Search results for: properties of materials
574 Developing a Sustainable Educational Portal for the D-Grid Community
Authors: Viktor Achter, Sebastian Breuers, Marc Seifert, Ulrich Lang, Joachim Götze, Bernd Reuther, Paul Müller
Abstract:
Within the last years, several technologies have been developed to help building e-learning portals. Most of them follow approaches that deliver a vast amount of functionalities, suitable for class-like learning. The SuGI project, as part of the D-Grid (funded by the BMBF), targets on delivering a highly scalable and sustainable learning solution to provide materials (e.g. learning modules, training systems, webcasts, tutorials, etc.) containing knowledge about Grid computing to the D-Grid community. In this article, the process of the development of an e-learning portal focused on the requirements of this special user group is described. Furthermore, it deals with the conceptual and technical design of an e-learning portal, addressing the special needs of heterogeneous target groups. The main focus lies on the quality management of the software development process, Web templates for uploading new contents, the rich search and filter functionalities which will be described from a conceptual as well as a technical point of view. Specifically, it points out best practices as well as concepts to provide a sustainable solution to a relatively unknown and highly heterogeneous community.
Keywords: D-Grid, e-learning, e-science, Grid computing, SuGI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346573 Numerical Investigation of Non Fourier Heat Conduction in a Semi-infinite Body due to a Moving Concentrated Heat Source Composed with Radiational Boundary Condition
Authors: M. Akbari, S. Sadodin
Abstract:
In this paper, the melting of a semi-infinite body as a result of a moving laser beam has been studied. Because the Fourier heat transfer equation at short times and large dimensions does not have sufficient accuracy; a non-Fourier form of heat transfer equation has been used. Due to the fact that the beam is moving in x direction, the temperature distribution and the melting pool shape are not asymmetric. As a result, the problem is a transient threedimensional problem. Therefore, thermophysical properties such as heat conductivity coefficient, density and heat capacity are functions of temperature and material states. The enthalpy technique, used for the solution of phase change problems, has been used in an explicit finite volume form for the hyperbolic heat transfer equation. This technique has been used to calculate the transient temperature distribution in the semi-infinite body and the growth rate of the melt pool. In order to validate the numerical results, comparisons were made with experimental data. Finally, the results of this paper were compared with similar problem that has used the Fourier theory. The comparison shows the influence of infinite speed of heat propagation in Fourier theory on the temperature distribution and the melt pool size.Keywords: Non-Fourier, Enthalpy technique, Melt pool, Radiational boundary condition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980572 Design and Performance Evaluation of Hybrid Corrugated-GFRP Infill Panels
Authors: WooYoung Jung, HoYoung Son
Abstract:
This study presented to reduce earthquake damage and emergency rehabilitation of critical structures such as schools, hightech factories, and hospitals due to strong ground motions associated with climate changes. Regarding recent trend, a strong earthquake causes serious damage to critical structures and then the critical structure might be influenced by sequence aftershocks (or tsunami) due to fault plane adjustments. Therefore, in order to improve seismic performance of critical structures, retrofitted or strengthening study of the structures under aftershocks sequence after emergency rehabilitation of the structures subjected to strong earthquakes is widely carried out. Consequently, this study used composite material for emergency rehabilitation of the structure rather than concrete and steel materials because of high strength and stiffness, lightweight, rapid manufacturing, and dynamic performance. Also, this study was to develop or improve the seismic performance or seismic retrofit of critical structures subjected to strong ground motions and earthquake aftershocks, by utilizing GFRP-Corrugated Infill Panels (GCIP).Keywords: Composite material, GFRP, Infill Panel, Aftershock, Seismic Retrofitting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287571 Study of Rayleigh-Bénard-Brinkman Convection Using LTNE Model and Coupled, Real Ginzburg-Landau Equations
Authors: P. G. Siddheshwar, R. K. Vanishree, C. Kanchana
Abstract:
A local nonlinear stability analysis using a eight-mode expansion is performed in arriving at the coupled amplitude equations for Rayleigh-Bénard-Brinkman convection (RBBC) in the presence of LTNE effects. Streamlines and isotherms are obtained in the two-dimensional unsteady finite-amplitude convection regime. The parameters’ influence on heat transport is found to be more pronounced at small time than at long times. Results of the Rayleigh-Bénard convection is obtained as a particular case of the present study. Additional modes are shown not to significantly influence the heat transport thus leading us to infer that five minimal modes are sufficient to make a study of RBBC. The present problem that uses rolls as a pattern of manifestation of instability is a needed first step in the direction of making a very general non-local study of two-dimensional unsteady convection. The results may be useful in determining the preferred range of parameters’ values while making rheometric measurements in fluids to ascertain fluid properties such as viscosity. The results of LTE are obtained as a limiting case of the results of LTNE obtained in the paper.Keywords: Rayleigh-Bénard convection, heat transport, porous media, generalized Lorenz model, coupled Ginzburg-Landau model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927570 The Effect of Surface Conditions on Wear of a Railway Wheel and Rail
Authors: A. Shebani, S. Iwnicki
Abstract:
Understanding the nature of wheel and rail wear in the railway field is of fundamental importance to the safe and cost effective operation of the railways. Twin disc wear testing is used extensively for studying wear of wheel and rail materials. The University of Huddersfield twin disc rig was used in this paper to examine the effect of surface conditions on wheel and rail wear measurement under a range of wheel/rail contact conditions, with and without contaminants. This work focuses on an investigation of the effect of dry, wet, and lubricated conditions and the effect of contaminants such as sand on wheel and rail wear. The wheel and rail wear measurements were carried out by using a replica material and an optical profilometer that allows measurement of wear in difficult location with high accuracy. The results have demonstrated the rate at which both water and oil reduce wheel and rail wear. Scratches and other damage were seen on the wheel and rail surfaces after the addition of sand and consequently both wheel and rail wear damage rates increased under these conditions. This work introduced the replica material and an optical instrument as effective tools to study the effect of surface conditions on wheel and rail wear.Keywords: Railway wheel/rail wear, surface conditions, twin disc test rig, replica material, Alicona profilometer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207569 Antiangiogenic Potential of Phellodendron amurense Bark Extract Observed on Chorioallantoic Membrane
Authors: Ľudmila Ballová, Slavomír Kurhajec, Eva Petrovová, Jarmila Eftimová
Abstract:
Angiogenesis, a formation of new blood vessels from a pre-existing vasculature, plays an important role in pathologic processes such as the growth and metastasis of tumours. Tumours cannot grow beyond a few millimetres without blood supply from the newly formed blood vessels from the host tissue, a process called tumour-induced angiogenesis. The successful research of antiangiogenic treatment of cancer has focused on nutraceuticals with angiogenesis-modulating properties. Berberine, as a major active component of the bark of Phellodendron amurense Rupr., has shown antitumour activity by intervening into different steps of carcinogenesis. The influence of ethanolic extract of Phellodendron amurese bark on the angiogenesis was tested in vivo on chick chorioallantoic membrane (CAM). The irritancy of the CAM after the application of the crude bark extract dissolved in normal saline (10 mg/mL) was investigated on embryonic day 7. No significant signs of the irritancy, such as vasoconstriction, hyperaemia, haemorrhage or coagulation were observed which indicates the harmless character of the extract. A significant reduction in vessel sprouting and higher percentage of avascular zone was observed in the case of CAM treated with the extract in comparison with non-treated CAM (control), which is a proof of the antiangiogenic potential of the extract. These results could contribute to the development of novel drugs for the treatment of cancer or other diseases, in which angiogenesis plays a significant role.
Keywords: Angiogenesis, berberine, chorioallantoic membrane, Phellodendron amurense.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844568 Territories' Challenges and Opportunities to Promote Circular Economy in the Building Sector
Authors: R. Tirado, G. Habert, A. Mailhac, S. Laurenceau
Abstract:
The rapid development of cities implies significant material inflows and outflows. The construction sector is one of the main consumers of raw materials and producers of waste. The waste from the building sector, for its quantity and potential for recovery, constitutes significant deposits requiring major efforts, by combining different actors, to achieve the circular economy's objectives. It is necessary to understand and know the current construction actors' knowledge of stocks, urban metabolism, deposits, and recovery practices in this context. This article aims to explore the role of local governments in planning strategies by facilitating a circular economy. In particular, the principal opportunities and challenges of communities for applying the principles of the circular economy in the building sector will be identified. The approach used for the study was to conduct semi-structured interviews with those responsible for circular economy projects within local administrations of some communities in France. The results show territories' involvement in the inclusion and application of the principles of the circular economy in the building sector. The main challenges encountered are numerous, hence the importance of having identified and described them so that the different actors can work to meet them.
Keywords: Building stock, circular economy, interview, local authorities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 531567 Nanostructure of Gamma-Alumina Prepared by a Modified Sol-Gel Technique
Authors: Débora N. Zambrano, Marina O. Gosatti, Leandro M. Dufou, Daniel A. Serrano, M. Mónica Guraya, Soledad Perez-Catán
Abstract:
Nanoporous g-Al2O3 samples were synthesized via a sol-gel technique, introducing changes in the Yoldas´ method. The aim of the work was to achieve an effective control of the nanostructure properties and morphology of the final g-Al2O3. The influence of the reagent temperature during the hydrolysis was evaluated in case of water at 5 ºC and 98 ºC, and alkoxide at -18 ºC and room temperature. Sol-gel transitions were performed at 120 ºC and room temperature. All g-Al2O3 samples were characterized by X-ray diffraction, nitrogen adsorption and thermal analysis. Our results showed that temperature of both water and alkoxide has not much influence on the nanostructure of the final g-Al2O3, thus giving a structure very similar to that of samples obtained by the reference method as long as the reaction temperature above 75 ºC is reached soon enough. XRD characterization showed diffraction patterns corresponding to g-Al2O3 for all samples. Also BET specific area values (253-280 m2/g) were similar to those obtained by Yoldas’s original method. The temperature of the sol-gel transition does not affect the resulting sample structure, and crystalline boehmite particles were identified in all dried gels. We analyzed the reproducibility of the samples’ structure by preparing different samples under identical conditions; we found that performing the sol-gel transition at 120 ºC favors the production of more reproducible samples and also reduces significantly the time of the sol-gel reaction.
Keywords: Nanostructure alumina, boehmite, sol-gel technique, N2 adsorption/desorption isotherm, pore size distribution, BET area.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345566 CAD Model of Cole Cole Representation for Analyzing Performance of Microstrip Moisture Sensing Applications
Authors: Settapong Malisuwan, Jesada Sivaraks, Wasan Jaiwong, Veerapat Sanpanich
Abstract:
In the past decade, the development of microstrip sensor application has evolved tremendously. Although cut and trial method was adopted to develop microstrip sensing applications in the past, Computer-Aided-Design (CAD) is a more effective as it ensures less time is consumed and cost saving is achieved in developing microstrip sensing applications. Therefore microstrip sensing applications has gained popularity as an effective tool adopted in continuous sensing of moisture content particularly in products that is administered mainly by liquid content. In this research, the Cole-Cole representation of reactive relaxation is applied to assess the performance of the microstrip sensor devices. The microstrip sensor application is an effective tool suitable for sensing the moisture content of dielectric material. Analogous to dielectric relaxation consideration of Cole-Cole diagrams as applied to dielectric materials, a “reactive relaxation concept” concept is introduced to represent the frequency-dependent and moisture content characteristics of microstrip sensor devices.
Keywords: Microstrip, Sensor, Cole-Cole Representation, Moisture content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828565 Experimental Modal Analysis of Reinforced Concrete Square Slabs
Authors: M. S. Ahmed, F. A. Mohammad
Abstract:
The aim of this paper is to perform experimental modal analysis (EMA) of reinforced concrete (RC) square slabs. EMA is the process of determining the modal parameters (Natural Frequencies, damping factors, modal vectors) of a structure from a set of frequency response functions FRFs (curve fitting). Although, experimental modal analysis (or modal testing) has grown steadily in popularity since the advent of the digital FFT spectrum analyzer in the early 1970’s, studying all types of members and materials using such method have not yet been well documented. Therefore, in this work, experimental tests were conducted on RC square slab specimens of dimensions 600mm x 600mmx 40mm. Experimental analysis was based on freely supported boundary condition. Moreover, impact testing as a fast and economical means of finding the modes of vibration of a structure was used during the experiments. In addition, Pico Scope 6 device and MATLAB software were used to acquire data, analyze and plot Frequency Response Function (FRF). The experimental natural frequencies which were extracted from measurements exhibit good agreement with analytical predictions. It is showed that EMA method can be usefully employed to investigate the dynamic behavior of RC slabs.
Keywords: Natural frequencies, Mode shapes, Modal analysis, RC slabs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2618564 A New Composition Method of Admissible Support Vector Kernel Based on Reproducing Kernel
Authors: Wei Zhang, Xin Zhao, Yi-Fan Zhu, Xin-Jian Zhang
Abstract:
Kernel function, which allows the formulation of nonlinear variants of any algorithm that can be cast in terms of dot products, makes the Support Vector Machines (SVM) have been successfully applied in many fields, e.g. classification and regression. The importance of kernel has motivated many studies on its composition. It-s well-known that reproducing kernel (R.K) is a useful kernel function which possesses many properties, e.g. positive definiteness, reproducing property and composing complex R.K by simple operation. There are two popular ways to compute the R.K with explicit form. One is to construct and solve a specific differential equation with boundary value whose handicap is incapable of obtaining a unified form of R.K. The other is using a piecewise integral of the Green function associated with a differential operator L. The latter benefits the computation of a R.K with a unified explicit form and theoretical analysis, whereas there are relatively later studies and fewer practical computations. In this paper, a new algorithm for computing a R.K is presented. It can obtain the unified explicit form of R.K in general reproducing kernel Hilbert space. It avoids constructing and solving the complex differential equations manually and benefits an automatic, flexible and rigorous computation for more general RKHS. In order to validate that the R.K computed by the algorithm can be used in SVM well, some illustrative examples and a comparison between R.K and Gaussian kernel (RBF) in support vector regression are presented. The result shows that the performance of R.K is close or slightly superior to that of RBF.
Keywords: admissible support vector kernel, reproducing kernel, reproducing kernel Hilbert space, Green function, support vectorregression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544563 Synthesis and Characterization of Nickel and Sulphur Sensitized Zinc Oxide Structures
Authors: Ella C. Linganiso, Bonex W. Mwakikunga, Trilock Singh, Sanjay Mathur, Odireleng M. Ntwaeaborwa
Abstract:
The use of nanostructured semiconducting material to catalyze degradation of environmental pollutants still receives much attention to date. One of the desired characteristics for pollutant degradation under ultra-violet visible light is the materials with extended carrier charge separation that allows for electronic transfer between the catalyst and the pollutants. In this work, zinc oxide n-type semiconductor vertically aligned structures were fabricated on silicon (100) substrates using the chemical bath deposition method. The as-synthesized structures were treated with nickel and sulphur. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy were used to characterize the phase purity, structural dimensions and elemental composition of the obtained structures respectively. Photoluminescence emission measurements showed a decrease in both the near band edge emission as well as the defect band emission upon addition of nickel and sulphur with different concentrations. This was attributed to increased charger-carrier-separation due to the presence of Ni-S material on ZnO surface, which is linked to improved charge transfer during photocatalytic reactions.
Keywords: Carrier-charge-separation, nickel, sulphur, zinc oxide, photoluminescence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856562 Alumina Supported Cu-Mn-Cr Catalysts for CO and VOCs Oxidation
Authors: Krasimir I. Ivanov, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Petya Ts. Petrova, Tatyana T. Tabakova
Abstract:
This work studies the effect of chemical composition on the activity and selectivity of γ–alumina supported CuO/ MnO2/Cr2O3 catalysts toward deep oxidation of CO, dimethyl ether (DME) and methanol. The catalysts were prepared by impregnation of the support with an aqueous solution of copper nitrate, manganese nitrate and CrO3 under different conditions. Thermal, XRD and TPR analysis were performed. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor. Flow-line equipment with an adiabatic reactor for simultaneous oxidation of all compounds under the conditions that mimic closely the industrial ones was used. The reactant and product gases were analyzed by means of on-line gas chromatographs. On the basis of XRD analysis it can be concluded that the active component of the mixed Cu-Mn-Cr/γ–alumina catalysts consists of at least six compounds – CuO, Cr2O3, MnO2, Cu1.5Mn1.5O4, Cu1.5Cr1.5O4 and CuCr2O4, depending on the Cu/Mn/Cr molar ratio. Chemical composition strongly influences catalytic properties, this influence being quite variable with regards to the different processes. The rate of CO oxidation rapidly decrease with increasing of chromium content in the active component while for the DME was observed the reverse trend. It was concluded that the best compromise are the catalysts with Cu/(Mn + Cr) molar ratio 1:5 and Mn/Cr molar ratio from 1:3 to 1:4.Keywords: Copper-manganese-chromium oxide catalysts, CO, deep oxidation, volatile organic compounds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935561 Experimental Evaluation of Drilling Damage on the Strength of Cores Extracted from RC Buildings
Authors: A. Masi, A. Digrisolo, G. Santarsiero
Abstract:
Concrete strength evaluated from compression tests on cores is affected by several factors causing differences from the in-situ strength at the location from which the core specimen was extracted. Among the factors, there is the damage possibly occurring during the drilling phase that generally leads to underestimate the actual in-situ strength. In order to quantify this effect, in this study two wide datasets have been examined, including: (i) about 500 core specimens extracted from Reinforced Concrete existing structures, and (ii) about 600 cube specimens taken during the construction of new structures in the framework of routine acceptance control. The two experimental datasets have been compared in terms of compression strength and specific weight values, accounting for the main factors affecting a concrete property, that is type and amount of cement, aggregates' grading, type and maximum size of aggregates, water/cement ratio, placing and curing modality, concrete age. The results show that the magnitude of the strength reduction due to drilling damage is strongly affected by the actual properties of concrete, being inversely proportional to its strength. Therefore, the application of a single value of the correction coefficient, as generally suggested in the technical literature and in structural codes, appears inappropriate. A set of values of the drilling damage coefficient is suggested as a function of the strength obtained from compressive tests on cores.
Keywords: RC Buildings, Assessment, In-situ concrete strength, Core testing, Drilling damage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059560 Cold Analysis for Dispersion, Attenuation and RF Efficiency Characteristics of a Gyrotron Cavity
Authors: R. K. Singh
Abstract:
In the present paper, a gyrotron cavity is analyzed in the absence of electron beam for dispersion, attenuation and RF efficiency. For all these characteristics, azimuthally symmetric TE0n modes have been considered. The attenuation characteristics for TE0n modes indicated decrease in attenuation constant as the frequency is increased. Interestingly, the lowest order TE01 mode resulted in lowest attenuation. Further, three different cavity wall materials have been selected for attenuation characteristics. The cavity made of material with higher conductivity resulted in lower attenuation. The effect of material electrical conductivity on the RF efficiency has also been observed and has been found that the RF efficiency rapidly decreases as the electrical conductivity of the cavity material decreases. The RF efficiency rapidly decreases with increasing diffractive quality factor. The ohmic loss variation as a function of frequency of operation for three different cavities made of copper, aluminum and nickel has been observed. The ohmic losses are lowest for the copper cavity and hence the highest RF efficiency.
Keywords: Gyrotron, dispersion, attenuation, quality factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869559 Microfiltration of the Sugar Refinery Wastewater Using Ceramic Membrane with Kenics Static Mixer
Authors: Zita Šereš, Ljubica Dokić, Nikola Maravić, Dragana Šoronja–Simović, Cecilia Hodur, Ivana Nikolić, Biljana Pajin
Abstract:
New environmental regulations and the increasing market preference for companies that respect the ecosystem had encouraged the industry to look after new treatments for its effluents. The sugar industry, one of the largest emitter of environmental pollutants, follows this tendency. Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present in a wastewater from sugar industry. The idea is to microfilter the wastewater, where the permeate passes through the membrane and becomes available for recycle and re-use in the sugar manufacturing process. For microfiltration of this effluent a tubular ceramic membrane was used with a pore size of 200 nm at transmembrane pressure in range of 1–3 bars and in range of flow rate of 50–150 l/h. Kenics static mixer was used for permeate flux enhancement. Turbidity and suspended solids were removed and the permeate flux was continuously monitored during the microfiltration process. The flux achieved after 90 minutes of microfiltration was in a range of 50–70 l/m2h. The obtained turbidity decrease was in the range of 50-99 % and total amount of suspended solids was removed.Keywords: Ceramic membrane, microfiltration, sugar industry, wastewater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868558 Microencapsulation of Ascorbic Acid by Spray Drying: Influence of Process Conditions
Authors: Addion Nizori, Lan T.T. Bui, Darryl M. Small
Abstract:
Ascorbic acid (AA), commonly known as vitamin C, is essential for normal functioning of the body and maintenance of metabolic integrity. Among its various roles are as an antioxidant, a cofactor in collagen formation and other reactions, as well as reducing physical stress and maintenance of the immune system. Recent collaborative research between the Australian Defence Science and Technology Organisation (DSTO) in Scottsdale, Tasmania and RMIT University has sought to overcome the problems arising from the inherent instability of ascorbic acid during processing and storage of foods. The recent work has demonstrated the potential of microencapsulation by spray drying as a means to enhance retention. The purpose of this current study has been focused upon the influence of spray drying conditions on the properties of encapsulated ascorbic acid. The process was carried out according to a central composite design. Independent variables were: inlet temperature (80-120° C) and feed flow rate (7-14 mL/minute). Process yield, ascorbic acid loss, moisture content, water activity and particle size distribution were analysed as responses. The results have demonstrated the potential of microencapsulation by spray drying as a means to enhance retention. Vitamin retention, moisture content, water activity and process yield were influenced positively by inlet air temperature and negatively by feed flow rate.
Keywords: Microencapsulation, spray drying, ascorbic acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4458557 A Control Model for Improving Safety and Efficiency of Navigation System Based on Reinforcement Learning
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Artificial Intelligence (AI), specifically Reinforcement Learning (RL), has proven helpful in many control path planning technologies by maximizing and enhancing their performance, such as navigation systems. Since it learns from experience by interacting with the environment to determine the optimal policy, the optimal policy takes the best action in a particular state, accounting for the long-term rewards. Most navigation systems focus primarily on "arriving faster," overlooking safety and efficiency while estimating the optimum path, as safety and efficiency are essential factors when planning for a long-distance journey. This paper represents an RL control model that proposes a control mechanism for improving navigation systems. Also, the model could be applied to other control path planning applications because it is adjustable and can accept different properties and parameters. However, the navigation system application has been taken as a case and evaluation study for the proposed model. The model utilized a Q-learning algorithm for training and updating the policy. It allows the agent to analyze the quality of an action made in the environment to maximize rewards. The model gives the ability to update rewards regularly based on safety and efficiency assessments, allowing the policy to consider the desired safety and efficiency benefits while making decisions, which improves the quality of the decisions taken for path planning compared to the conventional RL approaches.
Keywords: Artificial intelligence, control system, navigation systems, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201556 Effects of Milling Process Parameters on Cutting Forces and Surface Roughness When Finishing Ti6al4v Produced by Electron Beam Melting
Authors: Abdulmajeed Dabwan, Saqib Anwar, Ali Al-Samhan
Abstract:
Electron Beam Melting (EBM) is a metal powder bed-based Additive Manufacturing (AM) technology, which uses computer-controlled electron beams to create fully dense three-dimensional near-net-shaped parts from metal powder. It gives the ability to produce any complex parts directly from a computer-aided design (CAD) model without tools and dies, and with a variety of materials. However, the quality of the surface finish in EBM process has limitations to meeting the performance requirements of additively manufactured components. The aim of this study is to investigate the cutting forces induced during milling Ti6Al4V produced by EBM as well as the surface quality of the milled surfaces. The effects of cutting speed and radial depth of cut on the cutting forces, surface roughness, and surface morphology were investigated. The results indicated that the cutting speed was found to be proportional to the resultant cutting force at any cutting conditions while the surface roughness improved significantly with the increase in cutting speed and radial depth of cut.
Keywords: Electron beam melting, additive manufacturing, Ti6Al4V, surface morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 717555 Crystalline Graphene Nanoribbons with Atomically Smooth Edges via a Novel Physico- Chemical Route
Authors: A. Morelos-Gómez, S. M. Vega-Díaz, V. J. González, F. Tristán-López, R. Cruz-Silva , K. Fujisawa, H. Muramatsu , T. Hayashi , Xi Mi , Yunfeng Shi , H. Sakamoto , F. Khoerunnisa , K. Kaneko , B. G. Sumpter , Y.A. Kim , V. Meunier, M. Endo , E. Muñoz-Sandoval, M. Terrones
Abstract:
A novel physico-chemical route to produce few layer graphene nanoribbons with atomically smooth edges is reported, via acid treatment (H2SO4:HNO3) followed by characteristic thermal shock processes involving extremely cold substances. Samples were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy. This method demonstrates the importance of having the nanotubes open ended for an efficient uniform unzipping along the nanotube axis. The average dimensions of these nanoribbons are approximately ca. 210 nm wide and consist of few layers, as observed by transmission electron microscopy. The produced nanoribbons exhibit different chiralities, as observed by high resolution transmission electron microscopy. This method is able to provide graphene nanoribbons with atomically smooth edges which could be used in various applications including sensors, gas adsorption materials, composite fillers, among others.
Keywords: Carbon nanoribbons, carbon nanotubes, unzipping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812554 The Purification of Waste Printing Developer with the Fixed Bed Adsorption Column
Authors: Kiurski S. Jelena, Ranogajec G. Jonjaua, Kecić S. Vesna, Oros B. Ivana
Abstract:
The present study investigates the effectiveness of newly designed clayey pellets (fired clay pellets diameter sizes of 5 and 8 mm, and unfired clay pellets with the diameter size of 15 mm) as the beds in the column adsorption process. The adsorption experiments in the batch mode were performed before the column experiment with the purpose to determine the order of adsorbent package in the column which was to be designed in the investigation. The column experiment was performed by using a known mass of the clayey beds and the volume of the waste printing developer, which was purified. The column was filled in the following order: fired clay pellets of the diameter size of 5 mm, fired clay pellets of the diameter size of 8 mm, and unfired clay pellets of the diameter size of 15 mm. The selected order of the adsorbents showed a high removal efficiency for zinc (97.8%) and copper (81.5%) ions. These efficiencies were better than those in the case of the already existing mode adsorption. The obtained experimental data present a good basis for the selection of an appropriate column fill, but further testing is necessary in order to obtain more accurate results.
Keywords: Clay materials, fix bed adsorption column, metal ions, printing developer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442553 Effect of Damping on Performance of Magnetostrictive Vibration Energy Harvester
Authors: Mojtaba Ghodsi, Hamidreza Ziaifar, Morteza Mohammadzaheri, Payam Soltani
Abstract:
This article presents an analytical model to estimate the harvested power from a Magnetostrictive cantilevered beam with tip excitation. Furthermore, the effects of internal and external damping on harvested power are investigated. The magnetostrictive material in this harvester is Galfenol. In comparison to other popular smart materials like Terfenol-D, Galfenol has higher strength and machinability. In this article, first, a mechanical model of the Euler-Bernoulli beam is employed to calculate the deflection of the harvester. Then, the magneto-mechanical equation of Galfenol is combined with Faraday's law to calculate the generated voltage of the Magnetostrictive cantilevered beam harvester. Finally, the beam model is incorporated in the aforementioned combination. The results show that a 30×8.5×1 mm Galfenol cantilever beam harvester with 80 turn pickup coil can generate up to 3.7 mV and 9 mW. Furthermore, sensitivity analysis made by Response Surface Method (RSM) shows that the harvested power is only sensitive to the internal damping coefficient.
Keywords: Internal damping coefficient, external damping coefficient, Euler-Bernoulli, energy harvester, Galfenol, magnetostrictive, response surface method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 763552 Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition
Authors: D. Geringswald, B. Hintze
Abstract:
The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H2:N2). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios.Keywords: ALD, high aspect ratio, PE-MOCVD, TiN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507551 A Neutral Set Approach for Applying TOPSIS in Maintenance Strategy Selection
Authors: C. Ardil
Abstract:
This paper introduces the concept of neutral sets (NSs) and explores various operations on NSs, along with their associated properties. The foundation of the Neutral Set framework lies in ontological neutrality and the principles of logic, including the Law of Non-Contradiction. By encompassing components for possibility, indeterminacy, and necessity, the NS framework provides a flexible representation of truth, uncertainty, and necessity, accommodating diverse ontological perspectives without presupposing specific existential commitments. The inclusion of Possibility acknowledges the spectrum of potential states or propositions, promoting neutrality by accommodating various viewpoints. Indeterminacy reflects the inherent uncertainty in understanding reality, refraining from making definitive ontological commitments in uncertain situations. Necessity captures propositions that must hold true under all circumstances, aligning with the principle of logical consistency and implicitly supporting the Law of Non-Contradiction. Subsequently, a neutral set-TOPSIS approach is applied in the maintenance strategy selection problem, demonstrating the practical applicability of the NS framework. The paper further explores uncertainty relations and presents the fundamental preliminaries of NS theory, emphasizing its role in fostering ontological neutrality and logical coherence in reasoning.
Keywords: Uncertainty sets, neutral sets, maintenance strategy selection multiple criteria decision-making analysis, MCDM, uncertainty decision analysis, distance function, multiple attribute, decision making, selection method, uncertainty, TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 118550 Visualization and Indexing of Spectral Databases
Authors: Tibor Kulcsar, Gabor Sarossy, Gabor Bereznai, Robert Auer, Janos Abonyi
Abstract:
On-line (near infrared) spectroscopy is widely used to support the operation of complex process systems. Information extracted from spectral database can be used to estimate unmeasured product properties and monitor the operation of the process. These techniques are based on looking for similar spectra by nearest neighborhood algorithms and distance based searching methods. Search for nearest neighbors in the spectral space is an NP-hard problem, the computational complexity increases by the number of points in the discrete spectrum and the number of samples in the database. To reduce the calculation time some kind of indexing could be used. The main idea presented in this paper is to combine indexing and visualization techniques to reduce the computational requirement of estimation algorithms by providing a two dimensional indexing that can also be used to visualize the structure of the spectral database. This 2D visualization of spectral database does not only support application of distance and similarity based techniques but enables the utilization of advanced clustering and prediction algorithms based on the Delaunay tessellation of the mapped spectral space. This means the prediction has not to use the high dimension space but can be based on the mapped space too. The results illustrate that the proposed method is able to segment (cluster) spectral databases and detect outliers that are not suitable for instance based learning algorithms.
Keywords: indexing high dimensional databases, dimensional reduction, clustering, similarity, k-nn algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769549 Complex-Valued Neural Network in Image Recognition: A Study on the Effectiveness of Radial Basis Function
Authors: Anupama Pande, Vishik Goel
Abstract:
A complex valued neural network is a neural network, which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in image and vision processing. In Neural networks, radial basis functions are often used for interpolation in multidimensional space. A Radial Basis function is a function, which has built into it a distance criterion with respect to a centre. Radial basis functions have often been applied in the area of neural networks where they may be used as a replacement for the sigmoid hidden layer transfer characteristic in multi-layer perceptron. This paper aims to present exhaustive results of using RBF units in a complex-valued neural network model that uses the back-propagation algorithm (called 'Complex-BP') for learning. Our experiments results demonstrate the effectiveness of a Radial basis function in a complex valued neural network in image recognition over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error on a neural network model with RBF units. Some inherent properties of this complex back propagation algorithm are also studied and discussed.
Keywords: Complex valued neural network, Radial BasisFunction, Image recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411548 Effect of Compost Application on Uptake and Allocation of Heavy Metals and Plant Nutrients and Quality of Oriental Tobacco Krumovgrad 90
Authors: Violina R. Angelova, Venelina T. Popova, Radka V. Ivanova, Givko T. Ivanov, Krasimir I. Ivanov
Abstract:
A comparative research on the impact of compost on uptake and allocation of nutrients and heavy metals and quality of Oriental tobacco Krumovgrad 90 has been carried out. The experiment was performed on an agricultural field contaminated by the lead zinc smelter near the town of Kardzali, Bulgaria, after closing the lead production. The compost treatments had significant effects on the uptake and allocation of plant nutrients and heavy metals. The incorporation of compost leads to decrease in the amount of heavy metals present in the tobacco leaves, with Cd, Pb and Zn having values of 36%, 12% and 6%, respectively. Application of the compost leads to increased content of potassium, calcium and magnesium in the leaves of tobacco, and therefore, may favorably affect the burning properties of tobacco. The incorporation of compost in the soil has a negative impact on the quality and typicality of the oriental tobacco variety of Krumovgrad 90. The incorporation of compost leads to an increase in the size of the tobacco plant leaves, the leaves become darker in colour, less fleshy and undergo a change in form, becoming (much) broader in the second, third and fourth stalk position. This is accompanied by a decrease in the quality of the tobacco. The incorporation of compost also results in an increase in the mineral substances (pure ash), total nicotine and nitrogen, and a reduction in the amount of reducing sugars, which causes the quality of the tobacco leaves to deteriorate (particularly in the third and fourth harvests).
Keywords: Chemical composition, compost, oriental tobacco, quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279547 Comparing the Behaviour of the FRP and Steel Reinforced Shear Walls under Cyclic Seismic Loading in Aspect of the Energy Dissipation
Authors: H. Rahman, T. Donchev, D. Petkova
Abstract:
Earthquakes claim thousands of lives around the world annually due to inadequate design of lateral load resisting systems particularly shear walls. Additionally, corrosion of the steel reinforcement in concrete structures is one of the main challenges in construction industry. Fibre Reinforced Polymer (FRP) reinforcement can be used as an alternative to traditional steel reinforcement. FRP has several excellent mechanical properties than steel such as high resistance to corrosion, high tensile strength and light self-weight; additionally, it has electromagnetic neutrality advantageous to the structures where it is important such as hospitals, some laboratories and telecommunications. This paper is about results of experimental research and it is incorporating experimental testing of two medium-scale concrete shear wall samples; one reinforced with Basalt FRP (BFRP) bar and one reinforced with steel bars as a control sample. The samples are tested under quasi-static-cyclic loading following modified ATC-24 protocol standard seismic loading. The results of both samples are compared to allow a judgement about performance of BFRP reinforced against steel reinforced concrete shear walls. The results of the conducted researches show a promising momentum toward utilisation of the BFRP as an alternative to traditional steel reinforcement with the aim of improving durability with suitable energy dissipation in the reinforced concrete shear walls.Keywords: Shear walls, internal FRP reinforcement, cyclic loading, energy dissipation and seismic behaviour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 747546 Research on Traditional Rammed Earth Houses in Southern Zhejiang, China: Based on the Theory of Embeddedness
Abstract:
Zhejiang’s special geographical environment has created characteristic mountain dwellings with climate adaptability. Among them, the terrain of southern Zhejiang is dominated by mountainous and hilly landforms, and its traditional dwellings have distinctive characteristics. They are often adapted to local conditions and laid out in accordance with the mountains. In order to block the severe winter weather conditions, local traditional building materials such as rammed earth are mostly used. However, with the development of urbanization, traditional villages have undergone large-scale changes, gradually losing their original uniqueness. In order to solve this problem, this paper takes traditional villages around Baishanzu National Park in Zhejiang as an example and selects nine typical villages in Jingning County and Longquan, respectively. Based on field investigations, this paper extracts the environmental adaptability of local traditional rammed earth houses from the perspective of “geographical embeddedness”. And then combined with case analysis, the paper discusses the translation and development of its traditional architectural methods in contemporary rammed earth buildings in southern Zhejiang.
Keywords: Rammed earth building, lighting, ventilation, geographical embeddedness, modernization translation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 529545 Efficiency of Post-Tensioning Method for Seismic Retrofitting of Pre-Cast Cylindrical Concrete Reservoirs
Authors: M.E.Karbaschi, R.Goudarzizadeh, N.Hedayat
Abstract:
Cylindrical concrete reservoirs are appropriate choice for storing liquids as water, oil and etc. By using of the pre-cast concrete reservoirs instead of the in-situ constructed reservoirs, the speed and precision of the construction would considerably increase. In this construction method, wall and roof panels would make in factory with high quality materials and precise controlling. Then, pre-cast wall and roof panels would carry out to the construction site for assembling. This method has a few faults such as: the existing weeks in connection of wall panels together and wall panels to foundation. Therefore, these have to be resisted under applied loads such as seismic load. One of the innovative methods which was successfully applied for seismic retrofitting of numerous pre-cast cylindrical water reservoirs in New Zealand, using of the high tensile cables around the reservoirs and post-tensioning them. In this paper, analytical modeling of wall and roof panels and post-tensioned cables are carried out with finite element method and the effect of height to diameter ratio, post-tensioning force value, liquid level in reservoir, installing position of tendons on seismic response of reservoirs are investigated.Keywords: Seismic Retrofit, Pre-Cast, Concrete Reservoir, Post-Tensioning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025