Search results for: Ambient conditions
68 Piezoelectric Bimorph Harvester Based on Different Lead Zirconate Titanate Materials to Enhance Energy Collection
Authors: Irene Perez-Alfaro, Nieves Murillo, Carlos Bernal, Daniel Gil-Hernandez
Abstract:
Nowadays, the increasing applicability of internet of things (IoT) systems has changed the way that the world around is perceived. The massive interconnection of systems by means of sensing, processing and communication, allows multitude of data to be at our fingertips. In this way, countless advances have been made in different fields such as personal care, predictive maintenance in industry, quality control in production processes, security, and in everything imaginable. However, all these electronic systems have in common the need to be electrically powered. In this context, batteries and wires are the most commonly used solutions, but they are not a definitive solution in some applications, because of the attainability, the serviceability, or the performance requirements. Therefore, the need arises to look for other types of solutions based on energy harvesting and long-life electronics. Energy Harvesting can be defined as the action of capturing energy from the environment and store it for an instantaneous use or later use. Among the materials capable of harvesting energy from the environment, such as thermoelectrics, electromagnetics, photovoltaics or triboelectrics, the most suitable is the piezoelectric material. The phenomenon of piezoelectricity is one of the most powerful sources for energy harvesting, ranging from a few micro wats to hundreds of wats, depending on certain factors such as material type, geometry, excitation frequency, mechanical and electrical configurations, among others. In this research work, an exhaustive study is carried out on how different types of piezoelectric materials and electrical configurations influence the maximum power that a bimorph harvester is able to extract from mechanical vibrations. A series of experiments has been carried out in which the manufactured bimorph specimens are excited under fixed inertial vibrational conditions. In addition, in order to evaluate the dependence of the maximum transferred power, different load resistors are tested. In this way, the pure active power that achieves the maximum power transfer can be approximated. In this paper, we present the design of low-cost energy harvesting solutions based on piezoelectric smart materials with tunable frequency. The results obtained show the differences in energy extraction between the PZT materials studied and their electrical configurations. The aim of this work is to gain a better understanding of the behavior of piezoelectric materials, and the design process of bimorph PZT harvesters to optimize environmental energy extraction.
Keywords: Bimorph harvesters, electrical impedance, energy harvesting, piezoelectric, smart material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47167 The Gravitational Impact of the Sun and the Moon on Heavy Mineral Deposits and Dust Particles in Low Gravity Regions of the Earth
Authors: T. B. Karu Jayasundara
Abstract:
The Earth’s gravity is not uniform. The satellite imageries of the Earth’s surface from NASA reveal a number of different gravity anomaly regions all over the globe. When the moon rotates around the earth, its gravity has a major physical influence on a number of regions on the earth. This physical change can be seen by the tides. The tides make sea levels high and low in coastal regions. During high tide, the gravitational force of the Moon pulls the Earth’s gravity so that the total gravitational intensity of Earth is reduced; it is further reduced in the low gravity regions of Earth. This reduction in gravity helps keep the suspended particles such as dust in the atmosphere, sand grains in the sea water for longer. Dramatic differences can be seen from the floating dust in the low gravity regions when compared with other regions. The above phenomena can be demonstrated from experiments. The experiments have to be done in high and low gravity regions of the earth during high and low tide, which will assist in comparing the final results. One of the experiments that can be done is by using a water filled cylinder about 80 cm tall, a few particles, which have the same density and same diameter (about 1 mm) and a stop watch. The selected particles were dropped from the surface of the water in the cylinder and the time taken for the particles to reach the bottom of the cylinder was measured using the stop watch. The times of high and low tide charts can be obtained from the regional government authorities. This concept is demonstrated by the particle drop times taken at high and low tides. The result of the experiment shows that the particle settlement time is less in low tide and high in high tide. The experiment for dust particles in air can be collected on filters, which are cellulose ester membranes and using a vacuum pump. The dust on filters can be used to make slides according to the NOHSC method. Counting the dust particles on the slides can be done using a phase contrast microscope. The results show that the concentration of dust is high at high tide and low in low tide. As a result of the high tides, a high concentration of heavy minerals deposit on placer deposits and dust particles retain in the atmosphere for longer in low gravity regions. These conditions are remarkably exhibited in the lowest low gravity region of the earth, mainly in the regions of India, Sri Lanka and in the middle part of the Indian Ocean. The biggest heavy mineral placer deposits are found in coastal regions of India and Sri Lanka and heavy dust particles are found in the atmosphere of India, particularly in the Delhi region.
Keywords: Dust particles, high and low tides, heavy minerals. low gravity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62366 Life Satisfaction of Non-Luxembourgish and Native Luxembourgish Postgraduate Students
Authors: Chrysoula Karathanasi, Senad Karavdic, Angela Odero, Michèle Baumann
Abstract:
It is not only the economic determinants that impact on life conditions, but maintaining a good level of life satisfaction (LS) may also be an important challenge currently. In Luxembourg, university students receive financial aid from the government. They are then registered at the Centre for Documentation and Information on Higher Education (CEDIES). Luxembourg is built on migration with almost half its population consisting of foreigners. It is upon this basis that our research aims to analyze the associations with mental health factors (health satisfaction, psychological quality of life, worry), perceived financial situation, career attitudes (adaptability, optimism, knowledge, planning) and LS, for non-Luxembourgish and native postgraduate students. Between 2012 and 2013, postgraduates registered at CEDIES were contacted by post and asked to participate in an online survey with either the option of English or French. The study population comprised of 644 respondents. Our statistical analysis excluded: those born abroad who had Luxembourgish citizenship, or those born in Luxembourg who did not have citizenship. Two groups were formed one consisting 147 non-Luxembourgish and the other 284 natives. A single item measured LS (1=not at all satisfied to 10=very satisfied). Bivariate tests, correlations and multiple linear regression models were used in which only significant relationships (p<0.05) were integrated. Among the two groups no differences were found between LS indicators (7.8/10 non-Luxembourgish; 8.0/10 natives) as both were higher than the European indicator of 7.2/10 (for 25-34 years). In the case of non-Luxembourgish students, they were older than natives (29.3 years vs. 26.3 years) perceived their financial situation as more difficult, and a higher percentage of their parents had an education level higher than a Bachelor's degree (father 59.2% vs 44.6% for natives; mother 51.4% vs 33.7% for natives). In addition, the father’s education was related to the LS of postgraduates and the higher was the score, the greater was the contribution to LS. Whereas for native students, when their scores of health satisfaction and career optimism were higher, their LS’ score was higher. For both groups their LS was linked to mental health-related factors, perception of their financial situation, career optimism, adaptability and planning. The higher the psychological quality of life score was, the greater the LS of postgraduates’ was. Good health and positive attitudes related to the job market enhanced their LS indicator.
Keywords: Career attitudes, fathers’ education level, life satisfaction, mental health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149465 Model Reference Adaptive Approach for Power System Stabilizer for Damping of Power Oscillations
Authors: Jožef Ritonja, Bojan Grčar, Boštjan Polajžer
Abstract:
In recent years, electricity trade between neighboring countries has become increasingly intense. Increasing power transmission over long distances has resulted in an increase in the oscillations of the transmitted power. The damping of the oscillations can be carried out with the reconfiguration of the network or the replacement of generators, but such solution is not economically reasonable. The only cost-effective solution to improve the damping of power oscillations is to use power system stabilizers. Power system stabilizer represents a part of synchronous generator control system. It utilizes semiconductor’s excitation system connected to the rotor field excitation winding to increase the damping of the power system. The majority of the synchronous generators are equipped with the conventional power system stabilizers with fixed parameters. The control structure of the conventional power system stabilizers and the tuning procedure are based on the linear control theory. Conventional power system stabilizers are simple to realize, but they show non-sufficient damping improvement in the entire operating conditions. This is the reason that advanced control theories are used for development of better power system stabilizers. In this paper, the adaptive control theory for power system stabilizers design and synthesis is studied. The presented work is focused on the use of model reference adaptive control approach. Control signal, which assures that the controlled plant output will follow the reference model output, is generated by the adaptive algorithm. Adaptive gains are obtained as a combination of the "proportional" term and with the σ-term extended "integral" term. The σ-term is introduced to avoid divergence of the integral gains. The necessary condition for asymptotic tracking is derived by means of hyperstability theory. The benefits of the proposed model reference adaptive power system stabilizer were evaluated as objectively as possible by means of a theoretical analysis, numerical simulations and laboratory realizations. Damping of the synchronous generator oscillations in the entire operating range was investigated. Obtained results show the improved damping in the entire operating area and the increase of the power system stability. The results of the presented work will help by the development of the model reference power system stabilizer which should be able to replace the conventional stabilizers in power systems.
Keywords: Power system, stability, oscillations, power system stabilizer, model reference adaptive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62964 The Effect of Complementary Irrigation in Different Growth Stages on Yield, Qualitative and Quantitative Indices of the Two Wheat (Triticum aestivum L.) Cultivars in Mazandaran
Authors: Abbas Ghanbari-Malidarreh
Abstract:
In most wheat growing moderate regions and especially in the north of Iran climate, is affected grain filling by several physical and abiotic stresses. In this region, grain filling often occurs when temperatures are increasing and moisture supply is decreasing. The experiment was designed in RCBD with split plot arrangements with four replications. Four irrigation treatments included (I0) no irrigation (check); (I1) one irrigation (50 mm) at heading stage; (I2) two irrigation (100 mm) at heading and anthesis stage; and (I3) three irrigation (150 mm) at heading, anthesis and early grain filling growth stage, two wheat cultivars (Milan and Shanghai) were cultured in the experiment. Totally raining was 453 mm during the growth season. The result indicated that biological yield, grain yield and harvest index were significantly affected by irrigation levels. I3 treatment produced more tillers number in m2, fertile tillers number in m2, harvest index and biological yield. Milan produced more tillers number in m2, fertile tillers in m2, while Shanghai produced heavier tillers and grain 1000 weight. Plant height was significant in wheat varieties while were not statistically significant in irrigation levels. Milan produced more grain yield, harvest index and biological yield. Grain yield shown that I1, I2, and I3 produced increasing of 5228 (21%), 5460 (27%) and 5670 (29%) kg ha-1, respectively. There was an interaction of irrigation and cultivar on grain yields. In the absence of the irrigation reduced grain 1000 weight from 45 to 40 g. No irrigation reduced soil moisture extraction during the grain filling stage. Current assimilation as a source of carbon for grain filling depends on the light intercepting viable green surfaces of the plant after anthesis that due to natural senescence and the effect of various stresses. At the same time the demand by the growing grain is increasing. It is concluded from research work that wheat crop irrigated Milan cultivar could increase the grain yield in comparison with Shanghai cultivar. Although, the grain yield of Shanghai under irrigation was slightly lower than Milan. This grain yield also was related to weather condition, sowing date, plant density and location conditions and management of fertilizers, because there was not significant difference in biological and straw yield. The best result was produced by I1 treatment. I2 and I3 treatments were not significantly difference with I1 treatment. Grain yield of I1 indicated that wheat is under soil moisture deficiency. Therefore, I1 irrigation was better than I0.Keywords: anthesis, grain yield, irrigation, supplementary, Wheat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169263 Human Factors as the Main Reason of the Accident in Scaffold Use Assessment
Authors: Krzysztof J. Czarnocki, E. Czarnocka, K. Szaniawska
Abstract:
Main goal of the research project is Scaffold Use Risk Assessment Model (SURAM) formulation, developed for the assessment of risk levels as a various construction process stages with various work trades. Finally, in 2016, the project received financing by the National Center for Research and development according to PBS3/A2/19/2015–Research Grant. The presented data, calculations and analyzes discussed in this paper were created as a result of the completion on the first and second phase of the PBS3/A2/19/2015 project. Method: One of the arms of the research project is the assessment of worker visual concentration on the sight zones as well as risky visual point inadequate observation. In this part of research, the mobile eye-tracker was used to monitor the worker observation zones. SMI Eye Tracking Glasses is a tool, which allows us to analyze in real time and place where our eyesight is concentrated on and consequently build the map of worker's eyesight concentration during a shift. While the project is still running, currently 64 construction sites have been examined, and more than 600 workers took part in the experiment including monitoring of typical parameters of the work regimen, workload, microclimate, sound vibration, etc. Full equipment can also be useful in more advanced analyses. Because of that technology we have verified not only main focus of workers eyes during work on or next to scaffolding, but we have also examined which changes in the surrounding environment during their shift influenced their concentration. In the result of this study it has been proven that only up to 45.75% of the shift time, workers’ eye concentration was on one of three work-related areas. Workers seem to be distracted by noisy vehicles or people nearby. In opposite to our initial assumptions and other authors’ findings, we observed that the reflective parts of the scaffoldings were not more recognized by workers in their direct workplaces. We have noticed that the red curbs were the only well recognized part on a very few scaffoldings. Surprisingly on numbers of samples, we have not recognized any significant number of concentrations on those curbs. Conclusion: We have found the eye-tracking method useful for the construction of the SURAM model in the risk perception and worker’s behavior sub-modules. We also have found that the initial worker's stress and work visual conditions seem to be more predictive for assessment of the risky developing situation or an accident than other parameters relating to a work environment.
Keywords: Accident assessment model, eye tracking, occupational safety, scaffolding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 114762 Optimization of Mechanical Properties of Alginate Hydrogel for 3D Bio-Printing Self-Standing Scaffold Architecture for Tissue Engineering Applications
Authors: Ibtisam A. Abbas Al-Darkazly
Abstract:
In this study, the mechanical properties of alginate hydrogel material for self-standing 3D scaffold architecture with proper shape fidelity are investigated. In-lab built 3D bio-printer extrusion-based technology is utilized to fabricate 3D alginate scaffold constructs. The pressure, needle speed and stage speed are varied using a computer-controlled system. The experimental result indicates that the concentration of alginate solution, calcium chloride (CaCl2) cross-linking concentration and cross-linking ratios lead to the formation of alginate hydrogel with various gelation states. Besides, the gelling conditions, such as cross-linking reaction time and temperature also have a significant effect on the mechanical properties of alginate hydrogel. Various experimental tests such as the material gelation, the material spreading and the printability test for filament collapse as well as the swelling test were conducted to evaluate the fabricated 3D scaffold constructs. The result indicates that the fabricated 3D scaffold from composition of 3.5% wt alginate solution, that is prepared in DI water and 1% wt CaCl2 solution with cross-linking ratios of 7:3 show good printability and sustain good shape fidelity for more than 20 days, compared to alginate hydrogel that is prepared in a phosphate buffered saline (PBS). The fabricated self-standing 3D scaffold constructs measured 30 mm × 30 mm and consisted of 4 layers (n = 4) show good pore geometry and clear grid structure after printing. In addition, the percentage change of swelling degree exhibits high swelling capability with respect to time. The swelling test shows that the geometry of 3D alginate-scaffold construct and of the macro-pore are rarely changed, which indicates the capability of holding the shape fidelity during the incubation period. This study demonstrated that the mechanical and physical properties of alginate hydrogel could be tuned for a 3D bio-printing extrusion-based system to fabricate self-standing 3D scaffold soft structures. This 3D bioengineered scaffold provides a natural microenvironment present in the extracellular matrix of the tissue, which could be seeded with the biological cells to generate the desired 3D live tissue model for in vitro and in vivo tissue engineering applications.
Keywords: Biomaterial, calcium chloride, 3D bio-printing, extrusion, scaffold, sodium alginate, tissue engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77561 Risk Based Maintenance Planning for Loading Equipment in Underground Hard Rock Mine: Case Study
Authors: Sidharth Talan, Devendra Kumar Yadav, Yuvraj Singh Rajput, Subhajit Bhattacharjee
Abstract:
Mining industry is known for its appetite to spend sizeable capital on mine equipment. However, in the current scenario, the mining industry is challenged by daunting factors of non-uniform geological conditions, uneven ore grade, uncontrollable and volatile mineral commodity prices and the ever increasing quest to optimize the capital and operational costs. Thus, the role of equipment reliability and maintenance planning inherits a significant role in augmenting the equipment availability for the operation and in turn boosting the mine productivity. This paper presents the Risk Based Maintenance (RBM) planning conducted on mine loading equipment namely Load Haul Dumpers (LHDs) at Vedanta Resources Ltd subsidiary Hindustan Zinc Limited operated Sindesar Khurd Mines, an underground zinc and lead mine situated in Dariba, Rajasthan, India. The mining equipment at the location is maintained by the Original Equipment Manufacturers (OEMs) namely Sandvik and Atlas Copco, who carry out the maintenance and inspection operations for the equipment. Based on the downtime data extracted for the equipment fleet over the period of 6 months spanning from 1st January 2017 until 30th June 2017, it was revealed that significant contribution of three downtime issues related to namely Engine, Hydraulics, and Transmission to be common among all the loading equipment fleet and substantiated by Pareto Analysis. Further scrutiny through Bubble Matrix Analysis of the given factors revealed the major influence of selective factors namely Overheating, No Load Taken (NTL) issues, Gear Changing issues and Hose Puncture and leakage issues. Utilizing the equipment wise analysis of all the downtime factors obtained, spares consumed, and the alarm logs extracted from the machines, technical design changes in the equipment and pre shift critical alarms checklist were proposed for the equipment maintenance. The given analysis is beneficial to allow OEMs or mine management to focus on the critical issues hampering the reliability of mine equipment and design necessary maintenance strategies to mitigate them.
Keywords: Bubble matrix analysis, LHDs, OEMs, pareto chart analysis, spares consumption matrix, critical alarms checklist.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109160 Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations
Authors: K. Al Ammari, B. G. Clarke
Abstract:
Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design.
Keywords: Bearing capacity, design, Installation, numerical analysis, settlement, stone column.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183559 Qanat (Subterranean Canal) Role in Traditional Cities and Settlements Formation of Hot-Arid Regions of Iran
Authors: Karim Shiraazi, Mahyar Asheghi Milani, Alireza Sadeghi, Eram Azami, Ahadollah Azami
Abstract:
A passive system "Qanat" is collection of some underground wells. A mother-well was dug in a place far from the city where they could reach to the water table maybe 100 meters underground, they dug other wells to direct water toward the city, with minimum possible gradient. Using the slope of the earth they could bring water close to the surface in the city. The source of water or the appearance of Qanat, land slope and the ownership lines are the important and effective factors in the formation of routes and the segment division of lands to the extent that making use of Qanat as the techniques of extracting underground waters creates a channel of routes with an organic order and hierarchy coinciding the slope of land and it also guides the Qanat waters in the tradition texture of salt desert and border provinces of it. Qanats are excavated in a specified distinction from each other. The quantity of water provided by Qanats depends on the kind of land, distance from mountain, geographical situation of them and the rate of water supply from the underground land. The rate of underground waters, possibility of Qanat excavation, number of Qanats and rate of their water supply from one hand and the quantity of cultivable fertile lands from the other hand are the important natural factors making the size of cities. In the same manner the cities with several Qanats have multi central textures. The location of cities is in direct relation with land quality, soil fertility and possibility of using underground water by excavating Qanats. Observing the allowable distance for Qanat watering is a determining factor for distance between villages and cities. Topography, land slope, soil quality, watering system, ownership, kind of cultivation, etc. are the effective factors in directing Qanats for excavation and guiding water toward the cultivable lands and it also causes the formation of different textures in land division of farming provinces. Several divisions such as orderly and wide, inorderly, thin and long, comb like, etc. are the introduction to organic order. And at the same time they are complete coincidence with environmental conditions in the typical development of ecological architecture and planning in the traditional cities and settlements order.Keywords: Qanat, Settlement Formation, Hot-Arid Region, Sustainable Development
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192058 Agreement between Basal Metabolic Rate Measured by Bioelectrical Impedance Analysis and Estimated by Prediction Equations in Obese Groups
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Basal metabolic rate (BMR) is widely used and an accepted measure of energy expenditure. Its principal determinant is body mass. However, this parameter is also correlated with a variety of other factors. The objective of this study is to measure BMR and compare it with the values obtained from predictive equations in adults classified according to their body mass index (BMI) values. 276 adults were included into the scope of this study. Their age, height and weight values were recorded. Five groups were designed based on their BMI values. First group (n = 85) was composed of individuals with BMI values varying between 18.5 and 24.9 kg/m2. Those with BMI values varying from 25.0 to 29.9 kg/m2 constituted Group 2 (n = 90). Individuals with 30.0-34.9 kg/m2, 35.0-39.9 kg/m2, > 40.0 kg/m2 were included in Group 3 (n = 53), 4 (n = 28) and 5 (n = 20), respectively. The most commonly used equations to be compared with the measured BMR values were selected. For this purpose, the values were calculated by the use of four equations to predict BMR values, by name, introduced by Food and Agriculture Organization (FAO)/World Health Organization (WHO)/United Nations University (UNU), Harris and Benedict, Owen and Mifflin. Descriptive statistics, ANOVA, post-Hoc Tukey and Pearson’s correlation tests were performed by a statistical program designed for Windows (SPSS, version 16.0). p values smaller than 0.05 were accepted as statistically significant. Mean ± SD of groups 1, 2, 3, 4 and 5 for measured BMR in kcal were 1440.3 ± 210.0, 1618.8 ± 268.6, 1741.1 ± 345.2, 1853.1 ± 351.2 and 2028.0 ± 412.1, respectively. Upon evaluation of the comparison of means among groups, differences were highly significant between Group 1 and each of the remaining four groups. The values were increasing from Group 2 to Group 5. However, differences between Group 2 and Group 3, Group 3 and Group 4, Group 4 and Group 5 were not statistically significant. These insignificances were lost in predictive equations proposed by Harris and Benedict, FAO/WHO/UNU and Owen. For Mifflin, the insignificance was limited only to Group 4 and Group 5. Upon evaluation of the correlations of measured BMR and the estimated values computed from prediction equations, the lowest correlations between measured BMR and estimated BMR values were observed among the individuals within normal BMI range. The highest correlations were detected in individuals with BMI values varying between 30.0 and 34.9 kg/m2. Correlations between measured BMR values and BMR values calculated by FAO/WHO/UNU as well as Owen were the same and the highest. In all groups, the highest correlations were observed between BMR values calculated from Mifflin and Harris and Benedict equations using age as an additional parameter. In conclusion, the unique resemblance of the FAO/WHO/UNU and Owen equations were pointed out. However, mean values obtained from FAO/WHO/UNU were much closer to the measured BMR values. Besides, the highest correlations were found between BMR calculated from FAO/WHO/UNU and measured BMR. These findings suggested that FAO/WHO/UNU was the most reliable equation, which may be used in conditions when the measured BMR values are not available.Keywords: Adult, basal metabolic rate, FAO/WHO/UNU, obesity, prediction equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 101057 Plasma Arc Burner for Pulverized Coal Combustion
Authors: Gela Gelashvili, David Gelenidze, Sulkhan Nanobashvili, Irakli Nanobashvili, George Tavkhelidze, Tsiuri Sitchinava
Abstract:
Development of new highly efficient plasma arc combustion system of pulverized coal is presented. As it is well-known, coal is one of the main energy carriers by means of which electric and heat energy is produced in thermal power stations. The quality of the extracted coal decreases very rapidly. Therefore, the difficulties associated with its firing and complete combustion arise and thermo-chemical preparation of pulverized coal becomes necessary. Usually, other organic fuels (mazut-fuel oil or natural gas) are added to low-quality coal for this purpose. The fraction of additional organic fuels varies within 35-40% range. This decreases dramatically the economic efficiency of such systems. At the same time, emission of noxious substances in the environment increases. Because of all these, intense development of plasma combustion systems of pulverized coal takes place in whole world. These systems are equipped with Non-Transferred Plasma Arc Torches. They allow practically complete combustion of pulverized coal (without organic additives) in boilers, increase of energetic and financial efficiency. At the same time, emission of noxious substances in the environment decreases dramatically. But, the non-transferred plasma torches have numerous drawbacks, e.g. complicated construction, low service life (especially in the case of high power), instability of plasma arc and most important – up to 30% of energy loss due to anode cooling. Due to these reasons, intense development of new plasma technologies that are free from these shortcomings takes place. In our proposed system, pulverized coal-air mixture passes through plasma arc area that burns between to carbon electrodes directly in pulverized coal muffler burner. Consumption of the carbon electrodes is low and does not need a cooling system, but the main advantage of this method is that radiation of plasma arc directly impacts on coal-air mixture that accelerates the process of thermo-chemical preparation of coal to burn. To ensure the stability of the plasma arc in such difficult conditions, we have developed a power source that provides fixed current during fluctuations in the arc resistance automatically compensated by the voltage change as well as regulation of plasma arc length over a wide range. Our combustion system where plasma arc acts directly on pulverized coal-air mixture is simple. This should allow a significant improvement of pulverized coal combustion (especially low-quality coal) and its economic efficiency. Preliminary experiments demonstrated the successful functioning of the system.Keywords: Coal combustion, plasma arc, plasma torches, pulverized coal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 127456 H2 Permeation Properties of a Catalytic Membrane Reactor in Methane Steam Reforming Reaction
Authors: M. Amanipour, J. Towfighi, E. Ganji Babakhani, M. Heidari
Abstract:
Cylindrical alumina microfiltration membrane (GMITM Corporation, inside diameter=9 mm, outside diameter=13 mm, length= 50 mm) with an average pore size of 0.5 micrometer and porosity of about 0.35 was used as the support for membrane reactor. This support was soaked in boehmite sols, and the mean particle size was adjusted in the range of 50 to 500 nm by carefully controlling hydrolysis time, and calcined at 650 °C for two hours. This process was repeated with different boehmite solutions in order to achieve an intermediate layer with an average pore size of about 50 nm. The resulting substrate was then coated with a thin and dense layer of silica by counter current chemical vapour deposition (CVD) method. A boehmite sol with 10 wt.% of nickel which was prepared by a standard procedure was used to make the catalytic layer. BET, SEM, and XRD analysis were used to characterize this layer. The catalytic membrane reactor was placed in an experimental setup to evaluate the permeation and hydrogen separation performance for a steam reforming reaction. The setup consisted of a tubular module in which the membrane was fixed, and the reforming reaction occurred at the inner side of the membrane. Methane stream, diluted with nitrogen, and deionized water with a steam to carbon (S/C) ratio of 3.0 entered the reactor after the reactor was heated up to 500 °C with a specified rate of 2 °C/ min and the catalytic layer was reduced at presence of hydrogen for 2.5 hours. Nitrogen flow was used as sweep gas through the outer side of the reactor. Any liquid produced was trapped and separated at reactor exit by a cold trap, and the produced gases were analyzed by an on-line gas chromatograph (Agilent 7890A) to measure total CH4 conversion and H2 permeation. BET analysis indicated uniform size distribution for catalyst with average pore size of 280 nm and average surface area of 275 m2.g-1. Single-component permeation tests were carried out for hydrogen, methane, and carbon dioxide at temperature range of 500-800 °C, and the results showed almost the same permeance and hydrogen selectivity values for hydrogen as the composite membrane without catalytic layer. Performance of the catalytic membrane was evaluated by applying membranes as a membrane reactor for methane steam reforming reaction at gas hourly space velocity (GHSV) of 10,000 h−1 and 2 bar. CH4 conversion increased from 50% to 85% with increasing reaction temperature from 600 °C to 750 °C, which is sufficiently above equilibrium curve at reaction conditions, but slightly lower than membrane reactor with packed nickel catalytic bed because of its higher surface area compared to the catalytic layer.Keywords: Catalytic membrane, hydrogen, methane steam reforming, permeance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89555 Bioleaching for Efficient Copper Ore Recovery
Authors: Zh. Karaulova, D. Baizhigitov
Abstract:
At the Aktogay deposit, the oxidized ore section has been developed since 2015; by now, the reserves of easily enriched ore are decreasing, and a large number of copper-poor, difficult-to-enrich ores has been accumulated in the dumps of the KAZ Minerals Aktogay deposit, which is unprofitable to mine using the traditional mining methods. Hence, another technology needs to be implemented, which will significantly expand the raw material base of copper production in Kazakhstan and ensure the efficient use of natural resources. Heap and dump bacterial recovery are the most acceptable technologies for processing low-grade secondary copper sulfide ores. Test objects were the copper ores of Aktogay deposit and chemolithotrophic bacteria Leptospirillum ferrooxidans (L.f.), Acidithiobacillus caldus (A.c.), Sulfobacillus acidophilus (S.a.), represent mixed cultures utilized in bacterial oxidation systems. They can stay active in the 20-40 °C temperature range. Biocatalytic acceleration was achieved as a result of bacteria oxidizing iron sulfides to form iron sulfate, which subsequently underwent chemical oxidation to become sulfate oxide. The following results have been achieved at the initial stage: the goal was to grow and maintain the life activity of bacterial cultures under laboratory conditions. These bacteria grew the best within the pH 1,2-1,8 range with light stirring and in an aerated environment. The optimal growth temperature was 30-33 оC. The growth rate decreased by one-half for each 4-5 °C fall in temperature from 30 °C. At best, the number of bacteria doubled every 24 hours. Typically, the maximum concentration of cells that can be grown in ferrous solution is about 107/ml. A further step researched in this case was the adaptation of microorganisms to the environment of certain metals. This was followed by mass production of inoculum and maintenance for their further cultivation on a factory scale. This was done by adding sulfide concentrate, allowing the bacteria to convert the ferrous sulfate as indicated by the Eh (> 600 mV), then diluting to double the volume and adding concentrate to achieve the same metal level. This process was repeated until the desired metal level and volumes were achieved. The final stage of bacterial recovery was the transportation and irrigation of secondary sulfide copper ores of the oxidized ore section. In conclusion, the project was implemented at the Aktogay mine since the bioleaching process was prolonged. Besides, the method of bacterial recovery might compete well with existing non-biological methods of extraction of metals from ores.
Keywords: Bacterial recovery, copper ore, bioleaching, bacterial inoculum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16054 A Methodology to Virtualize Technical Engineering Laboratories: MastrLAB-VR
Authors: Ivana Scidà, Francesco Alotto, Anna Osello
Abstract:
Due to the importance given today to innovation, the education sector is evolving thanks digital technologies. Virtual Reality (VR) can be a potential teaching tool offering many advantages in the field of training and education, as it allows to acquire theoretical knowledge and practical skills using an immersive experience in less time than the traditional educational process. These assumptions allow to lay the foundations for a new educational environment, involving and stimulating for students. Starting from the objective of strengthening the innovative teaching offer and the learning processes, the case study of the research concerns the digitalization of MastrLAB, High Quality Laboratory (HQL) belonging to the Department of Structural, Building and Geotechnical Engineering (DISEG) of the Polytechnic of Turin, a center specialized in experimental mechanical tests on traditional and innovative building materials and on the structures made with them. The MastrLAB-VR has been developed, a revolutionary innovative training tool designed with the aim of educating the class in total safety on the techniques of use of machinery, thus reducing the dangers arising from the performance of potentially dangerous activities. The virtual laboratory, dedicated to the students of the Building and Civil Engineering Courses of the Polytechnic of Turin, has been projected to simulate in an absolutely realistic way the experimental approach to the structural tests foreseen in their courses of study: from the tensile tests to the relaxation tests, from the steel qualification tests to the resilience tests on elements at environmental conditions or at characterizing temperatures. The research work proposes a methodology for the virtualization of technical laboratories through the application of Building Information Modelling (BIM), starting from the creation of a digital model. The process includes the creation of an independent application, which with Oculus Rift technology will allow the user to explore the environment and interact with objects through the use of joypads. The application has been tested in prototype way on volunteers, obtaining results related to the acquisition of the educational notions exposed in the experience through a virtual quiz with multiple answers, achieving an overall evaluation report. The results have shown that MastrLAB-VR is suitable for both beginners and experts and will be adopted experimentally for other laboratories of the University departments.
Keywords: Building Information Modelling, digital learning, education, virtual laboratory, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84253 Inner and Outer School Contextual Factors Associated with Poor Performance of Grade 12 Students: A Case Study of an Underperforming High School in Mpumalanga, South Africa
Authors: Victoria L. Nkosi, Parvaneh Farhangpour
Abstract:
Often a Grade 12 certificate is perceived as a passport to tertiary education and the minimum requirement to enter the world of work. In spite of its importance, many students do not make this milestone in South Africa. It is important to find out why so many students still fail in spite of transformation in the education system in the post-apartheid era. Given the complexity of education and its context, this study adopted a case study design to examine one historically underperforming high school in Bushbuckridge, Mpumalanga Province, South Africa in 2013. The aim was to gain a understanding of the inner and outer school contextual factors associated with the high failure rate among Grade 12 students. Government documents and reports were consulted to identify factors in the district and the village surrounding the school and a student survey was conducted to identify school, home and student factors. The randomly-sampled half of the population of Grade 12 students (53) participated in the survey and quantitative data are analyzed using descriptive statistical methods. The findings showed that a host of factors is at play. The school is located in a village within a municipality which has been one of the poorest three municipalities in South Africa and the lowest Grade 12 pass rate in the Mpumalanga province. Moreover, over half of the families of the students are single parents, 43% are unemployed and the majority has a low level of education. In addition, most families (83%) do not have basic study materials such as a dictionary, books, tables, and chairs. A significant number of students (70%) are over-aged (+19 years old); close to half of them (49%) are grade repeaters. The school itself lacks essential resources, namely computers, science laboratories, library, and enough furniture and textbooks. Moreover, teaching and learning are negatively affected by the teachers’ occasional absenteeism, inadequate lesson preparation, and poor communication skills. Overall, the continuous low performance of students in this school mirrors the vicious circle of multiple negative conditions present within and outside of the school. The complexity of factors associated with the underperformance of Grade 12 students in this school calls for a multi-dimensional intervention from government and stakeholders. One important intervention should be the placement of over-aged students and grade-repeaters in suitable educational institutions for the benefit of other students.
Keywords: Inner context, outer context, over-aged students, vicious circle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 124852 The Effect of Sea Buckthorn (Hippophae rhamnoides L.) Berries on Some Quality Characteristics of Cooked Pork Sausages
Authors: Anna M. Salejda, Urszula Tril, Grażyna Krasnowska
Abstract:
The aim of this study was to analyze selected quality characteristics of cooked pork sausages manufactured with the addition of Sea buckthorn (Hippophae rhamnoides L.) berries preparations. Stuffings of model sausages consisted of pork, backfat, water and additives such a curing salt and sodium isoascorbate. Functional additives used in production process were two preparations obtained from dried Sea buckthorn berries in form of powder and brew. Powder of dried berries was added in amount of 1 and 3 g, while water infusion as a replacement of 50 and 100% ice water included in meat products formula. Control samples were produced without functional additives. Experimental stuffings were heat treated in water bath and stored for 4 weeks under cooled conditions (4±1ºC). Physical parameters of colour, texture profile and technological parameters as acidity, weight losses and water activity were estimated. The effect of Sea buckthorn berries preparations on lipid oxidation during storage of final products was determine by TBARS method.
Studies have shown that addition of Sea buckthorn preparations to meat-fatty batters significant (P≤0.05) reduced the pH values of sausages samples after thermal treatment. Moreover, the addition of berries powder caused significant differences (P ≤ 0.05) in weight losses after cooking process. Analysis of results of texture profile analysis indicated, that utilization of infusion prepared from Sea buckthorn dried berries caused increase of springiness, gumminess and chewiness of final meat products. At the same time, the highest amount of Sea buckthorn berries powder in recipe caused the decrease of all measured texture parameters. Utilization of experimental preparations significantly decreased (P≤0.05) lightness (L* parameter of color) of meat products. Simultaneously, introduction of 1 and 3 grams of Sea buckthorn berries powder to meat-fatty batter increased redness (a* parameter) of samples under investigation. Higher content of substances reacting with thiobarbituric acid was observed in meat products produced without functional additives. It was observed that powder of Sea buckthorn berries added to meat-fatty batters caused higher protection against lipid oxidation in cooked sausages.
Keywords: Sea buckthorn, meat products, texture, color parameters, lipid oxidation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 287151 O-Functionalized CNT Mediated CO Hydro-Deoxygenation and Chain Growth
Authors: K. Mondal, S. Talapatra, M. Terrones, S. Pokhrel, C. Frizzel, B. Sumpter, V. Meunier, A. L. Elias
Abstract:
Worldwide energy independence is reliant on the ability to leverage locally available resources for fuel production. Recently, syngas produced through gasification of carbonaceous materials provided a gateway to a host of processes for the production of various chemicals including transportation fuels. The basis of the production of gasoline and diesel-like fuels is the Fischer Tropsch Synthesis (FTS) process: A catalyzed chemical reaction that converts a mixture of carbon monoxide (CO) and hydrogen (H2) into long chain hydrocarbons. Until now, it has been argued that only transition metal catalysts (usually Co or Fe) are active toward the CO hydrogenation and subsequent chain growth in the presence of hydrogen. In this paper, we demonstrate that carbon nanotube (CNT) surfaces are also capable of hydro-deoxygenating CO and producing long chain hydrocarbons similar to that obtained through the FTS but with orders of magnitude higher conversion efficiencies than the present state-of-the-art FTS catalysts. We have used advanced experimental tools such as XPS and microscopy techniques to characterize CNTs and identify C-O functional groups as the active sites for the enhanced catalytic activity. Furthermore, we have conducted quantum Density Functional Theory (DFT) calculations to confirm that C-O groups (inherent on CNT surfaces) could indeed be catalytically active towards reduction of CO with H2, and capable of sustaining chain growth. The DFT calculations have shown that the kinetically and thermodynamically feasible route for CO insertion and hydro-deoxygenation are different from that on transition metal catalysts. Experiments on a continuous flow tubular reactor with various nearly metal-free CNTs have been carried out and the products have been analyzed. CNTs functionalized by various methods were evaluated under different conditions. Reactor tests revealed that the hydrogen pre-treatment reduced the activity of the catalysts to negligible levels. Without the pretreatment, the activity for CO conversion as found to be 7 µmol CO/g CNT/s. The O-functionalized samples showed very activities greater than 85 µmol CO/g CNT/s with nearly 100% conversion. Analyses show that CO hydro-deoxygenation occurred at the C-O/O-H functional groups. It was found that while the products were similar to FT products, differences in selectivities were observed which, in turn, was a result of a different catalytic mechanism. These findings now open a new paradigm for CNT-based hydrogenation catalysts and constitute a defining point for obtaining clean, earth abundant, alternative fuels through the use of efficient and renewable catalyst.
Keywords: CNT, CO hydro-deoxygenation, DFT, liquid fuels, XPS, XTL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77750 Heat Transfer Dependent Vortex Shedding of Thermo-Viscous Shear-Thinning Fluids
Authors: Markus Rütten, Olaf Wünsch
Abstract:
Non-Newtonian fluid properties can change the flow behaviour significantly, its prediction is more difficult when thermal effects come into play. Hence, the focal point of this work is the wake flow behind a heated circular cylinder in the laminar vortex shedding regime for thermo-viscous shear thinning fluids. In the case of isothermal flows of Newtonian fluids the vortex shedding regime is characterised by a distinct Reynolds number and an associated Strouhal number. In the case of thermo-viscous shear thinning fluids the flow regime can significantly change in dependence of the temperature of the viscous wall of the cylinder. The Reynolds number alters locally and, consequentially, the Strouhal number globally. In the present CFD study the temperature dependence of the Reynolds and Strouhal number is investigated for the flow of a Carreau fluid around a heated cylinder. The temperature dependence of the fluid viscosity has been modelled by applying the standard Williams-Landel-Ferry (WLF) equation. In the present simulation campaign thermal boundary conditions have been varied over a wide range in order to derive a relation between dimensionless heat transfer, Reynolds and Strouhal number. Together with the shear thinning due to the high shear rates close to the cylinder wall this leads to a significant decrease of viscosity of three orders of magnitude in the nearfield of the cylinder and a reduction of two orders of magnitude in the wake field. Yet the shear thinning effect is able to change the flow topology: a complex K´arm´an vortex street occurs, also revealing distinct characteristic frequencies associated with the dominant and sub-dominant vortices. Heating up the cylinder wall leads to a delayed flow separation and narrower wake flow, giving lesser space for the sequence of counter-rotating vortices. This spatial limitation does not only reduce the amplitude of the oscillating wake flow it also shifts the dominant frequency to higher frequencies, furthermore it damps higher harmonics. Eventually the locally heated wake flow smears out. Eventually, the CFD simulation results of the systematically varied thermal flow parameter study have been used to describe a relation for the main characteristic order parameters.Keywords: Heat transfer, thermo-viscous fluids, shear thinning, vortex shedding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83849 Suggestion of Ultrasonic System for Diagnosis of Functional Gastrointestinal Disorders: Finite Difference Analysis, Development and Clinical Trials
Authors: Won-Pil Park, Qyoun-Jung Lee, Dae-Gon Woo, Chang-Yong Ko, Eun-Geun Kim, Dohyung Lim, Yong-Heum Lee, Tae-Min Shin, Han-Sung Kim
Abstract:
The disaster from functional gastrointestinal disorders has detrimental impact on the quality of life of the effected population and imposes a tremendous social and economic burden. There are, however, rare diagnostic methods for the functional gastrointestinal disorders. Our research group identified recently that the gastrointestinal tract well in the patients with the functional gastrointestinal disorders becomes more rigid than healthy people when palpating the abdominal regions overlaying the gastrointestinal tract. Objective of current study is, therefore, identify feasibility of a diagnostic system for the functional gastrointestinal disorders based on ultrasound technique, which can quantify the characteristics above. Two-dimensional finite difference (FD) models (one normal and two rigid model) were developed to analyze the reflective characteristic (displacement) on each soft-tissue layer responded after application of ultrasound signals. The FD analysis was then based on elastic ultrasound theory. Validation of the model was performed via comparison of the characteristic of the ultrasonic responses predicted by FD analysis with that determined from the actual specimens for the normal and rigid conditions. Based on the results from FD analysis, ultrasound system for diagnosis of the functional gastrointestinal disorders was developed and clinically tested via application of it to 40 human subjects with/without functional gastrointestinal disorders who were assigned to Normal and Patient Groups. The FD models were favorably validated. The results from FD analysis showed that the maximum displacement amplitude in the rigid models (0.12 and 0.16) at the interface between the fat and muscle layers was explicitly less than that in the normal model (0.29). The results from actual specimens showed that the maximum amplitude of the ultrasonic reflective signal in the rigid models (0.2±0.1Vp-p) at the interface between the fat and muscle layers was explicitly higher than that in the normal model (0.1±0.2 Vp-p). Clinical tests using our customized ultrasound system showed that the maximum amplitudes of the ultrasonic reflective signals near to the gastrointestinal tract well for the patient group (2.6±0.3 Vp-p) were generally higher than those in normal group (0.1±0.2 Vp-p). Here, maximum reflective signals was appeared at 20mm depth approximately from abdominal skin for all human subjects, corresponding to the location of the boundary layer close to gastrointestinal tract well. These findings suggest that our customized ultrasound system using the ultrasonic reflective signal may be helpful to the diagnosis of the functional gastrointestinal disorders.Keywords: Finite Difference (FD) Analysis, FunctionalGastrointestinal Disorders, Gastrointestinal Tract, UltrasonicResponses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161548 Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms
Authors: Dhruvit S. Berawala, Jann R. Ursin, Obrad Slijepcevic
Abstract:
Shale gas is one of the most rapidly growing forms of natural gas. Unconventional natural gas deposits are difficult to characterize overall, but in general are often lower in resource concentration and dispersed over large areas. Moreover, gas is densely packed into the matrix through adsorption which accounts for large volume of gas reserves. Gas production from tight shale deposits are made possible by extensive and deep well fracturing which contacts large fractions of the formation. The conventional reservoir modelling and production forecasting methods, which rely on fluid-flow processes dominated by viscous forces, have proved to be very pessimistic and inaccurate. This paper presents a new approach to forecast shale gas production by detailed modeling of gas desorption, diffusion and non-linear flow mechanisms in combination with statistical representation of these processes. The representation of the model involves a cube as a porous media where free gas is present and a sphere (SiC: Sphere in Cube model) inside it where gas is adsorbed on to the kerogen or organic matter. Further, the sphere is considered consisting of many layers of adsorbed gas in an onion-like structure. With pressure decline, the gas desorbs first from the outer most layer of sphere causing decrease in its molecular concentration. The new available surface area and change in concentration triggers the diffusion of gas from kerogen. The process continues until all the gas present internally diffuses out of the kerogen, gets adsorbs onto available surface area and then desorbs into the nanopores and micro-fractures in the cube. Each SiC idealizes a gas pathway and is characterized by sphere diameter and length of the cube. The diameter allows to model gas storage, diffusion and desorption; the cube length takes into account the pathway for flow in nanopores and micro-fractures. Many of these representative but general cells of the reservoir are put together and linked to a well or hydraulic fracture. The paper quantitatively describes these processes as well as clarifies the geological conditions under which a successful shale gas production could be expected. A numerical model has been derived which is then compiled on FORTRAN to develop a simulator for the production of shale gas by considering the spheres as a source term in each of the grid blocks. By applying SiC to field data, we demonstrate that the model provides an effective way to quickly access gas production rates from shale formations. We also examine the effect of model input properties on gas production.Keywords: Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82347 Reducing Pressure Drop in Microscale Channel Using Constructal Theory
Authors: K. X. Cheng, A. L. Goh, K. T. Ooi
Abstract:
The effectiveness of microchannels in enhancing heat transfer has been demonstrated in the semiconductor industry. In order to tap the microscale heat transfer effects into macro geometries, overcoming the cost and technological constraints, microscale passages were created in macro geometries machined using conventional fabrication methods. A cylindrical insert was placed within a pipe, and geometrical profiles were created on the outer surface of the insert to enhance heat transfer under steady-state single-phase liquid flow conditions. However, while heat transfer coefficient values of above 10 kW/m2·K were achieved, the heat transfer enhancement was accompanied by undesirable pressure drop increment. Therefore, this study aims to address the high pressure drop issue using Constructal theory, a universal design law for both animate and inanimate systems. Two designs based on Constructal theory were developed to study the effectiveness of Constructal features in reducing the pressure drop increment as compared to parallel channels, which are commonly found in microchannel fabrication. The hydrodynamic and heat transfer performance for the Tree insert and Constructal fin (Cfin) insert were studied using experimental methods, and the underlying mechanisms were substantiated by numerical results. In technical terms, the objective is to achieve at least comparable increment in both heat transfer coefficient and pressure drop, if not higher increment in the former parameter. Results show that the Tree insert improved the heat transfer performance by more than 16 percent at low flow rates, as compared to the Tree-parallel insert. However, the heat transfer enhancement reduced to less than 5 percent at high Reynolds numbers. On the other hand, the pressure drop increment stayed almost constant at 20 percent. This suggests that the Tree insert has better heat transfer performance in the low Reynolds number region. More importantly, the Cfin insert displayed improved heat transfer performance along with favourable hydrodynamic performance, as compared to Cfinparallel insert, at all flow rates in this study. At 2 L/min, the enhancement of heat transfer was more than 30 percent, with 20 percent pressure drop increment, as compared to Cfin-parallel insert. Furthermore, comparable increment in both heat transfer coefficient and pressure drop was observed at 8 L/min. In other words, the Cfin insert successfully achieved the objective of this study. Analysis of the results suggests that bifurcation of flows is effective in reducing the increment in pressure drop relative to heat transfer enhancement. Optimising the geometries of the Constructal fins is therefore the potential future study in achieving a bigger stride in energy efficiency at much lower costs.Keywords: Constructal theory, enhanced heat transfer, microchannel, pressure drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149246 N. A. Nazarbayev and Peculiar Features of Ethnic Language Processes in Kazakhstan
Authors: Aliya Isaeva, Anar Sultaniarova
Abstract:
The report focuses on such an important indicator of the nature and direction of development of ethnic and cultural processes in the Republic of Kazakhstan, as ethno linguistic situation. It is shown that, in essence, on the one hand, expresses the degree of the actual propagation and the level of use of the languages of the various ethnic communities. On the other hand, reflects the important patterns, trends and prospects of ethno-cultural and ethnodemographic processes in the Republic. It is important to note that the ethno linguistic situation in different regions of Kazakhstan, due to its more dynamic and much more difficult to demonstrate a much greater variety of options when compared with the ethnic situation in the country. For the two major ethnic groups of the republic – Kazakh and Russian language ethno differentiating retains its value, while for the other ethnic groups observed decline in the importance of this indicator. As you know, the language of international communication in the country is Russian. As the censuses of population, the Russian language in many areas of Northern, Central and Eastern Kazakhstan becomes a means of ethno linguistic development for most of the non-Russian population. This is most clearly illustrated by the Germans, and the Slavic ethnic groups. In this case, the Russian language is not just a means of international communication for a number of ethnic groups, and ethnic groups, it becomes a factor of ethnic self-expression. The value of the Kazakh language as their mother tongue for the other groups of the population is small. More clearly it can be traced only to the Turkic-speaking population of the republic – Uzbeks, Uighurs, Tatars, Turks, etc. The state Kazakh language is a means of international communication in the Western and Southern Kazakhstan, with a predominance of the Kazakh population. The report shows that the most important factor in the development of ethno-linguistic and ethno-cultural processes is bilingualism. Comparative analysis of materials census shows, first, on the increase of the proportion of bilingual population among Kazakhs and Russian, and second, to reduce the proportion of bilingual population of other ethnic groups living in Kazakhstan, and third, a higher proportion bilingual population among residents than rural residents, regardless of their ethnicity. Bilingualism is mainly of a "national Kazakh", "national Russian" or "Kazakh-national" or "Russian-national" character. The President N.A. Nazarbayev said that the Kazakh language is the most important factor in the consolidation of the people of Kazakhstan. He therefore called on government and other state and local representative bodies fully develop the state language, to create all the necessary organizational, material and technical conditions for free and open learning the state language by all citizens of the Republic of Kazakhstan.
Keywords: Ethnos, ethno cultural processes, ethnolinguistic situation, mother tongue, bilingualism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 259545 Sustainability Impact Assessment of Construction Ecology to Engineering Systems and Climate Change
Authors: Moustafa Osman Mohammed
Abstract:
Construction industry, as one of the main contributor in depletion of natural resources, influences climate change. This paper discusses incremental and evolutionary development of the proposed models for optimization of a life-cycle analysis to explicit strategy for evaluation systems. The main categories are virtually irresistible for introducing uncertainties, uptake composite structure model (CSM) as environmental management systems (EMSs) in a practice science of evaluation small and medium-sized enterprises (SMEs). The model simplified complex systems to reflect nature systems’ input, output and outcomes mode influence “framework measures” and give a maximum likelihood estimation of how elements are simulated over the composite structure. The traditional knowledge of modeling is based on physical dynamic and static patterns regarding parameters influence environment. It unified methods to demonstrate how construction systems ecology interrelated from management prospective in procedure reflects the effect of the effects of engineering systems to ecology as ultimately unified technologies in extensive range beyond constructions impact so as, - energy systems. Sustainability broadens socioeconomic parameters to practice science that meets recovery performance, engineering reflects the generic control of protective systems. When the environmental model employed properly, management decision process in governments or corporations could address policy for accomplishment strategic plans precisely. The management and engineering limitation focuses on autocatalytic control as a close cellular system to naturally balance anthropogenic insertions or aggregation structure systems to pound equilibrium as steady stable conditions. Thereby, construction systems ecology incorporates engineering and management scheme, as a midpoint stage between biotic and abiotic components to predict constructions impact. The later outcomes’ theory of environmental obligation suggests either a procedures of method or technique that is achieved in sustainability impact of construction system ecology (SICSE), as a relative mitigation measure of deviation control, ultimately.
Keywords: Sustainability, constructions ecology, composite structure model, design structure matrix, environmental impact assessment, life cycle analysis, climate change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143444 Application of Metarhizium anisopliae against Meloidogyne javanica in Soil Amended with Oak Debris
Authors: Mohammad Abdollahi
Abstract:
Tomato (Lycopersicon esculentum Mill.) is one of the most popular, widely grown and the second most important vegetable crop, after potatoes. Nematodes have been identified as one of the major pests affecting tomato production throughout the world. The most destructive nematodes are the genus Meloidogyne. Most widespread and devastating species of this genus are M. incognita, M. javanica, and M. arenaria. These species can cause complete crop loss under adverse growing conditions. There are several potential methods for management of the root knot nematodes. Although the chemicals are widely used against the phytonematodes, because of hazardous effects of these compounds on non-target organisms and on the environment, there is a need to develop other control strategies. Nowadays, non-chemical measures are widely used to control the plant parasitic nematodes. Biocontrol of phytonematodes is an important method among environment-friendly measures of nematode management. There are some soil-inhabiting fungi that have biocontrol potential on phytonematodes, which can be used in nematode management program. The fungus Metarhizium anisopliae, originally is an entomopathogenic bioagent. Biocontrol potential of this fungus on some phytonematodes has been reported earlier. Recently, use of organic soil amendments as well as the use of bioagents is under special attention in sustainable agriculture. This research aimed to reduce the pesticide use in control of root-knot nematode, Meloidogyne javanica in tomato. The effects of M. anisopliae IMI 330189 and different levels of oak tree debris on M. javanica were determined. The combination effect of the fungus as well as the different rates of soil amendments was determined. Pots were filled with steam pasteurized soil mixture and the six leaf tomato seedlings were inoculated with 3000 second stage larvae of M. javanica/kg of soil. After eight weeks, plant growth parameters and nematode reproduction factors were compared. Based on the results of our experiment, combination of M. anisopliae IMI 330189 and oak debris caused more than 90% reduction in reproduction factor of nematode, at the rates of 100 and 150 g/kg soil (P ≤ 0.05). As compared to control, the reduction in number of galls was 76%. It was 86% for nematode reproduction factor, showing the significance of combined effect of both tested agents. Our results showed that plant debris can increase the biological activity of the tested bioagent. It was also proved that there was no adverse effect of oak debris, which potentially has antimicrobial activity, on antagonistic power of applied bioagent.
Keywords: Biological control, nematode management, organic soil, Quercus branti, root knot nematode, soil amendment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 122643 Public Procurement Development Stages in Georgia
Authors: Giorgi Gaprindashvili
Abstract:
One of the best examples, in evolution of the public procurement, from post-soviet countries are reforms carried out in Georgia, which brought them close to international standards of procurement. In Georgia, public procurement legislation started functioning short after gaining independence. The reform has passed several stages and came in the form as it is today. It should also be noted, that countries with economy in transition, including Georgia, implemented all the reforms in public procurement based on recommendations and support of World Bank, the United Nations and other international organizations. The aim of first adopted law was regulation of the procurement process of budget-organizations, transparency and creation of competitive environment for private companies to access state funds legally. The priorities were identified quite clearly in the wording of the law, but operation/function of this law could not be reached on its level, because of some objective and subjective reasons. The high level of corruption in all levels of governance can be considered as a main obstacle reason and of course, it is natural, that it had direct impact on the procurement process, as well as on transparency and rational use of state funds. These circumstances were the reasons that reforms in this sphere continued, to improve procurement process, in particular, the first wave of reforms began after several years. Public procurement agency carried out reform with World Bank with main purpose of smartening the procurement legislation and its harmonization with international treaties and agreements. Also with the support of World Bank various activities were carried out to raise awareness of participants involved in procurement system. Further major changes in the legislation were filed bit later, which was also directed towards the improvement and smarten of the procurement process. The third wave of the reform more or less guaranteed the transparency of the procurement process, which later became the basis for the rational spending of state funds. The reform of the procurement system completely changed the procedures. Carried out reform in Georgia resulted in introducing new electronic tendering system, which benefit the transparency of the process, after this became the basis for the further development of a competitive environment, which become a prerequisite for the state rational spending. Increased number of supplier organizations participating in the procurement process resulted in reduction of the estimated cost and the actual cost. Assessment of the reforms in Georgia in the field of public procurement can be concluded, that proper regulation of the sector and relevant policy may proceed to rational and transparent spending of the budget from country’s state institutions. Also, the business sector has the opportunity to work in competitive market conditions and to make a preliminary analysis, which is a prerequisite for future strategy and development.
Keywords: Public Administration, Public Procurement, Reforms, Transparency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 239242 Application of Thermoplastic Microbioreactor to the Single Cell Study of Budding Yeast to Decipher the Effect of 5-Hydroxymethylfurfural on Growth
Authors: Elif Gencturk, Ekin Yurdakul, Ahmet Y. Celik, Senol Mutlu, Kutlu O. Ulgen
Abstract:
Yeast cells are generally used as a model system of eukaryotes due to their complex genetic structure, rapid growth ability in optimum conditions, easy replication and well-defined genetic system properties. Thus, yeast cells increased the knowledge of the principal pathways in humans. During fermentation, carbohydrates (hexoses and pentoses) degrade into some toxic by-products such as 5-hydroxymethylfurfural (5-HMF or HMF) and furfural. HMF influences the ethanol yield, and ethanol productivity; it interferes with microbial growth and is considered as a potent inhibitor of bioethanol production. In this study, yeast single cell behavior under HMF application was monitored by using a continuous flow single phase microfluidic platform. Microfluidic device in operation is fabricated by hot embossing and thermo-compression techniques from cyclo-olefin polymer (COP). COP is biocompatible, transparent and rigid material and it is suitable for observing fluorescence of cells considering its low auto-fluorescence characteristic. The response of yeast cells was recorded through Red Fluorescent Protein (RFP) tagged Nop56 gene product, which is an essential evolutionary-conserved nucleolar protein, and also a member of the box C/D snoRNP complexes. With the application of HMF, yeast cell proliferation continued but HMF slowed down the cell growth, and after HMF treatment the cell proliferation stopped. By the addition of fresh nutrient medium, the yeast cells recovered after 6 hours of HMF exposure. Thus, HMF application suppresses normal functioning of cell cycle but it does not cause cells to die. The monitoring of Nop56 expression phases of the individual cells shed light on the protein and ribosome synthesis cycles along with their link to growth. Further computational study revealed that the mechanisms underlying the inhibitory or inductive effects of HMF on growth are enriched in functional categories of protein degradation, protein processing, DNA repair and multidrug resistance. The present microfluidic device can successfully be used for studying the effects of inhibitory agents on growth by single cell tracking, thus capturing cell to cell variations. By metabolic engineering techniques, engineered strains can be developed, and the metabolic network of the microorganism can thus be manipulated such that chemical overproduction of target metabolite is achieved along with the maximum growth/biomass yield.
Keywords: COP, HMF, ribosome biogenesis, thermoplastic microbioreactor, yeast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67941 Smart Sustainable Cities: An Integrated Planning Approach towards Sustainable Urban Energy Systems, India
Authors: Adinarayanane Ramamurthy, Monsingh D. Devadas
Abstract:
Cities denote instantaneously a challenge and an opportunity for climate change policy. Cities are the place where most energy services are needed because urbanization is closely linked to high population densities and concentration of economic activities and production (Urban energy demand). Consequently, it is critical to explain about the role of cities within the world-s energy systems and its correlation with the climate change issue. With more than half of the world-s population already living in urban areas, and that percentage expected to rise to 75 per cent by 2050, it is clear that the path to sustainable development must pass through cities. Cities expanding in size and population pose increased challenges to the environment, of which energy is part as a natural resource, and to the quality of life. Nowadays, most cities have already understood the importance of sustainability, both at their local scale as in terms of their contribution to sustainability at higher geographical scales. It requires the perception of a city as a complex and dynamic ecosystem, an open system, or cluster of systems, where the energy as well as the other natural resources is transformed to satisfy the needs of the different urban activities. In fact, buildings and transportation generally represent most of cities direct energy demand, i.e., between 60 per cent and 80 per cent of the overall consumption. Buildings, both residential and services are usually influenced by the local physical and social conditions. In terms of transport, the energy demand is also strongly linked with the specific characteristics of a city (urban mobility).The concept of a “smart city" builds on statistics as seven key axes of a city-s success in moving towards common platform (brain nerve)of sustainable urban energy systems. With the aforesaid knowledge, the authors have suggested a frame work to role of cities, as energy actors for smart city management. The authors have discusses the potential elements needed for energy in smart cities and also identified potential energy actions and relevant barriers. Furthermore, three levels of city smartness in cities actions to overcome market /institutional failures with a local approach are distinguished. The authors have made an attempt to conceive and implement concepts of city smartness by adopting the city or local government as nerve center through an integrated planning approach. Finally, concluding with recommendations for the organization of the Smart Sustainable Cities for positive changes of urban India.Keywords: Urbanization, Urban Energy Demand, Sustainable Urban Energy Systems, Integrated Planning Approach, Smart Sustainable City.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 296440 Demographic and Socio-Economic Study of the Elderly Population in Kolkata, India
Authors: Ambika Roy Bardhan
Abstract:
Kolkata, the City of Joy, is a greying metropolis not only in respect of its concrete jungle but also because of the largest population of 60-plus residents that it shelters among all other cities in India. Declining birth and death rates and a negative growth of population indicate that the city has reached the last stage of demographic transition. Thus, the obvious consequence has been the ageing of its population. With this background, the present paper attempts to study the demographic and socio-economic status of the elderly population in Kolkata. Analysis and findings have been based on secondary data obtained from Census of India of various years, Sample Registration System Reports and reports by HelpAge India. Findings show that the elderly population is increasing continuously. With respect to gender, the male elderly outnumbers the female elderly population. The percentage of households having one elderly member is more in the city due to the emergence of the nuclear families and erosion of joint family system. With respect to socio-economic status, those elderly who are the heads of the family are lower in percentages than those in the other age groups. Also, male elderly as head of the family are greater in percentage than female elderly. Elderly in the category of currently married records the highest percentage followed by widowed, never married and lastly, separated or divorced. Male elderly outnumber the female elderly as currently married, while female elderly outnumbers the male elderly in the category of widowed. In terms of living status, the percentage of elderly who are living alone is highest in Kolkata and the reason for staying alone as no support from children also happens to be highest in this city. The literacy rate and higher level of education is higher among the male than female elderly. Higher percentages of female elderly have been found to be with disability. Disability in movement and multiple disabilities have been found to be more common among the elderly population in Kolkata. Percentages of male literate pensioners are highest than other categories. Also, in terms of levels of education male elderly who are graduate and above other than technical degree are the highest receivers of pension. Also, in terms of working status, elderly as non-workers are higher in percentages with the population of elderly females outnumbering the males. The old age dependency ratio in the city is increasing continuously and the ratio is higher among females than male. Thus, it can be stated that Kolkata is witnessing continuous and rapid ageing of its population. Increasing dependency ratio is likely to create pressure on the working population, available civic, social and health amenities. This requires intervention in the form of planning, formulation and implementation of laws, policies, programs and measures to safeguard and improve the conditions of the elderly in Kolkata.
Keywords: Demographic, Elderly, Population, Socio-economic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85339 Media Facades Utilization for Sustainable Tourism Promotion in Historic Places: Case Study of the Walled City of Famagusta, North Cyprus
Authors: Nikou Javadi, Uğur Dağlı
Abstract:
The importance of culture and tourism in the attractiveness and competitiveness of the countries is central, and many regions are evidencing their cultural assets, tangible and intangible, as a means to create comparative advantages in tourism and produce a distinctive place in response to the pressures of globalization. Culture and tourism are interlinked because of their obvious combination and growth potential. Cultural tourism is a crucial global tourism market with fast growing. Regions can develop significant relations between culture and tourism to increase their attractiveness as places to visit, live and invest, increasing their competitiveness. Accordingly, having new and creative approach to historical areas as cultural value-based destinations can improve their conditions to promote tourism. Furthermore, in 21st century, media become the most important factor affecting the development of urban cities, including public places. As a result of the digital revolution, re-imaging and re-linkage public places by media are essential to create more interactions between public spaces and users, interaction media display, and urban screens, one of the most important defined media. This interaction can transform the urban space from being neglected to be more interactive space with users, especially the pedestrians. The paper focuses on The Walled City of Famagusta. As many other historic quarters elsewhere in the world, is in a process, of decay and deterioration, and its functionally distinctive areas are severely threatened by physical, functional, locational, and image obsolescence at varying degrees. So the focus on the future development of this area through tourism promotion can be an appropriate decision for the monument enhancement of the spatial quality in Walled City of Famagusta. In this paper, it is aimed to identify the effects of these new digital factors to transform public spaces especially in historic urban areas to promote creative tourism. Accordingly, two different analysis methods are used as well as a theoretical review. The first is case study on site and the second is Close ended questionnaire, test many concepts raised in this paper. The physical analysis on site carried out in order to evaluate the walled city restoration for touristic purpose. Besides, theoretical review is done in order to provide background to the subject and cleared Factors to attract tourists.
Keywords: Historical areas, Media Facade, Sustainable tourism, Walled city of Famagusta.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253