Search results for: Extraction and data integration
8244 Spatial Integration at the Room-Level of 'Sequina' Slum Area in Alexandria, Egypt
Authors: Ali Essam El Shazly
Abstract:
The social logic of 'Sequina' slum area in Alexandria details the integral measure of space syntax at the room-level of twenty-building samples. The essence of spatial structure integrates the central 'visitor' domain with the 'living' frontage of the 'children' zone against the segregated privacy of the opposite 'parent' depth. Meanwhile, the multifunctioning of shallow rooms optimizes the integral 'visitor' structure through graph and visibility dimensions in contrast to the 'inhabitant' structure of graph-tails out of sight. Common theme of the layout integrity increases in compensation to the decrease of room visibility. Despite the 'pheno-type' of collective integration, the individual layouts observe 'geno-type' structure of spatial diversity per room adjoins. In this regard, the layout integrity alternates the cross-correlation of the 'kitchen & living' rooms with the 'inhabitant & visitor' domains of 'motherhood' dynamic structure. Moreover, the added 'grandparent' restructures the integral measure to become the deepest space, but opens to the 'living' of 'household' integrity. Some isomorphic layouts change the integral structure just through the 'balcony' extension of access, visual or ignored 'ringiness' of space syntax. However, the most integrated or segregated layouts invert the 'geno-type' into a shallow 'inhabitant' centrality versus the remote 'visitor' structure. Overview of the multivariate social logic of spatial integrity could never clarify without the micro-data analysis.Keywords: Alexandria, Sequina slum, spatial integration, space syntax.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14398243 Functionality and Application of Rice Bran Protein Hydrolysates in Oil in Water Emulsions: Their Stabilities to Environmental Stresses
Authors: R. Charoen, S. Tipkanon, W. Savedboworn, N. Phonsatta, A. Panya
Abstract:
Rice bran protein hydrolysates (RBPH) were prepared from defatted rice bran of two different Thai rice cultivars (Plai-Ngahm-Prachinburi; PNP and Khao Dok Mali 105; KDM105) using an enzymatic method. This research aimed to optimize enzyme-assisted protein extraction. In addition, the functional properties of RBPH and their stabilities to environmental stresses including pH (3 to 8), ionic strength (0 mM to 500 mM) and the thermal treatment (30 °C to 90 °C) were investigated. Results showed that enzymatic process for protein extraction of defatted rice bran was as follows: enzyme concentration 0.075 g/ 5 g of protein, extraction temperature 50 °C and extraction time 4 h. The obtained protein hydrolysate powders had a degree of hydrolysis (%) of 21.05% in PNP and 19.92% in KDM105. The solubility of protein hydrolysates at pH 4-6 was ranged from 27.28-38.57% and 27.60-43.00% in PNP and KDM105, respectively. In general, antioxidant activities indicated by total phenolic content, FRAP, ferrous ion-chelating (FIC), and 2,2’-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) of KDM105 had higher than PNP. In terms of functional properties, the emulsifying activity index (EAI) was was 8.78 m²/g protein in KDM105, whereas PNP was 5.05 m²/g protein. The foaming capacity at 5 minutes (%) was 47.33 and 52.98 in PNP and KDM105, respectively. Glutamine, Alanine, Valine, and Leucine are the major amino acid in protein hydrolysates where the total amino acid of KDM105 gave higher than PNP. Furthermore, we investigated environmental stresses on the stability of 5% oil in water emulsion (5% oil, 10 mM citrate buffer) stabilized by RBPH (3.5%). The droplet diameter of emulsion stabilized by KDM105 was smaller (d < 250 nm) than produced by PNP. For environmental stresses, RBPH stabilized emulsions were stable at pH around 3 and 5-6, at high salt (< 400 mM, pH 7) and at temperatures range between 30-50°C.
Keywords: Functional properties, oil in water emulsion, protein hydrolysates, rice bran protein.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11508242 The Extraction and Stripping of Hg (II) from Produced Water via Hollow Fiber Contactor
Authors: Dolapop Sribudda, Ura Pancharoen
Abstract:
The separation of Hg (II) from produced water by hollow fiber contactors (HFC) was investigation. This system included of two hollow fiber modules in the series connecting. The first module used for the extraction reaction and the second module for stripping reaction. Aliquat336 extractant was fed from the organic reservoirs into the shell side of the first hollow fiber module and continuous to the shell side of the second module. The organic liquid was continuously feed recirculate and back to the reservoirs. The feed solution was pumped into the lumen (tube side) of the first hollow fiber module. Simultaneously, the stripping solution was pumped in the same way in tube side of the second module. The feed and stripping solution was fed which had a countercurrent flow. Samples were kept in the outlet of feed and stripping solution at 1 hour and characterized concentration of Hg (II) by Inductively Couple Plasma Atomic Emission Spectroscopy (ICP-AES). Feed solution was produced water from natural gulf of Thailand. The extractant was Aliquat336 dissolved in kerosene diluent. Stripping solution used was nitric acid (HNO3) and thiourea (NH2CSNH2). The effect of carrier concentration and type of stripping solution were investigated. Results showed that the best condition were 10 % (v/v) Aliquat336 and 1.0 M NH2CSNH2. At the optimum condition, the extraction and stripping of Hg (II) were 98% and 44.2%, respectively.Keywords: Hg (II), hollow fiber contactor, produced water, wastewater treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18278241 Extraction of Craniofacial Landmarks for Preoperative to Intraoperative Registration
Authors: M. Gooroochurn, D. Kerr, K. Bouazza-Marouf, M. Vloeberghs
Abstract:
This paper presents the automated methods employed for extracting craniofacial landmarks in white light images as part of a registration framework designed to support three neurosurgical procedures. The intraoperative space is characterised by white light stereo imaging while the preoperative plan is performed on CT scans. The registration aims at aligning these two modalities to provide a calibrated environment to enable image-guided solutions. The neurosurgical procedures can then be carried out by mapping the entry and target points from CT space onto the patient-s space. The registration basis adopted consists of natural landmarks (eye corner and ear tragus). A 5mm accuracy is deemed sufficient for these three procedures and the validity of the selected registration basis in achieving this accuracy has been assessed by simulation studies. The registration protocol is briefly described, followed by a presentation of the automated techniques developed for the extraction of the craniofacial features and results obtained from tests on the AR and FERET databases. Since the three targeted neurosurgical procedures are routinely used for head injury management, the effect of bruised/swollen faces on the automated algorithms is assessed. A user-interactive method is proposed to deal with such unpredictable circumstances.Keywords: Face Processing, Craniofacial Feature Extraction, Preoperative to Intraoperative Registration, Registration Basis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14148240 Parameters Extraction for Pseudomorphic HEMTs Using Genetic Algorithms
Authors: Mazhar B. Tayel, Amr H. Yassin
Abstract:
A proposed small-signal model parameters for a pseudomorphic high electron mobility transistor (PHEMT) is presented. Both extrinsic and intrinsic circuit elements of a smallsignal model are determined using genetic algorithm (GA) as a stochastic global search and optimization tool. The parameters extraction of the small-signal model is performed on 200-μm gate width AlGaAs/InGaAs PHEMT. The equivalent circuit elements for a proposed 18 elements model are determined directly from the measured S- parameters. The GA is used to extract the parameters of the proposed small-signal model from 0.5 up to 18 GHz.
Keywords: PHEMT, Genetic Algorithms, small signal modeling, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22648239 Application of Heuristic Integration Ant Colony Optimization in Path Planning
Authors: Zeyu Zhang, Guisheng Yin, Ziying Zhang, Liguo Zhang
Abstract:
This paper mainly studies the path planning method based on ant colony optimization (ACO), and proposes heuristic integration ant colony optimization (HIACO). This paper not only analyzes and optimizes the principle, but also simulates and analyzes the parameters related to the application of HIACO in path planning. Compared with the original algorithm, the improved algorithm optimizes probability formula, tabu table mechanism and updating mechanism, and introduces more reasonable heuristic factors. The optimized HIACO not only draws on the excellent ideas of the original algorithm, but also solves the problems of premature convergence, convergence to the sub optimal solution and improper exploration to some extent. HIACO can be used to achieve better simulation results and achieve the desired optimization. Combined with the probability formula and update formula, several parameters of HIACO are tested. This paper proves the principle of the HIACO and gives the best parameter range in the research of path planning.
Keywords: Ant colony optimization, heuristic integration, path planning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6858238 Lead in The Soil-Plant System Following Aged Contamination from Ceramic Wastes
Authors: F. Pedron, M. Grifoni, G. Petruzzelli, M. Barbafieri, I. Rosellini, B. Pezzarossa
Abstract:
Lead contamination of agricultural land mainly vegetated with perennial ryegrass (Lolium perenne) has been investigated. The metal derived from the discharge of sludge from a ceramic industry in the past had used lead paints. The results showed very high values of lead concentration in many soil samples. In order to assess the lead soil contamination, a sequential extraction with H2O, KNO3, EDTA was performed, and the chemical forms of lead in the soil were evaluated. More than 70% of lead was in a potentially bioavailable form. Analysis of Lolium perenne showed elevated lead concentration. A Freundlich-like model was used to describe the transferability of the metal from the soil to the plant.
Keywords: Bioavailability, Freundlich-like equation, sequential extraction, soil lead contamination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9648237 The Pixel Value Data Approach for Rainfall Forecasting Based on GOES-9 Satellite Image Sequence Analysis
Authors: C. Yaiprasert, K. Jaroensutasinee, M. Jaroensutasinee
Abstract:
To develop a process of extracting pixel values over the using of satellite remote sensing image data in Thailand. It is a very important and effective method of forecasting rainfall. This paper presents an approach for forecasting a possible rainfall area based on pixel values from remote sensing satellite images. First, a method uses an automatic extraction process of the pixel value data from the satellite image sequence. Then, a data process is designed to enable the inference of correlations between pixel value and possible rainfall occurrences. The result, when we have a high averaged pixel value of daily water vapor data, we will also have a high amount of daily rainfall. This suggests that the amount of averaged pixel values can be used as an indicator of raining events. There are some positive associations between pixel values of daily water vapor images and the amount of daily rainfall at each rain-gauge station throughout Thailand. The proposed approach was proven to be a helpful manual for rainfall forecasting from meteorologists by which using automated analyzing and interpreting process of meteorological remote sensing data.
Keywords: Pixel values, satellite image, water vapor, rainfall, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18638236 SFE as a Superior Technique for Extraction of Eugenol-Rich Fraction from Cinnamomum tamala Nees (Bay Leaf) - Process Analysis and Phytochemical Characterization
Authors: Sudip Ghosh, Dipanwita Roy, Dipan Chatterjee, Paramita Bhattacharjee, Satadal Das
Abstract:
Highest yield of eugenol-rich fractions from Cinnamomum tamala (bay leaf) leaves were obtained by supercritical carbon dioxide (SC-CO2), compared to hydro-distillation, organic solvents, liquid CO2 and subcritical CO2 extractions. Optimization of SC-CO2 extraction parameters was carried out to obtain an extract with maximum eugenol content. This was achieved using a sample size of 10g at 55°C, 512 bar after 60min at a flow rate of 25.0 cm3/sof gaseous CO2. This extract has the best combination of phytochemical properties such as phenolic content (1.77mg gallic acid/g dry bay leaf), reducing power (0.80mg BHT/g dry bay leaf), antioxidant activity (IC50 of 0.20mg/ml) and anti-inflammatory potency (IC50 of 1.89mg/ml). Identification of compounds in this extract was performed by GC-MS analysis and its antimicrobial potency was also evaluated. The MIC values against E. coli, P. aeruginosa and S. aureus were 0.5, 0.25 and 0.5mg/ml, respectively.
Keywords: Antimicrobial potency, Cinnamomum tamala, eugenol, supercritical carbon dioxide extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36308235 A Unique Solution for Designing Low-Cost, Heterogeneous Sensor Networks Using a Middleware Integration Platform
Authors: Jarrod Trevathan, Trina Myers
Abstract:
Proprietary sensor network systems are typically expensive, rigid and difficult to incorporate technologies from other vendors. When using competing and incompatible technologies, a non-proprietary system is complex to create because it requires significant technical expertise and effort, which can be more expensive than a proprietary product. This paper presents the Sensor Abstraction Layer (SAL) that provides middleware architectures with a consistent and uniform view of heterogeneous sensor networks, regardless of the technologies involved. SAL abstracts and hides the hardware disparities and specificities related to accessing, controlling, probing and piloting heterogeneous sensors. SAL is a single software library containing a stable hardware-independent interface with consistent access and control functions to remotely manage the network. The end-user has near-real-time access to the collected data via the network, which results in a cost-effective, flexible and simplified system suitable for novice users. SAL has been used for successfully implementing several low-cost sensor network systems.
Keywords: Sensor networks, hardware abstraction, middleware integration platform, sensor web enablement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20768234 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management
Authors: M. Graus, K. Westhoff, X. Xu
Abstract:
The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.
Keywords: Data analytics, green production, industrial energy management, optimization, renewable energies, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17388233 Eco-Connectivity: Sustainable Practices in Telecom Networks Using Big Data
Authors: Tharunika Sridhar
Abstract:
This paper addresses sustainable eco-connectivity within the telecommunications sector studying its importance to tackle the contemporary challenges and data regulation issues. The paper also investigates the role of Big Data and its integration in this context, specific to telecom industry. One of the major focus areas in this paper is studying and examining the pathways explored, that are state-of-the-art ecological infrastructure solutions and sector-led measures derived from expert analyses and reviews. Additionally, the paper analyses critical factors involving cost-effective route planning, and the development of green telecommunications infrastructure that adds qualitative reasoning to the research idea. Furthermore, the study discusses in detail a potential green roadmap towards sustainability by exploring green routing software, eco-friendly infrastructure and other eco-focused initiatives. The paper is also directed at the special linguistic needs of the telecommunications sector by focusing on targeted select range of telecom environment.
Keywords: Big Data, telecom, sustainable telecom sector, telecom networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 928232 Implementing a Database from a Requirement Specification
Abstract:
Creating a database scheme is essentially a manual process. From a requirement specification the information contained within has to be analyzed and reduced into a set of tables, attributes and relationships. This is a time consuming process that has to go through several stages before an acceptable database schema is achieved. The purpose of this paper is to implement a Natural Language Processing (NLP) based tool to produce a relational database from a requirement specification. The Stanford CoreNLP version 3.3.1 and the Java programming were used to implement the proposed model. The outcome of this study indicates that a first draft of a relational database schema can be extracted from a requirement specification by using NLP tools and techniques with minimum user intervention. Therefore this method is a step forward in finding a solution that requires little or no user intervention.
Keywords: Information Extraction, Natural Language Processing, Relation Extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22298231 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus
Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo
Abstract:
The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.
Keywords: Anomaly detection, digital twin, Generalised Additive Model, Power Consumption Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5028230 Rapid Study on Feature Extraction and Classification Models in Healthcare Applications
Authors: S. Sowmyayani
Abstract:
The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.
Keywords: Supervised learning, unsupervised learning, regression, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3468229 Smart Lean Manufacturing in the Context of Industry 4.0: A Case Study
Authors: M. Ramadan, B. Salah
Abstract:
This paper introduces a framework to digitalize lean manufacturing tools to enhance smart lean-based manufacturing environments or Lean 4.0 manufacturing systems. The paper discusses the integration between lean tools and the powerful features of recent real-time data capturing systems with the help of Information and Communication Technologies (ICT) to develop an intelligent real-time monitoring and controlling system of production operations concerning lean targets. This integration is represented in the Lean 4.0 system called Dynamic Value Stream Mapping (DVSM). Moreover, the paper introduces the practice of Radio Frequency Identification (RFID) and ICT to smartly support lean tools and practices during daily production runs to keep the lean system alive and effective. This work introduces a practical description of how the lean method tools 5S, standardized work, and poka-yoke can be digitalized and smartly monitored and controlled through DVSM. A framework of the three tools has been discussed and put into practice in a German switchgear manufacturer.Keywords: Lean manufacturing, Industry 4.0, radio frequency identification, value stream mapping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31158228 Extractable Heavy Metal Concentrations in Bottom Ash from Incineration of Wood-Based Residues in a BFB Boiler Using Artificial Sweat and Gastric Fluids
Authors: Risto Pöykiö, Olli Dahl, Hannu Nurmesniemi
Abstract:
The highest extractable concentration in the artificial sweat fluid was observed for Ba (120mg/kg; d.w.). The highest extractable concentration in the artificial gastric fluid was observed for Al (9030mg/kg; d.w.). Furthermore, the extractable concentrations of Ba (550mg/kg; d.w.) and Zn (400mg/kg: d.w.) in the bottom ash using artificial gastric fluid were elevated. The extractable concentrations of all heavy metals in the artificial gastric fluid were higher than those in the artificial sweat fluid. These results are reasonable in the light of the fact that the pH of the artificial gastric fluid was extremely acidic both before (pH 1.54) and after (pH 1.94) extraction, whereas the pH of the artificial sweat fluid was slightly alkaline before (pH 6.50) and after extraction (pH 8.51).
Keywords: Ash, artificial fluid, heavy metals, in vitro, waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29308227 Hand Gesture Recognition Based on Combined Features Extraction
Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Bernd Michaelis
Abstract:
Hand gesture is an active area of research in the vision community, mainly for the purpose of sign language recognition and Human Computer Interaction. In this paper, we propose a system to recognize alphabet characters (A-Z) and numbers (0-9) in real-time from stereo color image sequences using Hidden Markov Models (HMMs). Our system is based on three main stages; automatic segmentation and preprocessing of the hand regions, feature extraction and classification. In automatic segmentation and preprocessing stage, color and 3D depth map are used to detect hands where the hand trajectory will take place in further step using Mean-shift algorithm and Kalman filter. In the feature extraction stage, 3D combined features of location, orientation and velocity with respected to Cartesian systems are used. And then, k-means clustering is employed for HMMs codeword. The final stage so-called classification, Baum- Welch algorithm is used to do a full train for HMMs parameters. The gesture of alphabets and numbers is recognized using Left-Right Banded model in conjunction with Viterbi algorithm. Experimental results demonstrate that, our system can successfully recognize hand gestures with 98.33% recognition rate.Keywords: Gesture Recognition, Computer Vision & Image Processing, Pattern Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40338226 Corruption and International Business Community Is Integration into International Business ameans of Reducing Corruption?The case of Russia
Authors: Anouch Mkhitarian
Abstract:
The article examines an opportunity of corruption restriction exercised by international business community in Russia. Integration of Russian economy into the international business does not reduce corruption inside the country. Foreign actors investing in Russia under the condition of obtaining their required rates of returns will be reluctant to harm their investments by involving into anticorruption activities. Furthermore, many Russian firms- competitive advantage could be directly related to their corruption connections. In this case, foreign investments would only accentuate corrupt companies- success by supporting them financiallyKeywords: Corrution, FDI, Russian Federation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16028225 The Pedagogical Integration of Digital Technologies in Initial Teacher Training
Authors: Vânia Graça, Paula Quadros-Flores, Altina Ramos
Abstract:
The use of Digital Technologies in teaching and learning processes is currently a reality, namely in initial teacher training. This study aims at knowing the digital reality of students in initial teacher training in order to improve training in the educational use of ICT and to promote digital technology integration strategies in an educational context. It is part of the IFITIC Project "Innovate with ICT in Initial Teacher Training to Promote Methodological Renewal in Pre-school Education and in the 1st and 2nd Basic Education Cycle" which involves the School of Education, Polytechnic of Porto and Institute of Education, University of Minho. The Project aims at rethinking educational practice with ICT in the initial training of future teachers in order to promote methodological innovation in Pre-school Education and in the 1st and 2nd Cycles of Basic Education. A qualitative methodology was used, in which a questionnaire survey was applied to teachers in initial training. For data analysis, the techniques of content analysis with the support of NVivo software were used. The results point to the following aspects: a) future teachers recognize that they have more technical knowledge about ICT than pedagogical knowledge. This result makes sense if we consider the objective of Basic Education, so that the gaps can be filled in the Master's Course by students who wish to follow the teaching; b) the respondents are aware that the integration of digital resources contributes positively to students' learning and to the life of children and young people, which also promotes preparation in life; c) to be a teacher in the digital age there is a need for the development of digital literacy, lifelong learning and the adoption of new ways of teaching how to learn. Thus, this study aims to contribute to a reflection on the teaching profession in the digital age.
Keywords: Digital technologies, initial teacher training, pedagogical use of ICT, skills.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6038224 Integration of Fixed and Variable Speed Wind Generator Dynamics with Multimachine AC Systems
Authors: A.H.M.A.Rahim
Abstract:
The impact of fixed speed squirrel cage type as well as variable speed doubly fed induction generators (DFIG) on dynamic performance of a multimachine power system has been investigated. Detailed models of the various components have been presented and the integration of asynchronous and synchronous generators has been carried out through a rotor angle based transform. Simulation studies carried out considering the conventional dynamic model of squirrel cage asynchronous generators show that integration, as such, could degrade to the AC system performance transiently. This article proposes a frequency or power controller which can effectively control the transients and restore normal operation of fixed speed induction generator quickly. Comparison of simulation results between classical cage and doubly-fed induction generators indicate that the doubly fed induction machine is more adaptable to multimachine AC system. Frequency controller installed in the DFIG system can also improve its transient profile.Keywords: Doubly-fed generator, Induction generator, Multimachine system modeling, Wind energy systems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23568223 Enhancing Students’ Performance in Basic Science and Technology in Nigeria Using Moodle LMS
Authors: Olugbade Damola, Adekomi Adebimbo, Sofowora Olaniyi Alaba
Abstract:
One of the major problems facing education in Nigeria is the provision of quality Science and Technology education. Inadequate teaching facilities, non-usage of innovative teaching strategies, ineffective classroom management, lack of students’ motivation and poor integration of ICT has resulted in the increase in percentage of students who failed Basic Science and Technology in Junior Secondary Certification Examination for National Examination Council in Nigeria. To address these challenges, the Federal Government came up with a road map on education. This was with a view of enhancing quality education through integration of modern technology into teaching and learning, enhancing quality assurance through proper monitoring and introduction of innovative methods of teaching. This led the researcher to investigate how MOODLE LMS could be used to enhance students’ learning outcomes in BST. A sample of 120 students was purposively selected from four secondary schools in Ogbomoso. The experimental group was taught using MOODLE LMS, while the control group was taught using the conventional method. Data obtained were analyzed using mean, standard deviation and t-test. The result showed that MOODLE LMS was an effective learning platform in teaching BST in junior secondary schools (t=4.953, P<0.05). Students’ attitudes towards BST was also enhanced through MOODLE LMS (t=15.632, P<0.05). The use of MOODLE LMS significantly enhanced students’ retention (t=6.640, P<0.05). In conclusion, the Federal Government efforts at enhancing quality assurance through integration of modern technology and e-learning in Secondary schools proved to have yielded good result has students found MOODLE LMS to be motivating and interactive. Attendance was improved.
Keywords: MOODLE, learning management system, quality assurance, basic science and technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35258222 Chilean Wines Classification based only on Aroma Information
Authors: Nicolás H. Beltrán, Manuel A. Duarte-Mermoud, Víctor A. Soto, Sebastián A. Salah, and Matías A. Bustos
Abstract:
Results of Chilean wine classification based on the information provided by an electronic nose are reported in this paper. The classification scheme consists of two parts; in the first stage, Principal Component Analysis is used as feature extraction method to reduce the dimensionality of the original information. Then, Radial Basis Functions Neural Networks is used as pattern recognition technique to perform the classification. The objective of this study is to classify different Cabernet Sauvignon, Merlot and Carménère wine samples from different years, valleys and vineyards of Chile.Keywords: Feature extraction techniques, Pattern recognitiontechniques, Principal component analysis, Radial basis functionsneural networks, Wine classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15508221 Multimodal Biometric System Based on Near- Infra-Red Dorsal Hand Geometry and Fingerprints for Single and Whole Hands
Authors: Mohamed K. Shahin, Ahmed M. Badawi, Mohamed E. M. Rasmy
Abstract:
Prior research evidenced that unimodal biometric systems have several tradeoffs like noisy data, intra-class variations, restricted degrees of freedom, non-universality, spoof attacks, and unacceptable error rates. In order for the biometric system to be more secure and to provide high performance accuracy, more than one form of biometrics are required. Hence, the need arise for multimodal biometrics using combinations of different biometric modalities. This paper introduces a multimodal biometric system (MMBS) based on fusion of whole dorsal hand geometry and fingerprints that acquires right and left (Rt/Lt) near-infra-red (NIR) dorsal hand geometry (HG) shape and (Rt/Lt) index and ring fingerprints (FP). Database of 100 volunteers were acquired using the designed prototype. The acquired images were found to have good quality for all features and patterns extraction to all modalities. HG features based on the hand shape anatomical landmarks were extracted. Robust and fast algorithms for FP minutia points feature extraction and matching were used. Feature vectors that belong to similar biometric traits were fused using feature fusion methodologies. Scores obtained from different biometric trait matchers were fused using the Min-Max transformation-based score fusion technique. Final normalized scores were merged using the sum of scores method to obtain a single decision about the personal identity based on multiple independent sources. High individuality of the fused traits and user acceptability of the designed system along with its experimental high performance biometric measures showed that this MMBS can be considered for med-high security levels biometric identification purposes.Keywords: Unimodal, Multi-Modal, Biometric System, NIR Imaging, Dorsal Hand Geometry, Fingerprint, Whole Hands, Feature Extraction, Feature Fusion, Score Fusion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22158220 Designing a Tool for Software Maintenance
Authors: Amir Ngah, Masita Abdul Jalil, Zailani Abdullah
Abstract:
The aim of software maintenance is to maintain the software system in accordance with advancement in software and hardware technology. One of the early works on software maintenance is to extract information at higher level of abstraction. In this paper, we present the process of how to design an information extraction tool for software maintenance. The tool can extract the basic information from old programs such as about variables, based classes, derived classes, objects of classes, and functions. The tool have two main parts; the lexical analyzer module that can read the input file character by character, and the searching module which users can get the basic information from the existing programs. We implemented this tool for a patterned sub-C++ language as an input file.
Keywords: Extraction tool, software maintenance, reverse engineering, C++.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23988219 Jamun Juice Extraction Using Commercial Enzymes and Optimization of the Treatment with the Help of Physicochemical, Nutritional and Sensory Properties
Authors: Payel Ghosh, Rama Chandra Pradhan, Sabyasachi Mishra
Abstract:
Jamun (Syzygium cuminii L.) is one of the important indigenous minor fruit with high medicinal value. The jamun cultivation is unorganized and there is huge loss of this fruit every year. The perishable nature of the fruit makes its postharvest management further difficult. Due to the strong cell wall structure of pectin-protein bonds and hard seeds, extraction of juice becomes difficult. Enzymatic treatment has been commercially used for improvement of juice quality with high yield. The objective of the study was to optimize the best treatment method for juice extraction. Enzymes (Pectinase and Tannase) from different stains had been used and for each enzyme, best result obtained by using response surface methodology. Optimization had been done on the basis of physicochemical property, nutritional property, sensory quality and cost estimation. According to quality aspect, cost analysis and sensory evaluation, the optimizing enzymatic treatment was obtained by Pectinase from Aspergillus aculeatus strain. The optimum condition for the treatment was 44 oC with 80 minute with a concentration of 0.05% (w/w). At these conditions, 75% of yield with turbidity of 32.21NTU, clarity of 74.39%T, polyphenol content of 115.31 mg GAE/g, protein content of 102.43 mg/g have been obtained with a significant difference in overall acceptability.Keywords: Jamun, enzymatic treatment, physicochemical property, sensory analysis, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15578218 Image Thresholding for Weld Defect Extraction in Industrial Radiographic Testing
Authors: Nafaâ Nacereddine, Latifa Hamami, Djemel Ziou
Abstract:
In non destructive testing by radiography, a perfect knowledge of the weld defect shape is an essential step to appreciate the quality of the weld and make decision on its acceptability or rejection. Because of the complex nature of the considered images, and in order that the detected defect region represents the most accurately possible the real defect, the choice of thresholding methods must be done judiciously. In this paper, performance criteria are used to conduct a comparative study of thresholding methods based on gray level histogram, 2-D histogram and locally adaptive approach for weld defect extraction in radiographic images.
Keywords: 1D and 2D histogram, locally adaptive approach, performance criteria, radiographic image, thresholding, weld defect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23458217 Research and Application of Consultative Committee for Space Data Systems Wireless Communications Standards for Spacecraft
Authors: Cuitao Zhang, Xiongwen He
Abstract:
According to the new requirements of the future spacecraft, such as networking, modularization and non-cable, this paper studies the CCSDS wireless communications standards, and focuses on the low data-rate wireless communications for spacecraft monitoring and control. The application fields and advantages of wireless communications are analyzed. Wireless communications technology has significant advantages in reducing the weight of the spacecraft, saving time in spacecraft integration, etc. Based on this technology, a scheme for spacecraft data system is put forward. The corresponding block diagram and key wireless interface design of the spacecraft data system are given. The design proposal of the wireless node and information flow of the spacecraft are also analyzed. The results show that the wireless communications scheme is reasonable and feasible. The wireless communications technology can meet the future spacecraft demands in networking, modularization and non-cable.
Keywords: CCSDS standards, information flow, non-cable, spacecraft, wireless communications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9428216 Rotation Invariant Face Recognition Based on Hybrid LPT/DCT Features
Authors: Rehab F. Abdel-Kader, Rabab M. Ramadan, Rawya Y. Rizk
Abstract:
The recognition of human faces, especially those with different orientations is a challenging and important problem in image analysis and classification. This paper proposes an effective scheme for rotation invariant face recognition using Log-Polar Transform and Discrete Cosine Transform combined features. The rotation invariant feature extraction for a given face image involves applying the logpolar transform to eliminate the rotation effect and to produce a row shifted log-polar image. The discrete cosine transform is then applied to eliminate the row shift effect and to generate the low-dimensional feature vector. A PSO-based feature selection algorithm is utilized to search the feature vector space for the optimal feature subset. Evolution is driven by a fitness function defined in terms of maximizing the between-class separation (scatter index). Experimental results, based on the ORL face database using testing data sets for images with different orientations; show that the proposed system outperforms other face recognition methods. The overall recognition rate for the rotated test images being 97%, demonstrating that the extracted feature vector is an effective rotation invariant feature set with minimal set of selected features.Keywords: Discrete Cosine Transform, Face Recognition, Feature Extraction, Log Polar Transform, Particle SwarmOptimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18758215 Mining Genes Relations in Microarray Data Combined with Ontology in Colon Cancer Automated Diagnosis System
Authors: A. Gruzdz, A. Ihnatowicz, J. Siddiqi, B. Akhgar
Abstract:
MATCH project [1] entitle the development of an automatic diagnosis system that aims to support treatment of colon cancer diseases by discovering mutations that occurs to tumour suppressor genes (TSGs) and contributes to the development of cancerous tumours. The constitution of the system is based on a) colon cancer clinical data and b) biological information that will be derived by data mining techniques from genomic and proteomic sources The core mining module will consist of the popular, well tested hybrid feature extraction methods, and new combined algorithms, designed especially for the project. Elements of rough sets, evolutionary computing, cluster analysis, self-organization maps and association rules will be used to discover the annotations between genes, and their influence on tumours [2]-[11]. The methods used to process the data have to address their high complexity, potential inconsistency and problems of dealing with the missing values. They must integrate all the useful information necessary to solve the expert's question. For this purpose, the system has to learn from data, or be able to interactively specify by a domain specialist, the part of the knowledge structure it needs to answer a given query. The program should also take into account the importance/rank of the particular parts of data it analyses, and adjusts the used algorithms accordingly.Keywords: Bioinformatics, gene expression, ontology, selforganizingmaps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975