and Behavior of Level and Flow Transmitters Available on the Market
Authors: V. A. C. Vale, E. T. L. Cöuras Ford
Abstract:
In view of the requirements of the current industrial processes, the instrumentation plays a critical role. In this context, this work aims to raise some the operating characteristics of the level and flow transmitters, in addition to observing their similarities and possible limitations configurations.Keywords: Flow, level, instrumentation, configurations of meters, method of choice of the meters, instrumentation in the industrial processes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14102144 Magnetohydrodynamic Mixed Convective Flow in a Cavity
Authors: R.YadollahiFarsani, B. Ghasemi
Abstract:
A magnetohydrodynamic mixed convective flow in a cavity was studied in this paper. The lower surface of cavity was heated from below whereas other walls of the cavity were thermally isolated. The governing two-dimensional flow equations have been solved by using finite volume code. The effects of magnetic field were studied on flow and temperature field and heat transfer performance at a wide range of parameters, Such as Hartmann (0≤Ha≤100) and Reynolds (1≤Re≤100) numbers. The results showed that as Hartman number increases the Nusselt number, representing heat transfer from the cavity decreases.Keywords: Cavity, Magnetic Field, Mixed Convection, Magnetohydrodynamic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15852143 Mathematical Modelling of Partially Filled Fluid Coupling Behaviour
Authors: A. M. Maqableh
Abstract:
Modelling techniques for a fluid coupling taken from published literature have been extended to include the effects of the filling and emptying of the coupling with oil and the variation in losses when the coupling is partially full. In the model, the fluid flow inside the coupling is considered to have two principal velocity components; one circumferentially about the coupling axis (centrifugal head) and the other representing the secondary vortex within the coupling itself (vortex head). The calculation of liquid mass flow rate circulating between the two halves of the coupling is based on: the assumption of a linear velocity variation in the circulating vortex flow; the head differential in the fluid due to the speed difference between the two shafts; and the losses in the circulating vortex flow as a result of the impingement of the flow with the blades in the coupling and friction within the passages between the blades.Keywords: Fluid Coupling, Mathematical Modelling, partially filled.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20952142 CFD Simulations of Flow in Capillary Flow Liquid Acquisition Device Channel
Authors: John B. McQuillen, David F. Chao, Nancy R. Hall, Brian J. Motil, Nengli Zhang
Abstract:
Future space vehicles will require the use of non-toxic, cryogenic propellants, because of the performance advantages over the toxic hypergolic propellants and also because of the environmental and handling concerns. A prototypical capillary flow liquid acquisition device (LAD) for cryogenic propellants was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations with different submersion depths of the LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel, including horizontally and vertically submersions of the LAD channel assembly at normal gravity environment was conducted. Gravity effects on the flow field in LAD channel are inspected and analyzed through comparing the simulations.
Keywords: Liquid acquisition device, cryogenic propellants, CFD simulation, vertically submerged screen channel, gravity effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23142141 Non-Invasive Capillary Blood Flow Measurement: Laser Speckle and Laser Doppler
Authors: A.K.Jayanthy, N.Sujatha, M.Ramasubba Reddy
Abstract:
Microcirculation is essential for the proper supply of oxygen and nutritive substances to the biological tissue and the removal of waste products of metabolism. The determination of blood flow in the capillaries is therefore of great interest to clinicians. A comparison has been carried out using the developed non-invasive, non-contact and whole field laser speckle contrast imaging (LSCI) based technique and as well as a commercially available laser Doppler blood flowmeter (LDF) to evaluate blood flow at the finger tip and elbow and is presented here. The LSCI technique gives more quantitative information on the velocity of blood when compared to the perfusion values obtained using the LDF. Measurement of blood flow in capillaries can be of great interest to clinicians in the diagnosis of vascular diseases of the upper extremities.Keywords: Blood flow, Laser Doppler flowmeter, LSCI, speckle
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25662140 Finite Element Simulation of Deep Drawing Process to Minimize Earing
Authors: Pawan S. Nagda, Purnank S. Bhatt, Mit K. Shah
Abstract:
Earing defect in drawing process is highly undesirable not only because it adds on an additional trimming operation but also because the uneven material flow demands extra care. The objective of this work is to study the earing problem in the Deep Drawing of circular cup and to optimize the blank shape to reduce the earing. A finite element model is developed for 3-D numerical simulation of cup forming process in ABAQUS. Extra-deep-drawing (EDD) steel sheet has been used for simulation. Properties and tool design parameters were used as input for simulation. Earing was observed in the simulated cup and it was measured at various angles with respect to rolling direction. To reduce the earing defect initial blank shape was modified with the help of anisotropy coefficient. Modified blanks showed notable reduction in earing.Keywords: Finite element simulation, deep drawing, earing, anisotropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19932139 The Estimate Rate of Permanent Flow of a Liquid Simulating Blood by Doppler Effect
Authors: Malika.D Kedir-Talha, Mohammed Mehenni
Abstract:
To improve the characterization of blood flows, we propose a method which makes it possible to use the spectral analysis of the Doppler signals. Our calculation induces a reasonable approximation, the error made on estimated speed reflects the fact that speed depends on the flow conditions as well as on measurement parameters like the bore and the volume flow rate. The estimate of the Doppler signal frequency enables us to determine the maximum Doppler frequencie Fd max as well as the maximum flow speed. The results show that the difference between the estimated frequencies ( Fde ) and the Doppler frequencies ( Fd ) is small, this variation tends to zero for important θ angles and it is proportional to the diameter D. The description of the speed of friction and the coefficient of friction justify the error rate obtained.Keywords: Doppler frequency, Doppler spectrum, estimate speed, permanent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13402138 A Study on Improving the Flow Capacity of the Valves
Authors: A. G. Pradeep, Gorantla Giridhar Kumar, Vijay Turaga, Vinod Srinivasa
Abstract:
The major problem in the flow control valve is of lower Flow Capacity (Cv) which will reduce overall efficiency of flow circuit. Designers are continuously working to improve the Cv of the valve, but they need to validate the design ideas they have regarding the improvement of Cv. Traditional method of prototype and testing take a lot of time, that is where CFD comes into picture with very quick and accurate validation along with the visualization which is not possible with traditional testing method. We have developed a method to predict Cv value using CFD analysis by iterating on various Boundary conditions, solver settings and by carrying out grid convergence studies to establish correlation between the CFD model and Test data. The present study investigates 3 different ideas put forward by the designers for improving the flow capacity of the valves like reducing the cage thickness, changing the port position, and using the parabolic plug to guide the flow. Using CFD, we analyzed all design changes using the established methodology that we developed. We were able to evaluate the effect of these design changes on the Valve Cv. We optimized the wetted surface of the valve further by suggesting the design modification to the lower part of the valve to make the flow more streamlined. We could find that changing cage thickness and port position has little impact on the valve Cv. Combination of optimized wetted surface and introduction of parabolic plug improved the Cv of the valve significantly.
Keywords: Flow control valves, flow capacity, CFD simulations, design validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4382137 Identification of Optimum Parameters of Deep Drawing of a Cylindrical Workpiece using Neural Network and Genetic Algorithm
Authors: D. Singh, R. Yousefi, M. Boroushaki
Abstract:
Intelligent deep-drawing is an instrumental research field in sheet metal forming. A set of 28 different experimental data have been employed in this paper, investigating the roles of die radius, punch radius, friction coefficients and drawing ratios for axisymmetric workpieces deep drawing. This paper focuses an evolutionary neural network, specifically, error back propagation in collaboration with genetic algorithm. The neural network encompasses a number of different functional nodes defined through the established principles. The input parameters, i.e., punch radii, die radii, friction coefficients and drawing ratios are set to the network; thereafter, the material outputs at two critical points are accurately calculated. The output of the network is used to establish the best parameters leading to the most uniform thickness in the product via the genetic algorithm. This research achieved satisfactory results based on demonstration of neural networks.
Keywords: Deep-drawing, Neural network, Genetic algorithm, Sheet metal forming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22022136 Another Approach of Similarity Solution in Reversed Stagnation-point Flow
Authors: Vai Kuong Sin, Chon Kit Chio
Abstract:
In this paper, the two-dimensional reversed stagnationpoint flow is solved by means of an anlytic approach. There are similarity solutions in case the similarity equation and the boundary condition are modified. Finite analytic method are applied to obtain the similarity velocity function.Keywords: reversed stagnation-point flow, similarity solutions, asymptotic solution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17492135 CFD Analysis of the Blood Flow in Left Coronary Bifurcation with Variable Angulation
Authors: Midiya Khademi, Ali Nikoo, Shabnam Rahimnezhad Baghche Jooghi
Abstract:
Cardiovascular diseases (CVDs) are the main cause of death globally. Most CVDs can be prevented by avoiding habitual risk factors. Separate from the habitual risk factors, there are some inherent factors in each individual that can increase the risk potential of CVDs. Vessel shapes and geometry are influential factors, having great impact on the blood flow and the hemodynamic behavior of the vessels. In the present study, the influence of bifurcation angle on blood flow characteristics is studied. In order to approach this topic, by simplifying the details of the bifurcation, three models with angles 30°, 45°, and 60° were created, then by using CFD analysis, the response of these models for stable flow and pulsatile flow was studied. In the conducted simulation in order to eliminate the influence of other geometrical factors, only the angle of the bifurcation was changed and other parameters remained constant during the research. Simulations are conducted under dynamic and stable condition. In the stable flow simulation, a steady velocity of 0.17 m/s at the inlet plug was maintained and in dynamic simulations, a typical LAD flow waveform is implemented. The results show that the bifurcation angle has an influence on the maximum speed of the flow. In the stable flow condition, increasing the angle lead to decrease the maximum flow velocity. In the dynamic flow simulations, increasing the bifurcation angle lead to an increase in the maximum velocity. Since blood flow has pulsatile characteristics, using a uniform velocity during the simulations can lead to a discrepancy between the actual results and the calculated results.
Keywords: Coronary artery, cardiovascular disease, bifurcation, atherosclerosis, CFD, artery wall shear stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9532134 Model Transformation with a Visual Control Flow Language
Authors: László Lengyel, Tihamér Levendovszky, Gergely Mezei, Hassan Charaf
Abstract:
Graph rewriting-based visual model processing is a widely used technique for model transformation. Visual model transformations often need to follow an algorithm that requires a strict control over the execution sequence of the transformation steps. Therefore, in Visual Model Processors (VMPs) the execution order of the transformation steps is crucial. This paper presents the visual control flow support of Visual Modeling and Transformation System (VMTS), which facilitates composing complex model transformations of simple transformation steps and executing them. The VMTS Visual Control Flow Language (VCFL) uses stereotyped activity diagrams to specify control flow structures and OCL constraints to choose between different control flow branches. This paper introduces VCFL, discusses its termination properties and provides an algorithm to support the termination analysis of VCFL transformations.Keywords: Control Flow, Metamodel-Based Visual ModelTransformation, OCL, Termination Properties, UML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16952133 Aerodynamic Stall Control of a Generic Airfoil using Synthetic Jet Actuator
Authors: Basharat Ali Haider, Naveed Durrani, Nadeem Aizud, Salimuddin Zahir
Abstract:
The aerodynamic stall control of a baseline 13-percent thick NASA GA(W)-2 airfoil using a synthetic jet actuator (SJA) is presented in this paper. Unsteady Reynolds-averaged Navier-Stokes equations are solved on a hybrid grid using a commercial software to simulate the effects of a synthetic jet actuator located at 13% of the chord from the leading edge at a Reynolds number Re = 2.1x106 and incidence angles from 16 to 22 degrees. The experimental data for the pressure distribution at Re = 3x106 and aerodynamic coefficients at Re = 2.1x106 (angle of attack varied from -16 to 22 degrees) without SJA is compared with the computational fluid dynamic (CFD) simulation as a baseline validation. A good agreement of the CFD simulations is obtained for aerodynamic coefficients and pressure distribution. A working SJA has been integrated with the baseline airfoil and initial focus is on the aerodynamic stall control at angles of attack from 16 to 22 degrees. The results show a noticeable improvement in the aerodynamic performance with increase in lift and decrease in drag at these post stall regimes.Keywords: Active flow control, Aerodynamic stall, Airfoilperformance, Synthetic jet actuator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23112132 Influence of Power Flow Controller on Energy Transaction Charges in Restructured Power System
Authors: Manisha Dubey, Gaurav Gupta, Anoop Arya
Abstract:
The demand for power supply increases day by day in developing countries like India henceforth demand of reactive power support in the form of ancillary services provider also has been increased. The multi-line and multi-type Flexible alternating current transmission system (FACTS) controllers are playing a vital role to regulate power flow through the transmission line. Unified power flow controller and interline power flow controller can be utilized to control reactive power flow through the transmission line. In a restructured power system, the demand of such controller is being popular due to their inherent capability. The transmission pricing by using reactive power cost allocation through modified matrix methodology has been proposed. The FACTS technologies have quite costly assembly, so it is very useful to apportion the expenses throughout the restructured electricity industry. Therefore, in this work, after embedding the FACTS devices into load flow, the impact on the costs allocated to users in fraction to the transmission framework utilization has been analyzed. From the obtained results, it is clear that the total cost recovery is enhanced towards the Reactive Power flow through the different transmission line for 5 bus test system. The fair pricing policy towards reactive power can be achieved by the proposed method incorporating FACTS controller towards cost recovery of the transmission network.
Keywords: Inter line power flow controller, Transmission Pricing, Unified power flow controller, cost allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6852131 Investigation on Mesh Sensitivity of a Transient Model for Nozzle Clogging
Authors: H. Barati, M. Wu, A. Kharicha, A. Ludwig
Abstract:
A transient model for nozzle clogging has been developed and successfully validated against a laboratory experiment. Key steps of clogging are considered: transport of particles by turbulent flow towards the nozzle wall; interactions between fluid flow and nozzle wall, and the adhesion of the particle on the wall; the growth of the clog layer and its interaction with the flow. The current paper is to investigate the mesh (size and type) sensitivity of the model in both two and three dimensions. It is found that the algorithm for clog growth alone excluding the flow effect is insensitive to the mesh type and size, but the calculation including flow becomes sensitive to the mesh quality. The use of 2D meshes leads to overestimation of the clog growth because the 3D nature of flow in the boundary layer cannot be properly solved by 2D calculation. 3D simulation with tetrahedron mesh can also lead to an error estimation of the clog growth. A mesh-independent result can be achieved with hexahedral mesh, or at least with triangular prism (inflation layer) for near-wall regions.
Keywords: Clogging, nozzle, numerical model, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8412130 Numerical Investigation on the Interior Wind Noise of a Passenger Car
Authors: Liu Ying-jie, Lu Wen-bo, Peng Cheng-jian
Abstract:
With the development of the automotive technology and electric vehicle, the contribution of the wind noise on the interior noise becomes the main source of noise. The main transfer path which the exterior excitation is transmitted through is the greenhouse panels and side windows. Simulating the wind noise transmitted into the vehicle accurately in the early development stage can be very challenging. The basic methodologies of this study were based on the Lighthill analogy; the exterior flow field around a passenger car was computed using unsteady Computational Fluid Dynamics (CFD) firstly and then a Finite Element Method (FEM) was used to compute the interior acoustic response. The major findings of this study include: 1) The Sound Pressure Level (SPL) response at driver’s ear locations is mainly induced by the turbulence pressure fluctuation; 2) Peaks were found over the full frequency range. It is found that the methodology used in this study could predict the interior wind noise induced by the exterior aerodynamic excitation in industry.
Keywords: Wind noise, computational fluid dynamics, finite element method, passenger car.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8612129 Effect of Structure on Properties of Incrementally Formed Titanium Alloy Sheets
Authors: Lucie Novakova, Petr Homola, Vaclav Kafka
Abstract:
Asymmetric incremental sheet forming (AISF) could significantly reduce costs incurred by the fabrication of complex industrial components with a minimal environmental impact. The AISF experiments were carried out on commercially pure titanium (Ti-Gr2), Timetal (15-3-3-3) alloy, and Ti-6Al-4V (Ti-Gr5) alloy. A special testing geometry was used to characterize the titanium alloys properties from the point of view of the forming zone and titanium structure effect. The structure and properties of the materials were assessed by means of metallographic analyses and microhardness measurements.The highest differences in the parameters assessed as a function of the sampling zone were observed in the case of alpha-phase Ti-Gr2at the expense of the most substantial sheet thinning occurrence. A springback causes a smaller stored deformation in Timetal (β alloy) resulting in less pronounced microstructure refinement and microhardness increase. Ti-6Al-4V alloy exhibited early failure due to its poor formability at ambient temperature.
Keywords: Incremental forming, metallography, hardness, titanium alloys.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26392128 Porous Effect on Heat Transfer of Non Uniform Velocity Inlet Flow Using LBM
Authors: A. Hasanpour, M. Farhadi, K.Sedighi, H.R.Ashorynejad
Abstract:
A numerical study of flow in a horizontally channel partially filled with a porous screen with non-uniform inlet has been performed by lattice Boltzmann method (LBM). The flow in porous layer has been simulated by the Brinkman-Forchheimer model. Numerical solutions have been obtained for variable porosity models and the effects of Darcy number and porosity have been studied in detail. It is found that the flow stabilization is reliant on the Darcy number. Also the results show that the stabilization of flow field and heat transfer is depended to Darcy number. Distribution of stream field becomes more stable by decreasing Darcy number. Results illustrate that the effect of variable porosity is significant just in the region of the solid boundary. In addition, difference between constant and variable porosity models is decreased by decreasing the Darcy number.Keywords: Lattice Boltzmann Method, Porous Media, Variable Porosity, Flow Stabilization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19282127 Development of Integrated GIS Interface for Characteristics of Regional Daily Flow
Authors: Ju Young Lee, Jung-Seok Yang, Jaeyoung Choi
Abstract:
The purpose of this paper primarily intends to develop GIS interface for estimating sequences of stream-flows at ungauged stations based on known flows at gauged stations. The integrated GIS interface is composed of three major steps. The first, precipitation characteristics using statistical analysis is the procedure for making multiple linear regression equation to get the long term mean daily flow at ungauged stations. The independent variables in regression equation are mean daily flow and drainage area. Traditionally, mean flow data are generated by using Thissen polygon method. However, method for obtaining mean flow data can be selected by user such as Kriging, IDW (Inverse Distance Weighted), Spline methods as well as other traditional methods. At the second, flow duration curve (FDC) is computing at unguaged station by FDCs in gauged stations. Finally, the mean annual daily flow is computed by spatial interpolation algorithm. The third step is to obtain watershed/topographic characteristics. They are the most important factors which govern stream-flows. In summary, the simulated daily flow time series are compared with observed times series. The results using integrated GIS interface are closely similar and are well fitted each other. Also, the relationship between the topographic/watershed characteristics and stream flow time series is highly correlated.Keywords: Integrated GIS interface, spatial interpolation algorithm, FDC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15102126 Analysis of the Secondary Stationary Flow Around an Oscillating Circular Cylinder
Authors: Artem Nuriev, Olga Zaitseva
Abstract:
This paper is devoted to the study of a viscous incompressible flow around a circular cylinder performing harmonic oscillations, especially the steady streaming phenomenon. The research methodology is based on the asymptotic explanation method combined with the computational bifurcation analysis. The research approach develops Schlichting and Wang decomposition method. Present studies allow to identify several regimes of the secondary streaming with different flow structures. The results of the research are in good agreement with experimental and numerical simulation data.
Keywords: Oscillating cylinder, Secondary Streaming, Flow Regimes, Asymptotic and Bifurcation Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21732125 Reduced Order Modeling of Natural Gas Transient Flow in Pipelines
Authors: M. Behbahani-Nejad, Y. Shekari
Abstract:
A reduced order modeling approach for natural gas transient flow in pipelines is presented. The Euler equations are considered as the governing equations and solved numerically using the implicit Steger-Warming flux vector splitting method. Next, the linearized form of the equations is derived and the corresponding eigensystem is obtained. Then, a few dominant flow eigenmodes are used to construct an efficient reduced-order model. A well-known test case is presented to demonstrate the accuracy and the computational efficiency of the proposed method. The results obtained are in good agreement with those of the direct numerical method and field data. Moreover, it is shown that the present reduced-order model is more efficient than the conventional numerical techniques for transient flow analysis of natural gas in pipelines.Keywords: Eigenmode, Natural Gas, Reduced Order Modeling, Transient Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19372124 Effect of Friction Models on Stress Distribution of Sheet Materials during V-Bending Process
Authors: Maziar Ramezani, Zaidi Mohd Ripin
Abstract:
In a metal forming process, the friction between the material and the tools influences the process by modifying the stress distribution of the workpiece. This frictional behaviour is often taken into account by using a constant coefficient of friction in the finite element simulations of sheet metal forming processes. However, friction coefficient varies in time and space with many parameters. The Stribeck friction model is investigated in this study to predict springback behaviour of AA6061-T4 sheets during V-bending process. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The plane-strain bending process is simulated in ABAQUS/Standard. We compared the computed punch load-stroke curves and springback related to the constant coefficient of friction with the defined friction model. The results clearly showed that the new friction model provides better agreement between experiments and results of numerical simulations. The influence of friction models on stress distribution in the workpiece is also studied numericallyKeywords: Friction model, Stress distribution, V-bending.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27402123 Simulation of Sloshing-Shear Mixed Shallow Water Waves (II) Numerical Solutions
Authors: Weihao Chung, Iau-Teh Wang, Yu-Hsi Hu
Abstract:
This is the second part of the paper. It, aside from the core subroutine test reported previously, focuses on the simulation of turbulence governed by the full STF Navier-Stokes equations on a large scale. Law of the wall is found plausible in this study as a model of the boundary layer dynamics. Model validations proceed to include velocity profiles of a stationary turbulent Couette flow, pure sloshing flow simulations, and the identification of water-surface inclination due to fluid accelerations. Errors resulting from the irrotational and hydrostatic assumptions are explored when studying a wind-driven water circulation with no shakings. Illustrative examples show that this numerical strategy works for the simulation of sloshing-shear mixed flow in a 3-D rigid rectangular base tank.Keywords: potential flow theory, sloshing flow, space-timefiltering, order of accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14922122 Numerical Comparison of Rushton Turbine and CD-6 Impeller in Non-Newtonian Fluid Stirred Tank
Authors: Akhilesh Khapre, Basudeb Munshi
Abstract:
A computational fluid dynamics simulation is done for non-Newtonian fluid in a baffled stirred tank. The CMC solution is taken as non-Newtonian shear thinning fluid for simulation. The Reynolds Average Navier Stocks equation with steady state multi reference frame approach is used to simulate flow in the stirred tank. The turbulent flow field is modelled using realizable k-ε turbulence model. The simulated velocity profiles of Rushton turbine is validated with literature data. Then, the simulated flow field of CD-6 impeller is compared with the Rushton turbine. The flow field generated by CD-6 impeller is less in magnitude than the Rushton turbine. The impeller global parameter, power number and flow number, and entropy generation due to viscous dissipation rate is also reported.
Keywords: Computational fluid dynamics, non-Newtonian, Rushton turbine, CD-6 impeller, power number, flow number, viscous dissipation rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41482121 How the Kinematic Swimming of European Eel Anguilla Anguilla Changes from Axial to Non-axial Velocity Flow
Authors: Younes Matar, Fabien Candelier, Camille Solliec
Abstract:
The aim of this study is to investigate the kinematics of undulatory elongated fish swimming against a velocity flow. We perform the experiments on European eel Anguilla Anguilla swimming in a hydrodynamic re-circulating tank with the velocity flow fixed at 0.2 m/s. We find that the undulating shape of overall eel body changes when it swims slantwise from the flow direction, by comparison to axial undulation shape. We examine this kinematics and we propose a general equation describing the lateral position of undulation body taking into account the direction of the eel-s swimming.
Keywords: Undulatory swimming, maneuver, eel Anguilla Anguilla, biomechanic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15062120 Creating Streamtubes Based on Mass Conservative Streamlines
Authors: Nawin Raj, Zhenquan Li
Abstract:
Streamtube is used to visualize expansion, contraction and various properties of the fluid flow. These are useful in fluid mechanics, engineering and geophysics. The streamtube constructed in this paper only reveals the flow expansion rate along streamline. Based on the mass conservative streamline, we will show how to construct the streamtube.Keywords: Flow visualization, mass conservative, streamline, streamtube.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15532119 Computational and Experimental Investigation of Supersonic Flow and their Controls
Authors: Vasana M. Don, Eldad J. Avital, Fariborz Motallebi
Abstract:
Supersonic open and closed cavity flows are investigated experimentally and computationally. Free stream Mach number of two is set. Schlieren imaging is used to visualise the flow behaviour showing stark differences between open and closed. Computational Fluid Dynamics (CFD) is used to simulate open cavity of flow with aspect ratio of 4. A rear wall treatment is implemented in order to pursue a simple passive control approach. Good qualitative agreement is achieved between the experimental flow visualisation and the CFD in terms of the expansion-shock waves system. The cavity oscillations are shown to be dominated by the first and third Rossister modes combining to high fluctuations of non-linear nature above the cavity rear edge. A simple rear wall treatment in terms of a hole shows mixed effect on the flow oscillations, RMS contours, and time history density fluctuations are given and analysed.
Keywords: Supersonic, Schlieren, open-cavity, flow simulation, passive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23952118 Multiple Power Flow Solutions Using Particle Swarm Optimization with Embedded Local Search Technique
Authors: P. Acharjee, S. K. Goswami
Abstract:
Particle Swarm Optimization (PSO) with elite PSO parameters has been developed for power flow analysis under practical constrained situations. Multiple solutions of the power flow problem are useful in voltage stability assessment of power system. A method of determination of multiple power flow solutions is presented using a hybrid of Particle Swarm Optimization (PSO) and local search technique. The unique and innovative learning factors of the PSO algorithm are formulated depending upon the node power mismatch values to be highly adaptive with the power flow problems. The local search is applied on the pbest solution obtained by the PSO algorithm in each iteration. The proposed algorithm performs reliably and provides multiple solutions when applied on standard and illconditioned systems. The test results show that the performances of the proposed algorithm under critical conditions are better than the conventional methods.Keywords: critical conditions, ill-conditioned systems, localsearch technique, multiple power flow solutions, particle swarmoptimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18162117 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology
Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon
Abstract:
There is not much effective guideline on development of design parameters selection on spring back for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for spring back in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in Uchannel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24 ). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on spring back of flange angle (β2 ) and wall opening angle (β1 ), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the spring back behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for spring back was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental values.
Keywords: Advance high strength steel, U-channel process, Springback, Design of Experiment, Optimization, Response Surface Methodology (RSM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2297