Search results for: Local interconnect network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4077

Search results for: Local interconnect network

537 Automatic Segmentation of Lung Areas in Magnetic Resonance Images

Authors: Alireza Osareh, Bita Shadgar

Abstract:

Segmenting the lungs in medical images is a challenging and important task for many applications. In particular, automatic segmentation of lung cavities from multiple magnetic resonance (MR) images is very useful for oncological applications such as radiotherapy treatment planning. However, distinguishing of the lung areas is not trivial due to largely changing lung shapes, low contrast and poorly defined boundaries. In this paper, we address lung segmentation problem from pulmonary magnetic resonance images and propose an automated method based on a robust regionaided geometric snake with a modified diffused region force into the standard geometric model definition. The extra region force gives the snake a global complementary view of the lung boundary information within the image which along with the local gradient flow, helps detect fuzzy boundaries. The proposed method has been successful in segmenting the lungs in every slice of 30 magnetic resonance images with 80 consecutive slices in each image. We present results by comparing our automatic method to manually segmented lung cavities provided by an expert radiologist and with those of previous works, showing encouraging results and high robustness of our approach.

Keywords: Active contours, breast cancer, fuzzy c-means segmentation, treatment planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
536 Analysis of the Learners’ Responses of the Adjusted Rorschach Comprehensive System: Critical Psychological Perspective

Authors: Mokgadi Moletsane-Kekae, Robert Kananga Mukuna

Abstract:

The study focused on the analysis of the Adjusted Rorschach Comprehensive System’s responses. The objective of this study is to analyse the participants’ response rate of the Adjusted Rorschach Comprehensive System with regards to critical psychology approach. The use of critical psychology theory in this study was crucial because it responds to the current inadequate western theory or practice in the field of psychology. The study adopted a qualitative approach and a case study design. The study was grounded on interpretivist paradigm. The sample size comprised six learners (three boys and three girls, aged of 14 years) from historically disadvantaged school in the Western Cape, South Africa. The Adjusted Rorschach Comprehensive System (ARCS) administration procedure, biographical information, semi-structured interviews, and observation were used to collect data. Data was analysed using thematic framework. The study found out that, factors that increased the response rates during the administration of ARCS were, language, seating arrangement, drawing, viewing, and describing. The study recommended that, psychological test designers take into consideration the philosophy or worldviews of the local people for whom the test is designed to minimize low response rates.

Keywords: Adjusted Rorschach comprehensive system, critical psychology, learners, responses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
535 Comparative Study of Evolutionary Model and Clustering Methods in Circuit Partitioning Pertaining to VLSI Design

Authors: K. A. Sumitra Devi, N. P. Banashree, Annamma Abraham

Abstract:

Partitioning is a critical area of VLSI CAD. In order to build complex digital logic circuits its often essential to sub-divide multi -million transistor design into manageable Pieces. This paper looks at the various partitioning techniques aspects of VLSI CAD, targeted at various applications. We proposed an evolutionary time-series model and a statistical glitch prediction system using a neural network with selection of global feature by making use of clustering method model, for partitioning a circuit. For evolutionary time-series model, we made use of genetic, memetic & neuro-memetic techniques. Our work focused in use of clustering methods - K-means & EM methodology. A comparative study is provided for all techniques to solve the problem of circuit partitioning pertaining to VLSI design. The performance of all approaches is compared using benchmark data provided by MCNC standard cell placement benchmark net lists. Analysis of the investigational results proved that the Neuro-memetic model achieves greater performance then other model in recognizing sub-circuits with minimum amount of interconnections between them.

Keywords: VLSI, circuit partitioning, memetic algorithm, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
534 An Agent Based Dynamic Resource Scheduling Model with FCFS-Job Grouping Strategy in Grid Computing

Authors: Raksha Sharma, Vishnu Kant Soni, Manoj Kumar Mishra, Prachet Bhuyan, Utpal Chandra Dey

Abstract:

Grid computing is a group of clusters connected over high-speed networks that involves coordinating and sharing computational power, data storage and network resources operating across dynamic and geographically dispersed locations. Resource management and job scheduling are critical tasks in grid computing. Resource selection becomes challenging due to heterogeneity and dynamic availability of resources. Job scheduling is a NP-complete problem and different heuristics may be used to reach an optimal or near optimal solution. This paper proposes a model for resource and job scheduling in dynamic grid environment. The main focus is to maximize the resource utilization and minimize processing time of jobs. Grid resource selection strategy is based on Max Heap Tree (MHT) that best suits for large scale application and root node of MHT is selected for job submission. Job grouping concept is used to maximize resource utilization for scheduling of jobs in grid computing. Proposed resource selection model and job grouping concept are used to enhance scalability, robustness, efficiency and load balancing ability of the grid.

Keywords: Agent, Grid Computing, Job Grouping, Max Heap Tree (MHT), Resource Scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
533 Quad Tree Decomposition Based Analysis of Compressed Image Data Communication for Lossy and Lossless Using WSN

Authors: N. Muthukumaran, R. Ravi

Abstract:

The Quad Tree Decomposition based performance analysis of compressed image data communication for lossy and lossless through wireless sensor network is presented. Images have considerably higher storage requirement than text. While transmitting a multimedia content there is chance of the packets being dropped due to noise and interference. At the receiver end the packets that carry valuable information might be damaged or lost due to noise, interference and congestion. In order to avoid the valuable information from being dropped various retransmission schemes have been proposed. In this proposed scheme QTD is used. QTD is an image segmentation method that divides the image into homogeneous areas. In this proposed scheme involves analysis of parameters such as compression ratio, peak signal to noise ratio, mean square error, bits per pixel in compressed image and analysis of difficulties during data packet communication in Wireless Sensor Networks. By considering the above, this paper is to use the QTD to improve the compression ratio as well as visual quality and the algorithm in MATLAB 7.1 and NS2 Simulator software tool.

Keywords: Image compression, Compression Ratio, Quad tree decomposition, Wireless sensor networks, NS2 simulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391
532 Assessment of Tourist and Community Perception with Regard to Tourism Sustainability Indicators: A Case Study of Sinharaja World Heritage Rainforest, Sri Lanka

Authors: L. P. K. Liyanage, N. R. P. Withana, A. L. Sandika

Abstract:

The purpose of this study was to determine tourist and community perception-based sustainable tourism indicators as well as Human Pressure Index (HPI) and Tourist Activity Index (TAI). Study was carried out in Sinharaja forest which is considered as one of the major eco-tourism destination in Sri Lanka. Data were gathered using a pre-tested semi-structured questionnaire as well as records from Forest department. Convenient sampling technique was applied. For the majority of issues, the responses were obtained on multi-point Likert-type scales. Visual portrayal was used for display analyzed data. The study revealed that the host community of the Kudawa gets many benefits from tourism. Also, tourism has caused negative impacts upon the environment and community. The study further revealed the need of proper waste management and involvement of local cultural events for the tourism business in the Kudawa conservation center. The TAI, which accounted to be 1.27 and monthly evolution of HPI revealed that congestion can be occurred in the Sinharaja rainforest during peak season. The results provide useful information to any party involved with tourism planning anywhere, since such attempts would be more effective once the people’s perceptions on these aspects are taken into account.

Keywords: Kudawa conservation center, Sinharaja world heritage rainforest, sustainability indicators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
531 Data Security in a DApp Twitter Alike on Web 3.0 With Blockchain Based Technology

Authors: Vishal Awasthi, Tanya Soni, Vigya Awasthi, Swati Singh, Shivali Verma

Abstract:

There is a growing demand for a network that grants a high level of data security and confidentiality. For this reason, the semantic web was introduced, which allows data to be shared and reused across applications while safeguarding users privacy and user’s will grab back control of their data. The earlier Web 1.0 and Web 2.0 versions were built on client-server architecture, in  which there was the risk of data theft and unconsented sale of user data. A decentralized version, Known as Web 3.0, that is mostly built on blockchain technology was interjected to resolve these issues. The recent research focuses on blockchain technology, deals with privacy, security, transparency, and innovation of decentralized applications (DApps), e.g. a Twitter Clone, Whatsapp clone. In this paper the Twitter Alike built on the Ethereum blockchain will replace traditional techniques with improved latency, throughput, and data ownership. The central principle of this DApp is smart contract implemented using Solidity which is an object- oriented and highlevel language. Consequently, this will provide a better Quality Services, high data security, and integrity for both present and future internet technologies.

Keywords: Blockchain, DApps, Ethereum, Semantic Web, Smart Contract, Solidity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 330
530 Effect of Scarp Topography on Seismic Ground Motion

Authors: Haiping Ding, Rongchu Zhu, Zhenxia Song

Abstract:

Local irregular topography has a great impact on earthquake ground motion. For scarp topography, using numerical simulation method, the influence extent and scope of the scarp terrain on scarp's upside and downside ground motion are discussed in case of different vertical incident SV waves. The results show that: (1) The amplification factor of scarp's upside region is greater than that of the free surface, while the amplification factor of scarp's downside part is less than that of the free surface; (2) When the slope angle increases, for x component, amplification factors of the scarp upside also increase, while the downside part decrease with it. For z component, both of the upside and downside amplification factors will increase; (3) When the slope angle changes, the influence scope of scarp's downside part is almost unchanged, but for the upside part, it slightly becomes greater with the increase of slope angle; (4) Due to the existence of the scarp, the z component ground motion appears at the surface. Its amplification factor increases for larger slope angle, and the peaks of the surface responses are related with incident waves. However, the input wave has little effects on the x component amplification factors.

Keywords: Scarp topography, ground motion, amplification factor, vertical incident wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
529 Spread Spectrum Code Estimationby Particle Swarm Algorithm

Authors: Vahid R. Asghari, Mehrdad Ardebilipour

Abstract:

In the context of spectrum surveillance, a new method to recover the code of spread spectrum signal is presented, while the receiver has no knowledge of the transmitter-s spreading sequence. In our previous paper, we used Genetic algorithm (GA), to recover spreading code. Although genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems, but nonetheless, by increasing the length of the code, we will often lead to an unacceptable slow convergence speed. To solve this problem we introduce Particle Swarm Optimization (PSO) into code estimation in spread spectrum communication system. In searching process for code estimation, the PSO algorithm has the merits of rapid convergence to the global optimum, without being trapped in local suboptimum, and good robustness to noise. In this paper we describe how to implement PSO as a component of a searching algorithm in code estimation. Swarm intelligence boasts a number of advantages due to the use of mobile agents. Some of them are: Scalability, Fault tolerance, Adaptation, Speed, Modularity, Autonomy, and Parallelism. These properties make swarm intelligence very attractive for spread spectrum code estimation. They also make swarm intelligence suitable for a variety of other kinds of channels. Our results compare between swarm-based algorithms and Genetic algorithms, and also show PSO algorithm performance in code estimation process.

Keywords: Code estimation, Particle Swarm Optimization(PSO), Spread spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
528 Interference Management in Long Term Evolution-Advanced System

Authors: Selma Sbit, Mohamed Bechir Dadi, Belgacem Chibani Rhaimi

Abstract:

Incorporating Home eNodeB (HeNB) in cellular networks, e.g. Long Term Evolution Advanced (LTE-A), is beneficial for extending coverage and enhancing capacity at low price especially within the non-line-of sight (NLOS) environments such as homes. HeNB or femtocell is a small low powered base station which provides radio coverage to the mobile users in an indoor environment. This deployment results in a heterogeneous network where the available spectrum becomes shared between two layers. Therefore, a problem of Inter Cell Interference (ICI) appears. This issue is the main challenge in LTE-A. To deal with this challenge, various techniques based on frequency, time and power control are proposed. This paper deals with the impact of carrier aggregation and higher order MIMO (Multiple Input Multiple Output) schemes on the LTE-Advanced performance. Simulation results show the advantages of these schemes on the system capacity (4.109 b/s/Hz when bandwidth B=100 MHz and when applying MIMO 8x8 for SINR=30 dB), maximum theoretical peak data rate (more than 4 Gbps for B=100 MHz and when MIMO 8x8 is used) and spectral efficiency (15 b/s/Hz and 30b/s/Hz when MIMO 4x4 and MIMO 8x8 are applying respectively for SINR=30 dB).

Keywords: LTE-Advanced, carrier aggregation, MIMO, capacity, peak data rate, spectral efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905
527 Performance Evaluation of Hybrid Intelligent Controllers in Load Frequency Control of Multi Area Interconnected Power Systems

Authors: Surya Prakash, Sunil Kumar Sinha

Abstract:

This paper deals with the application of artificial neural network (ANN) and fuzzy based Adaptive Neuro Fuzzy Inference System(ANFIS) approach to Load Frequency Control (LFC) of multi unequal area hydro-thermal interconnected power system. The proposed ANFIS controller combines the advantages of fuzzy controller as well as quick response and adaptability nature of ANN. Area-1 and area-2 consists of thermal reheat power plant whereas area-3 and area-4 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent controller like ANFIS, ANN and Fuzzy controllers and conventional PI and PID control approaches. To enhance the performance of intelligent and conventional controller sliding surface is included. The performances of the controllers are simulated using MATLAB/SIMULINK package. A comparison of ANFIS, ANN, Fuzzy, PI and PID based approaches shows the superiority of proposed ANFIS over ANN & fuzzy, PI and PID controller for 1% step load variation.

Keywords: Load Frequency Control (LFC), ANFIS, ANN & Fuzzy, PI, PID Controllers, Area Control Error (ACE), Tie-line, MATLAB / SIMULINK.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3660
526 Hydrogeological Risk and Mining Tunnels: the Fontane-Rodoretto Mine Turin (Italy)

Authors: Paola Gattinoni, Laura Scesi, Elena Cerino Adbin, Daniele Cremonesi

Abstract:

The interaction of tunneling or mining with groundwater has become a very relevant problem not only due to the need to guarantee the safety of workers and to assure the efficiency of the tunnel drainage systems, but also to safeguard water resources from impoverishment and pollution risk. Therefore it is very important to forecast the drainage processes (i.e., the evaluation of drained discharge and drawdown caused by the excavation). The aim of this study was to know better the system and to quantify the flow drained from the Fontane mines, located in Val Germanasca (Turin, Italy). This allowed to understand the hydrogeological local changes in time. The work has therefore been structured as follows: the reconstruction of the conceptual model with the geological, hydrogeological and geological-structural study; the calculation of the tunnel inflows (through the use of structural methods) and the comparison with the measured flow rates; the water balance at the basin scale. In this way it was possible to understand what are the relationships between rainfall, groundwater level variations and the effect of the presence of tunnels as a means of draining water. Subsequently, it the effects produced by the excavation of the mining tunnels was quantified, through numerical modeling. In particular, the modeling made it possible to observe the drawdown variation as a function of number, excavation depth and different mines linings.

Keywords: Groundwater, Italy, numerical model, tunneling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
525 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks

Authors: Siddhant Rao

Abstract:

Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.

Keywords: Object detection, histopathology, breast cancer, mitotic count, deep learning, computer vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
524 Identifying the Strength of Cyclones and Earthquakes Requiring Military Disaster Response

Authors: Chad A. Long

Abstract:

The United States military is now commonly responding to complex humanitarian emergencies and natural disasters around the world. From catastrophic earthquakes in Haiti to typhoons devastating the Philippines, U.S. military assistance is requested when the event exceeds the local government's ability to assist the population. This study assesses the characteristics of catastrophes that surpass a nation’s individual ability to respond and recover from the event. The paper begins with a historical summary of military aid and then analyzes over 40 years of the United States military humanitarian response. Over 300 military operations were reviewed and coded based on the nature of the disaster. This in-depth study reviewed the U.S. military’s deployment events for cyclones and earthquakes to determine the strength of the natural disaster requiring external assistance. The climatological data for cyclone landfall and magnitude data for earthquake epicenters were identified, grouped into regions and analyzed for time-based trends. The results showed that foreign countries will likely request the U.S. military for cyclones with speeds greater or equal to 125 miles an hour and earthquakes at the magnitude of 7.4 or higher. These results of this study will assist the geographic combatant commands in determining future military response requirements.

Keywords: Cyclones, earthquakes, natural disasters, military.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 712
523 Urban Areas Management in Developing Countries: Analysis of the Urban Areas Crossed with Risk of Storm Water Drains, Aswan-Egypt

Authors: Omar Hamdy, Schichen Zhao, Hussein Abd El-Atty, Ayman Ragab, Muhammad Salem

Abstract:

One of the most risky areas in Aswan is Abouelreesh, which is suffering from flood disasters, as heavy deluge inundates urban areas causing considerable damage to buildings and infrastructure. Moreover, the main problem was the urban sprawl towards this risky area. This paper aims to identify the urban areas located in the risk areas prone to flash floods. Analyzing this phenomenon needs a lot of data to ensure satisfactory results; however, in this case the official data and field data were limited, and therefore, free sources of satellite data were used. This paper used ArcGIS tools to obtain the storm water drains network by analyzing DEM files. Additionally, historical imagery in Google Earth was studied to determine the age of each building. The last step was to overlay the urban area layer and the storm water drains layer to identify the vulnerable areas. The results of this study would be helpful to urban planners and government officials to make the disasters risk estimation and develop primary plans to recover the risky area, especially urban areas located in torrents.

Keywords: Risk area, DEM, storm water drains, GIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921
522 A Methodology for Investigating Public Opinion Using Multilevel Text Analysis

Authors: William Xiu Shun Wong, Myungsu Lim, Yoonjin Hyun, Chen Liu, Seongi Choi, Dasom Kim, Kee-Young Kwahk, Namgyu Kim

Abstract:

Recently, many users have begun to frequently share their opinions on diverse issues using various social media. Therefore, numerous governments have attempted to establish or improve national policies according to the public opinions captured from various social media. In this paper, we indicate several limitations of the traditional approaches to analyze public opinion on science and technology and provide an alternative methodology to overcome these limitations. First, we distinguish between the science and technology analysis phase and the social issue analysis phase to reflect the fact that public opinion can be formed only when a certain science and technology is applied to a specific social issue. Next, we successively apply a start list and a stop list to acquire clarified and interesting results. Finally, to identify the most appropriate documents that fit with a given subject, we develop a new logical filter concept that consists of not only mere keywords but also a logical relationship among the keywords. This study then analyzes the possibilities for the practical use of the proposed methodology thorough its application to discover core issues and public opinions from 1,700,886 documents comprising SNS, blogs, news, and discussions.

Keywords: Big data, social network analysis, text mining, topic modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
521 PointNetLK-OBB: A Point Cloud Registration Algorithm with High Accuracy

Authors: Wenhao Lan, Ning Li, Qiang Tong

Abstract:

To improve the registration accuracy of a source point cloud and template point cloud when the initial relative deflection angle is too large, a PointNetLK algorithm combined with an oriented bounding box (PointNetLK-OBB) is proposed. In this algorithm, the OBB of a 3D point cloud is used to represent the macro feature of source and template point clouds. Under the guidance of the iterative closest point algorithm, the OBB of the source and template point clouds is aligned, and a mirror symmetry effect is produced between them. According to the fitting degree of the source and template point clouds, the mirror symmetry plane is detected, and the optimal rotation and translation of the source point cloud is obtained to complete the 3D point cloud registration task. To verify the effectiveness of the proposed algorithm, a comparative experiment was performed using the publicly available ModelNet40 dataset. The experimental results demonstrate that, compared with PointNetLK, PointNetLK-OBB improves the registration accuracy of the source and template point clouds when the initial relative deflection angle is too large, and the sensitivity of the initial relative position between the source point cloud and template point cloud is reduced. The primary contribution of this paper is the use of PointNetLK to avoid the non-convex problem of traditional point cloud registration and leveraging the regularity of the OBB to avoid the local optimization problem in the PointNetLK context.

Keywords: Mirror symmetry, oriented bounding box, point cloud registration, PointNetLK-OBB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705
520 Power Quality Improvement Using UPQC Integrated with Distributed Generation Network

Authors: B. Gopal, Pannala Krishna Murthy, G. N. Sreenivas

Abstract:

The increasing demand of electric power is giving an emphasis on the need for the maximum utilization of renewable energy sources. On the other hand maintaining power quality to satisfaction of utility is an essential requirement. In this paper the design aspects of a Unified Power Quality Conditioner integrated with photovoltaic system in a distributed generation is presented. The proposed system consist of series inverter, shunt inverter are connected back to back on the dc side and share a common dc-link capacitor with Distributed Generation through a boost converter. The primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation. In addition to primary tasks of UPQC, other functionalities such as compensation of voltage interruption and active power transfer to the load and grid in both islanding and interconnected mode have been addressed. The simulation model is design in MATLAB/ Simulation environment and the results are in good agreement with the published work.

Keywords: Distributed Generation(DG), Interconnected mode, Islanding mode, Maximum power point tracking (MPPT), Power Quality (PQ), Unified power quality conditioner (UPQC), Photovoltaic array (PV).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2380
519 Real-time Performance Study of EPA Periodic Data Transmission

Authors: Liu Ning, Zhong Chongquan, Teng Hongfei

Abstract:

EPA (Ethernet for Plant Automation) resolves the nondeterministic problem of standard Ethernet and accomplishes real-time communication by means of micro-segment topology and deterministic scheduling mechanism. This paper studies the real-time performance of EPA periodic data transmission from theoretical and experimental perspective. By analyzing information transmission characteristics and EPA deterministic scheduling mechanism, 5 indicators including delivery time, time synchronization accuracy, data-sending time offset accuracy, utilization percentage of configured timeslice and non-RTE bandwidth that can be used to specify the real-time performance of EPA periodic data transmission are presented and investigated. On this basis, the test principles and test methods of the indicators are respectively studied and some formulas for real-time performance of EPA system are derived. Furthermore, an experiment platform is developed to test the indicators of EPA periodic data transmission in a micro-segment. According to the analysis and the experiment, the methods to improve the real-time performance of EPA periodic data transmission including optimizing network structure, studying self-adaptive adjustment method of timeslice and providing data-sending time offset accuracy for configuration are proposed.

Keywords: EPA system, Industrial Ethernet, Periodic data, Real-time performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
518 Optimal Location of Multi Type Facts Devices for Multiple Contingencies Using Particle Swarm Optimization

Authors: S. Sutha, N. Kamaraj

Abstract:

In deregulated operating regime power system security is an issue that needs due thoughtfulness from researchers in the horizon of unbundling of generation and transmission. Electric power systems are exposed to various contingencies. Network contingencies often contribute to overloading of branches, violation of voltages and also leading to problems of security/stability. To maintain the security of the systems, it is desirable to estimate the effect of contingencies and pertinent control measurement can be taken on to improve the system security. This paper presents the application of particle swarm optimization algorithm to find the optimal location of multi type FACTS devices in a power system in order to eliminate or alleviate the line over loads. The optimizations are performed on the parameters, namely the location of the devices, their types, their settings and installation cost of FACTS devices for single and multiple contingencies. TCSC, SVC and UPFC are considered and modeled for steady state analysis. The selection of UPFC and TCSC suitable location uses the criteria on the basis of improved system security. The effectiveness of the proposed method is tested for IEEE 6 bus and IEEE 30 bus test systems.

Keywords: Contingency Severity Index, Particle Swarm Optimization, Performance Index, Static Security Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2766
517 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models

Authors: Ramin Vafadary, Maryam Khanbaghi

Abstract:

Forecasting electricity load is important for various purposes like planning, operation and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria namely, the Mean Absolute Error and Root Mean Square Error. The National Renewable Energy Laboratory (NREL) residential energy consumption data are used to train the models. The results of this study show that SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts we can improve the robustness of the models for 24 hour ahead electricity load forecasting.

Keywords: Bagging, Fbprophet, Holt-Winters, LSTM, Load Forecast, SARIMA, tensorflow probability, time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 483
516 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients

Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim

Abstract:

The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.

Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 677
515 Motivated Support Vector Regression using Structural Prior Knowledge

Authors: Wei Zhang, Yao-Yu Li, Yi-Fan Zhu, Qun Li, Wei-Ping Wang

Abstract:

It-s known that incorporating prior knowledge into support vector regression (SVR) can help to improve the approximation performance. Most of researches are concerned with the incorporation of knowledge in the form of numerical relationships. Little work, however, has been done to incorporate the prior knowledge on the structural relationships among the variables (referred as to Structural Prior Knowledge, SPK). This paper explores the incorporation of SPK in SVR by constructing appropriate admissible support vector kernel (SV kernel) based on the properties of reproducing kernel (R.K). Three-levels specifications of SPK are studied with the corresponding sub-levels of prior knowledge that can be considered for the method. These include Hierarchical SPK (HSPK), Interactional SPK (ISPK) consisting of independence, global and local interaction, Functional SPK (FSPK) composed of exterior-FSPK and interior-FSPK. A convenient tool for describing the SPK, namely Description Matrix of SPK is introduced. Subsequently, a new SVR, namely Motivated Support Vector Regression (MSVR) whose structure is motivated in part by SPK, is proposed. Synthetic examples show that it is possible to incorporate a wide variety of SPK and helpful to improve the approximation performance in complex cases. The benefits of MSVR are finally shown on a real-life military application, Air-toground battle simulation, which shows great potential for MSVR to the complex military applications.

Keywords: admissible support vector kernel, reproducing kernel, structural prior knowledge, motivated support vector regression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
514 Motivated Support Vector Regression with Structural Prior Knowledge

Authors: Wei Zhang, Yao-Yu Li, Yi-Fan Zhu, Qun Li, Wei-Ping Wang

Abstract:

It-s known that incorporating prior knowledge into support vector regression (SVR) can help to improve the approximation performance. Most of researches are concerned with the incorporation of knowledge in form of numerical relationships. Little work, however, has been done to incorporate the prior knowledge on the structural relationships among the variables (referred as to Structural Prior Knowledge, SPK). This paper explores the incorporation of SPK in SVR by constructing appropriate admissible support vector kernel (SV kernel) based on the properties of reproducing kernel (R.K). Three-levels specifications of SPK are studies with the corresponding sub-levels of prior knowledge that can be considered for the method. These include Hierarchical SPK (HSPK), Interactional SPK (ISPK) consisting of independence, global and local interaction, Functional SPK (FSPK) composed of exterior-FSPK and interior-FSPK. A convenient tool for describing the SPK, namely Description Matrix of SPK is introduced. Subsequently, a new SVR, namely Motivated Support Vector Regression (MSVR) whose structure is motivated in part by SPK, is proposed. Synthetic examples show that it is possible to incorporate a wide variety of SPK and helpful to improve the approximation performance in complex cases. The benefits of MSVR are finally shown on a real-life military application, Air-toground battle simulation, which shows great potential for MSVR to the complex military applications.

Keywords: admissible support vector kernel, reproducing kernel, structural prior knowledge, motivated support vector regression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
513 Virtual Container Yard: Assessing the Perceived Impact of Legal Implications to Container Carriers

Authors: L. Edirisinghe, P. Mukherjee, H. Edirisinghe

Abstract:

Virtual Container Yard (VCY) is a modern concept that helps to reduce the empty container repositioning cost of carriers. The concept of VCY is based on container interchange between shipping lines. Although this mechanism has been theoretically accepted by the shipping community as a feasible solution, it has not yet achieved the necessary momentum among container shipping lines (CSL). This paper investigates whether there is any legal influence on this industry myopia about the VCY. It is believed that this is the first publication that focuses on the legal aspects of container exchange between carriers. Not much literature on this subject is available. This study establishes with statistical evidence that there is a phobia prevailing in the shipping industry that exchanging containers with other carriers may lead to various legal implications. The complexity of exchange is two faceted. CSLs assume that offering a container to another carrier (obviously, a competitor in terms of commercial context) or using a container offered by another carrier may lead to undue legal implications. This research reveals that this fear is reflected through four types of perceived components, namely: shipping associate; warehouse associate; network associate; and trading associate. These components carry eighteen subcomponents that comprehensively cover the entire process of a container shipment. The statistical explanation has been supported through regression analysis; INCO terms were used to illustrate the shipping process.

Keywords: Container, legal, shipping, virtual.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 619
512 Providing Emotional Support to Children under Long-Term Health Treatments

Authors: Ramón Cruzat, Sergio F. Ochoa, Ignacio Casas, Luis A. Guerrero, José Bravo

Abstract:

Patients under health treatments that involve long  stays at a hospital or health center (e.g. cancer, organ transplants and  severe burns), tend to get bored or depressed because of the lack of  social interaction with family and friends. Such a situation also  affects the evolution and effectiveness of their treatments. In many  cases, the solution to this problem involves extra challenges, since  many patients need to rest quietly (or remain in bed) to their being  contagious. Considering the weak health condition in which usually  are these kinds, keeping them motivated and quiet represents an  important challenge for nurses and caregivers. This article presents a  mobile ubiquitous game called MagicRace, which allows hospitalized  kinds to interact socially with one another without putting to risk  their sensitive health conditions. The game does not require a  communication infrastructure at the hospital, but instead, it uses a  mobile ad hoc network composed of the handheld devices used by  the kids to play. The usability and performance of this application  was tested in two different sessions. The preliminary results show  that users experienced positive feelings from this experience.

 

Keywords: Ubiquitous game, children's emotional support, social isolation, mobile collaborative interactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
511 Study of Heat Transfer in the Poly Ethylene Fluidized Bed Reactor Numerically and Experimentally

Authors: Mahdi Hamzehei

Abstract:

In this research, heat transfer of a poly Ethylene fluidized bed reactor without reaction were studied experimentally and computationally at different superficial gas velocities. A multifluid Eulerian computational model incorporating the kinetic theory for solid particles was developed and used to simulate the heat conducting gas–solid flows in a fluidized bed configuration. Momentum exchange coefficients were evaluated using the Syamlal– O-Brien drag functions. Temperature distributions of different phases in the reactor were also computed. Good agreement was found between the model predictions and the experimentally obtained data for the bed expansion ratio as well as the qualitative gas–solid flow patterns. The simulation and experimental results showed that the gas temperature decreases as it moves upward in the reactor, while the solid particle temperature increases. Pressure drop and temperature distribution predicted by the simulations were in good agreement with the experimental measurements at superficial gas velocities higher than the minimum fluidization velocity. Also, the predicted time-average local voidage profiles were in reasonable agreement with the experimental results. The study showed that the computational model was capable of predicting the heat transfer and the hydrodynamic behavior of gas-solid fluidized bed flows with reasonable accuracy.

Keywords: Gas-solid flows, fluidized bed, Hydrodynamics, Heat transfer, Turbulence model, CFD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
510 Optical Fish Tracking in Fishways using Neural Networks

Authors: Alvaro Rodriguez, Maria Bermudez, Juan R. Rabuñal, Jeronimo Puertas

Abstract:

One of the main issues in Computer Vision is to extract the movement of one or several points or objects of interest in an image or video sequence to conduct any kind of study or control process. Different techniques to solve this problem have been applied in numerous areas such as surveillance systems, analysis of traffic, motion capture, image compression, navigation systems and others, where the specific characteristics of each scenario determine the approximation to the problem. This paper puts forward a Computer Vision based algorithm to analyze fish trajectories in high turbulence conditions in artificial structures called vertical slot fishways, designed to allow the upstream migration of fish through obstructions in rivers. The suggested algorithm calculates the position of the fish at every instant starting from images recorded with a camera and using neural networks to execute fish detection on images. Different laboratory tests have been carried out in a full scale fishway model and with living fishes, allowing the reconstruction of the fish trajectory and the measurement of velocities and accelerations of the fish. These data can provide useful information to design more effective vertical slot fishways.

Keywords: Computer Vision, Neural Network, Fishway, Fish Trajectory, Tracking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
509 Linking Urban Planning and Water Planning to Achieve Sustainable Development and Liveability Outcomes in the New Growth Areas of Melbourne, Australia

Authors: Dennis Corbett

Abstract:

The city of Melbourne in Victoria, Australia, provides a number of examples of how a growing city can integrate urban planning and water planning to achieve sustainable urban development, environmental protection, liveability and integrated water management outcomes, and move towards becoming a “Water Sensitive City". Three examples are provided - the development at Botanic Ridge, where a 318 hectare residential development is being planned and where integrated water management options are being implemented using a “triple bottom line" sustainability investment approach; the Toolern development, which will capture and reuse stormwater and recycled water to greatly reduce the suburb-s demand for potable water, and the development at Kalkallo where a 1,200 hectare industrial precinct development is planned which will merge design of the development's water supply, sewerage services and stormwater system. The Paper argues that an integrated urban planning and water planning approach is fundamental to creating liveable, vibrant communities which meet social and financial needs while being in harmony with the local environment. Further work is required on developing investment frameworks and risk analysis frameworks to ensure that all possible solutions can be assessed equally.

Keywords: Integrated water management, stormwater management, sustainable urban development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
508 A Smart Monitoring System for Preventing Gas Risks in Indoor

Authors: Gyoutae Park, Geunjun Lyu, Yeonjae Lee, Wooksuk Kim, Jaheon Gu, Sanguk Ahn, Hiesik Kim

Abstract:

In this paper, we propose a system for preventing gas risks through the use of wireless communication modules and intelligent gas safety appliances. Our system configuration consists of an automatic extinguishing system, detectors, a wall-pad, and a microcomputer controlled micom gas meter to monitor gas flow and pressure as well as the occurrence of earthquakes. The automatic fire extinguishing system checks for both combustible gaseous leaks and monitors the environmental temperature, while the detector array measures smoke and CO gas concentrations. Depending on detected conditions, the micom gas meter cuts off an inner valve and generates a warning, the automatic fire-extinguishing system cuts off an external valve and sprays extinguishing materials, or the sensors generate signals and take further action when smoke or CO are detected. Information on intelligent measures taken by the gas safety appliances and sensors are transmitted to the wall-pad, which in turn relays this as real time data to a server that can be monitored via an external network (BcN) connection to a web or mobile application for the management of gas safety. To validate this smart-home gas management system, we field-tested its suitability for use in Korean apartments under several scenarios.

Keywords: Gas sensor, leak, gas safety, gas meter, gas risk, wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2719