Search results for: synchronous detection.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1689

Search results for: synchronous detection.

1389 A Fast Object Detection Method with Rotation Invariant Features

Authors: Zilong He, Yuesheng Zhu

Abstract:

Based on the combined shape feature and texture feature, a fast object detection method with rotation invariant features is proposed in this paper. A quick template matching scheme based online learning designed for online applications is also introduced in this paper. The experimental results have shown that the proposed approach has the features of lower computation complexity and higher detection rate, while keeping almost the same performance compared to the HOG-based method, and can be more suitable for run time applications.

Keywords: gradient feature, online learning, rotationinvariance, template feature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
1388 Application of Computational Intelligence for Sensor Fault Detection and Isolation

Authors: A. Jabbari, R. Jedermann, W. Lang

Abstract:

The new idea of this research is application of a new fault detection and isolation (FDI) technique for supervision of sensor networks in transportation system. In measurement systems, it is necessary to detect all types of faults and failures, based on predefined algorithm. Last improvements in artificial neural network studies (ANN) led to using them for some FDI purposes. In this paper, application of new probabilistic neural network features for data approximation and data classification are considered for plausibility check in temperature measurement. For this purpose, two-phase FDI mechanism was considered for residual generation and evaluation.

Keywords: Fault detection and Isolation, Neural network, Temperature measurement, measurement approximation and classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
1387 An Improved Switching Median filter for Uniformly Distributed Impulse Noise Removal

Authors: Rajoo Pandey

Abstract:

The performance of an image filtering system depends on its ability to detect the presence of noisy pixels in the image. Most of the impulse detection schemes assume the presence of salt and pepper noise in the images and do not work satisfactorily in case of uniformly distributed impulse noise. In this paper, a new algorithm is presented to improve the performance of switching median filter in detection of uniformly distributed impulse noise. The performance of the proposed scheme is demonstrated by the results obtained from computer simulations on various images.

Keywords: Switching median filter, Impulse noise, Imagefiltering, Impulse detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
1386 A Novel Approach to Iris Localization for Iris Biometric Processing

Authors: Somnath Dey, Debasis Samanta

Abstract:

Iris-based biometric system is gaining its importance in several applications. However, processing of iris biometric is a challenging and time consuming task. Detection of iris part in an eye image poses a number of challenges such as, inferior image quality, occlusion of eyelids and eyelashes etc. Due to these problems it is not possible to achieve 100% accuracy rate in any iris-based biometric authentication systems. Further, iris detection is a computationally intensive task in the overall iris biometric processing. In this paper, we address these two problems and propose a technique to localize iris part efficiently and accurately. We propose scaling and color level transform followed by thresholding, finding pupil boundary points for pupil boundary detection and dilation, thresholding, vertical edge detection and removal of unnecessary edges present in the eye images for iris boundary detection. Scaling reduces the search space significantly and intensity level transform is helpful for image thresholding. Experimental results show that our approach is comparable with the existing approaches. Following our approach it is possible to detect iris part with 95-99% accuracy as substantiated by our experiments on CASIA Ver-3.0, ICE 2005, UBIRIS, Bath and MMU iris image databases.

Keywords: Iris recognition, iris localization, biometrics, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3191
1385 Similarity Detection in Collaborative Development of Object-Oriented Formal Specifications

Authors: Fathi Taibi, Fouad Mohammed Abbou, Md. Jahangir Alam

Abstract:

The complexity of today-s software systems makes collaborative development necessary to accomplish tasks. Frameworks are necessary to allow developers perform their tasks independently yet collaboratively. Similarity detection is one of the major issues to consider when developing such frameworks. It allows developers to mine existing repositories when developing their own views of a software artifact, and it is necessary for identifying the correspondences between the views to allow merging them and checking their consistency. Due to the importance of the requirements specification stage in software development, this paper proposes a framework for collaborative development of Object- Oriented formal specifications along with a similarity detection approach to support the creation, merging and consistency checking of specifications. The paper also explores the impact of using additional concepts on improving the matching results. Finally, the proposed approach is empirically evaluated.

Keywords: Collaborative Development, Formal methods, Object-Oriented, Similarity detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
1384 Actuator Fault Detection and Fault Tolerant Control of a Nonlinear System Using Sliding Mode Observer

Authors: R. Loukil, M. Chtourou, T. Damak

Abstract:

In this work, we use the Fault detection and isolation and the Fault tolerant control based on sliding mode observer in order to introduce the well diagnosis of a nonlinear system. The robustness of the proposed observer for the two techniques is tested through a physical example. The results in this paper show the interaction between the Fault tolerant control and the Diagnosis procedure.

Keywords: Fault detection and isolation “FDI”, Fault tolerant control “FTC”, sliding mode observer, nonlinear system, robustness, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
1383 Single Phase 13-Level D-STATCOM Inverter with Distributed System

Authors: R. Kamalakannan, N. Ravi Kumar

Abstract:

The global energy consumption is increasing persistently and need for distributed power generation through renewable energy is essential. To meet the power requirements for consumers without any voltage fluctuations and losses, modeling and design of multilevel inverter with Flexible AC Transmission System (FACTS) capability is presented. The presented inverter is provided with 13-level cascaded H-bridge topology of Insulated Gate Bipolar Transistor (IGBTs) connected along with inbuilt Distributed Static Synchronous Compensators (DSTATCOM). The DSTATCOM device provides control of power factor stability at local feeder lines and the inverter eliminates Total Harmonic Distortion (THD). The 13-level inverter utilizes 52 switches of each H-bridge is fed with single DC sources separately and the Pulse Width Modulation (PWM) technique is used for switching IGBTs. The control strategy implemented for inverter transmits active power to grid as well as it maintains power factor to be stable with achievement of steady state power transmission. Significant outcome of this project is improvement of output voltage quality with steady state power transmission with low THD. Simulation of inverter with DSTATCOM is performed using MATLAB/Simulink environment. The scaled prototype model of proposed inverter is built and its results were validated with simulated results.

Keywords: FACTS devices, distributed-Static synchronous compensators, DSTATCOM, total harmonics elimination, modular multilevel converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
1382 Optical Road Monitoring of the Future Smart Roads – Preliminary Results

Authors: Maria Jokela, Matti Kutila, Jukka Laitinen, Florian Ahlers, Nicolas Hautière, TobiasSchendzielorz

Abstract:

It has been shown that in most accidents the driver is responsible due to being distracted or misjudging the situation. In order to solve such problems research has been dedicated to developing driver assistance systems that are able to monitor the traffic situation around the vehicle. This paper presents methods for recognizing several circumstances on a road. The methods use both the in-vehicle warning systems and the roadside infrastructure. Preliminary evaluation results for fog and ice-on-road detection are presented. The ice detection results are based on data recorded in a test track dedicated to tyre friction testing. The achieved results anticipate that ice detection could work at a performance of 70% detection with the right setup, which is a good foundation for implementation. However, the full benefit of the presented cooperative system is achieved by fusing the outputs of multiple data sources, which is the key point of discussion behind this publication.

Keywords: Smart roads, traffic monitoring, traffic scenedetection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
1381 Improving the Shunt Active Power Filter Performance Using Synchronous Reference Frame PI Based Controller with Anti-Windup Scheme

Authors: Consalva J. Msigwa, Beda J. Kundy, Bakari M. M. Mwinyiwiwa

Abstract:

In this paper the reference current for Voltage Source Converter (VSC) of the Shunt Active Power Filter (SAPF) is generated using Synchronous Reference Frame method, incorporating the PI controller with anti-windup scheme. The proposed method improves the harmonic filtering by compensating the winding up phenomenon caused by the integral term of the PI controller. Using Reference Frame Transformation, the current is transformed from om a - b - c stationery frame to rotating 0 - d - q frame. Using the PI controller, the current in the 0 - d - q frame is controlled to get the desired reference signal. A controller with integral action combined with an actuator that becomes saturated can give some undesirable effects. If the control error is so large that the integrator saturates the actuator, the feedback path becomes ineffective because the actuator will remain saturated even if the process output changes. The integrator being an unstable system may then integrate to a very large value, the phenomenon known as integrator windup. Implementing the integrator anti-windup circuit turns off the integrator action when the actuator saturates, hence improving the performance of the SAPF and dynamically compensating harmonics in the power network. In this paper the system performance is examined with Shunt Active Power Filter simulation model.

Keywords: Phase Locked Loop (PLL), Voltage SourceConverter (VSC), Shunt Active Power Filter (SAPF), PI, Pulse WidthModulation (PWM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
1380 Apoptosis Inspired Intrusion Detection System

Authors: R. Sridevi, G. Jagajothi

Abstract:

Artificial Immune Systems (AIS), inspired by the human immune system, are algorithms and mechanisms which are self-adaptive and self-learning classifiers capable of recognizing and classifying by learning, long-term memory and association. Unlike other human system inspired techniques like genetic algorithms and neural networks, AIS includes a range of algorithms modeling on different immune mechanism of the body. In this paper, a mechanism of a human immune system based on apoptosis is adopted to build an Intrusion Detection System (IDS) to protect computer networks. Features are selected from network traffic using Fisher Score. Based on the selected features, the record/connection is classified as either an attack or normal traffic by the proposed methodology. Simulation results demonstrates that the proposed AIS based on apoptosis performs better than existing AIS for intrusion detection.

Keywords: Apoptosis, Artificial Immune System (AIS), Fisher Score, KDD dataset, Network intrusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
1379 Human Fall Detection by FMCW Radar Based on Time-Varying Range-Doppler Features

Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou

Abstract:

The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.

Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-Doppler features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 526
1378 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks

Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos

Abstract:

This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.

Keywords: Metaphor detection, deep learning, representation learning, embeddings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 556
1377 Virtual Environment Design Guidelines for Elderly People in Early Detection of Dementia

Authors: Syadiah Nor Wan Shamsuddin, Valerie Lesk , Hassan Ugail

Abstract:

Early detection of dementia by testing the spatial memory can be applied using a virtual environment. This paper presents guidelines on how to design a virtual environment specifically for elderly in early detection of dementia. The specific design needs to be considered because the effectiveness of the technology relies on the ability of the end user to use it. The primary goal of these guidelines is to promote accessibility. Based on these guidelines, a virtual simulation was developed and evaluated. The results on usability of acceptance and satisfaction that are tested on young (control group) and elderly participants indicate that these guidelines are reliable and useful for use with elderly people.

Keywords: Virtual Environment, spatial memory, design, guidelines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
1376 Visualization of Code Clone Detection Results and the Implementation with Structured Data

Authors: Kazuaki Maeda

Abstract:

This paper describes a code clone visualization method, called FC graph, and the implementation issues. Code clone detection tools usually show the results in a textual representation. If the results are large, it makes a problem to software maintainers with understanding them. One of the approaches to overcome the situation is visualization of code clone detection results. A scatter plot is a popular approach to the visualization. However, it represents only one-to-one correspondence and it is difficult to find correspondence of code clones over multiple files. FC graph represents correspondence among files, code clones and packages in Java. All nodes in FC graph are positioned using force-directed graph layout, which is dynami- cally calculated to adjust the distances of nodes until stabilizing them. We applied FC graph to some open source programs and visualized the results. In the author’s experience, FC graph is helpful to grasp correspondence of code clones over multiple files and also code clones with in a file.

Keywords: code clone detection, program comprehension, software maintenance, visualization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514
1375 Intelligent Agents for Distributed Intrusion Detection System

Authors: M. Benattou, K. Tamine

Abstract:

This paper presents a distributed intrusion detection system IDS, based on the concept of specialized distributed agents community representing agents with the same purpose for detecting distributed attacks. The semantic of intrusion events occurring in a predetermined network has been defined. The correlation rules referring the process which our proposed IDS combines the captured events that is distributed both spatially and temporally. And then the proposed IDS tries to extract significant and broad patterns for set of well-known attacks. The primary goal of our work is to provide intrusion detection and real-time prevention capability against insider attacks in distributed and fully automated environments.

Keywords: Mobile agent, specialized agent, interpreter agent, event rules, correlation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
1374 Model Reference Adaptive Approach for Power System Stabilizer for Damping of Power Oscillations

Authors: Jožef Ritonja, Bojan Grčar, Boštjan Polajžer

Abstract:

In recent years, electricity trade between neighboring countries has become increasingly intense. Increasing power transmission over long distances has resulted in an increase in the oscillations of the transmitted power. The damping of the oscillations can be carried out with the reconfiguration of the network or the replacement of generators, but such solution is not economically reasonable. The only cost-effective solution to improve the damping of power oscillations is to use power system stabilizers. Power system stabilizer represents a part of synchronous generator control system. It utilizes semiconductor’s excitation system connected to the rotor field excitation winding to increase the damping of the power system. The majority of the synchronous generators are equipped with the conventional power system stabilizers with fixed parameters. The control structure of the conventional power system stabilizers and the tuning procedure are based on the linear control theory. Conventional power system stabilizers are simple to realize, but they show non-sufficient damping improvement in the entire operating conditions. This is the reason that advanced control theories are used for development of better power system stabilizers. In this paper, the adaptive control theory for power system stabilizers design and synthesis is studied. The presented work is focused on the use of model reference adaptive control approach. Control signal, which assures that the controlled plant output will follow the reference model output, is generated by the adaptive algorithm. Adaptive gains are obtained as a combination of the "proportional" term and with the σ-term extended "integral" term. The σ-term is introduced to avoid divergence of the integral gains. The necessary condition for asymptotic tracking is derived by means of hyperstability theory. The benefits of the proposed model reference adaptive power system stabilizer were evaluated as objectively as possible by means of a theoretical analysis, numerical simulations and laboratory realizations. Damping of the synchronous generator oscillations in the entire operating range was investigated. Obtained results show the improved damping in the entire operating area and the increase of the power system stability. The results of the presented work will help by the development of the model reference power system stabilizer which should be able to replace the conventional stabilizers in power systems.

Keywords: Power system, stability, oscillations, power system stabilizer, model reference adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 631
1373 Knowledge Transformation Flow (KTF) of Visually Impaired Students: The Virtual Knowledge System as a New Service Innovation

Authors: Chatcai Tangsri, Onjaree Na-Takuatoong

Abstract:

This paper aims to present the key factors that support the decision to use the technology and to present the knowledge transformation flow of visually impaired students after the use of virtual knowledge system as proposed as a new service innovation to universities in Thailand. Correspondents of 27 visually impaired students are involved in this research. Total of 25 students are selected from university that mainly conducts non-classroom teaching environment; while another 2 visually impaired students are selected from classroom teaching environment. All of them are fully involved in the study along 8 weeks duration. All correspondents are classified into 5 small groups in various conditions. The research results revealed that the involvement from knowledge facilitator can push out for the behavioral actual use of the virtual knowledge system although there is no any developed intention to use behaviors. Secondly, the situations that the visually impaired students inadequate of the knowledge sources that usually provided by assistants i.e. peers, audio files etc. In this case, they will use the virtual knowledge system for both knowledge access and knowledge transfer request. With this evidence, the need of knowledge would play a stronger role than all technology acceptance factors. Finally, this paper revealed that the knowledge transfer in normal method that students have a chance to physically meet up is still confirmed as their preference method. In term of other aspects of technology acceptance, it will be discussed together with challenges and recommendations at the end of this paper.

Keywords: Knowledge system, Visually impaired students, Higher education, Knowledge management enable technology, Synchronous/Asynchronous knowledge access, Synchronous/Asynchronous knowledge transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
1372 Detection of Cyberattacks on the Metaverse Based on First-Order Logic

Authors: Sulaiman Al Amro

Abstract:

There are currently considerable challenges concerning data security and privacy, particularly in relation to modern technologies. This includes the virtual world known as the Metaverse, which consists of a virtual space that integrates various technologies, and therefore susceptible to cyber threats such as malware, phishing, and identity theft. This has led recent studies to propose the development of Metaverse forensic frameworks and the integration of advanced technologies, including machine learning for intrusion detection and security. In this context, the application of first-order logic offers a formal and systematic approach to defining the conditions of cyberattacks, thereby contributing to the development of effective detection mechanisms. In addition, formalizing the rules and patterns of cyber threats has the potential to enhance the overall security posture of the Metaverse and thus the integrity and safety of this virtual environment. The current paper focuses on the primary actions employed by avatars for potential attacks, including Interval Temporal Logic (ITL) and behavior-based detection to detect an avatar’s abnormal activities within the Metaverse. The research established that the proposed framework attained an accuracy of 92.307%, resulting in the experimental results demonstrating the efficacy of ITL, including its superior performance in addressing the threats posed by avatars within the Metaverse domain.

Keywords: Cyberattacks, detection, first-order logic, Metaverse, privacy, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73
1371 Designing a Framework for Network Security Protection

Authors: Eric P. Jiang

Abstract:

As the Internet continues to grow at a rapid pace as the primary medium for communications and commerce and as telecommunication networks and systems continue to expand their global reach, digital information has become the most popular and important information resource and our dependence upon the underlying cyber infrastructure has been increasing significantly. Unfortunately, as our dependency has grown, so has the threat to the cyber infrastructure from spammers, attackers and criminal enterprises. In this paper, we propose a new machine learning based network intrusion detection framework for cyber security. The detection process of the framework consists of two stages: model construction and intrusion detection. In the model construction stage, a semi-supervised machine learning algorithm is applied to a collected set of network audit data to generate a profile of normal network behavior and in the intrusion detection stage, input network events are analyzed and compared with the patterns gathered in the profile, and some of them are then flagged as anomalies should these events are sufficiently far from the expected normal behavior. The proposed framework is particularly applicable to the situations where there is only a small amount of labeled network training data available, which is very typical in real world network environments.

Keywords: classification, data analysis and mining, network intrusion detection, semi-supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
1370 The Model of the Genre of Literary Portrait in Modern Literary Criticism

Authors: B. K. Bazylova, Zh. D. Suleimenova

Abstract:

In modern literary criticism the problem of genre is one of discussion. Genre is a phenomenon, located in the intersection of the synchronous and diachronic processes in the development of literature, and this is due to the complexity of its solutions. It defines the place of contact between literary works and literary process.

Keywords: Literary, criticism, literary portrait.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
1369 Fast Object/Face Detection Using Neural Networks and Fast Fourier Transform

Authors: Hazem M. El-Bakry, Qiangfu Zhao

Abstract:

Recently, fast neural networks for object/face detection were presented in [1-3]. The speed up factor of these networks relies on performing cross correlation in the frequency domain between the input image and the weights of the hidden layer. But, these equations given in [1-3] for conventional and fast neural networks are not valid for many reasons presented here. In this paper, correct equations for cross correlation in the spatial and frequency domains are presented. Furthermore, correct formulas for the number of computation steps required by conventional and fast neural networks given in [1-3] are introduced. A new formula for the speed up ratio is established. Also, corrections for the equations of fast multi scale object/face detection are given. Moreover, commutative cross correlation is achieved. Simulation results show that sub-image detection based on cross correlation in the frequency domain is faster than classical neural networks.

Keywords: Conventional Neural Networks, Fast Neural Networks, Cross Correlation in the Frequency Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483
1368 Detection of Breast Cancer in the JPEG2000 Domain

Authors: Fayez M. Idris, Nehal I. AlZubaidi

Abstract:

Breast cancer detection techniques have been reported to aid radiologists in analyzing mammograms. We note that most techniques are performed on uncompressed digital mammograms. Mammogram images are huge in size necessitating the use of compression to reduce storage/transmission requirements. In this paper, we present an algorithm for the detection of microcalcifications in the JPEG2000 domain. The algorithm is based on the statistical properties of the wavelet transform that the JPEG2000 coder employs. Simulation results were carried out at different compression ratios. The sensitivity of this algorithm ranges from 92% with a false positive rate of 4.7 down to 66% with a false positive rate of 2.1 using lossless compression and lossy compression at a compression ratio of 100:1, respectively.

Keywords: Breast cancer, JPEG2000, mammography, microcalcifications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
1367 A Real-time Computer Vision System for VehicleTracking and Collision Detection

Authors: Mustafa Kisa, Fatih Mehmet Botsali

Abstract:

Recent developments in automotive technology are focused on economy, comfort and safety. Vehicle tracking and collision detection systems are attracting attention of many investigators focused on safety of driving in the field of automotive mechatronics. In this paper, a vision-based vehicle detection system is presented. Developed system is intended to be used in collision detection and driver alert. The system uses RGB images captured by a camera in a car driven in the highway. Images captured by the moving camera are used to detect the moving vehicles in the image. A vehicle ahead of the camera is detected in daylight conditions. The proposed method detects moving vehicles by subtracting successive images. Plate height of the vehicle is determined by using a plate recognition algorithm. Distance of the moving object is calculated by using the plate height. After determination of the distance of the moving vehicle relative speed of the vehicle and Time-to-Collision are calculated by using distances measured in successive images. Results obtained in road tests are discussed in order to validate the use of the proposed method.

Keywords: Image possessing, vehicle tracking, license plate detection, computer vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3102
1366 A Computer Aided Detection (CAD) System for Microcalcifications in Mammograms - MammoScan mCaD

Authors: Kjersti Engan, Thor Ole Gulsrud, Karl Fredrik Fretheim, Barbro Furebotten Iversen, Liv Eriksen

Abstract:

Clusters of microcalcifications in mammograms are an important sign of breast cancer. This paper presents a complete Computer Aided Detection (CAD) scheme for automatic detection of clustered microcalcifications in digital mammograms. The proposed system, MammoScan μCaD, consists of three main steps. Firstly all potential microcalcifications are detected using a a method for feature extraction, VarMet, and adaptive thresholding. This will also give a number of false detections. The goal of the second step, Classifier level 1, is to remove everything but microcalcifications. The last step, Classifier level 2, uses learned dictionaries and sparse representations as a texture classification technique to distinguish single, benign microcalcifications from clustered microcalcifications, in addition to remove some remaining false detections. The system is trained and tested on true digital data from Stavanger University Hospital, and the results are evaluated by radiologists. The overall results are promising, with a sensitivity > 90 % and a low false detection rate (approx 1 unwanted pr. image, or 0.3 false pr. image).

Keywords: mammogram, microcalcifications, detection, CAD, MammoScan μCaD, VarMet, dictionary learning, texture, FTCM, classification, adaptive thresholding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
1365 Efficiency of Different GLR Test-statistics for Spatial Signal Detection

Authors: Olesya Bolkhovskaya, Alexander Maltsev

Abstract:

In this work the characteristics of spatial signal detec¬tion from an antenna array in various sample cases are investigated. Cases for a various number of available prior information about the received signal and the background noise are considered. The spatial difference between a signal and noise is only used. The performance characteristics and detecting curves are presented. All test-statistics are obtained on the basis of the generalized likelihood ratio (GLR). The received results are correct for a short and long sample.

Keywords: GLR test-statistic, detection task, generalized likelihood ratio, antenna array, detection curves, performance characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
1364 Modern Spectrum Sensing Techniques for Cognitive Radio Networks: Practical Implementation and Performance Evaluation

Authors: Antoni Ivanov, Nikolay Dandanov, Nicole Christoff, Vladimir Poulkov

Abstract:

Spectrum underutilization has made cognitive radio a promising technology both for current and future telecommunications. This is due to the ability to exploit the unused spectrum in the bands dedicated to other wireless communication systems, and thus, increase their occupancy. The essential function, which allows the cognitive radio device to perceive the occupancy of the spectrum, is spectrum sensing. In this paper, the performance of modern adaptations of the four most widely used spectrum sensing techniques namely, energy detection (ED), cyclostationary feature detection (CSFD), matched filter (MF) and eigenvalues-based detection (EBD) is compared. The implementation has been accomplished through the PlutoSDR hardware platform and the GNU Radio software package in very low Signal-to-Noise Ratio (SNR) conditions. The optimal detection performance of the examined methods in a realistic implementation-oriented model is found for the common relevant parameters (number of observed samples, sensing time and required probability of false alarm).

Keywords: Cognitive radio, dynamic spectrum access, GNU Radio, spectrum sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1174
1363 Feature Based Unsupervised Intrusion Detection

Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein

Abstract:

The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.

Keywords: Information Gain (IG), Intrusion Detection System (IDS), K-means Clustering, Weka.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2778
1362 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study

Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple

Abstract:

There is a dramatic surge in the adoption of Machine Learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. Artificial Intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and two defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt ML techniques without rigorous testing, since they may be vulnerable to adversarial attacks, especially in security-critical areas such as the nuclear industry. We observed that while the adopted defence methods can effectively defend against different attacks, none of them could protect against all five adversarial attacks entirely.

Keywords: Resilient Machine Learning, attacks, defences, nuclear industry, crack detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 503
1361 Development of an Infrared Thermography Method with CO2 Laser Excitation, Applied to Defect Detection in CFRP

Authors: Sam-Ang Keo, Franck Brachelet, Florin Breaban, Didier Defer

Abstract:

This paper presents a NDT by infrared thermography with excitation CO2 Laser, wavelength of 10.6 μm. This excitation is the controllable heating beam, confirmed by a preliminary test on a wooden plate 1.2 m x 0.9 m x 1 cm. As the first practice, this method is applied to detecting the defect in CFRP heated by the Laser 300 W during 40 s. Two samples 40 cm x 40 cm x 4.5 cm are prepared, one with defect, another one without defect. The laser beam passes through the lens of a deviation device, and heats the samples placed at a determinate position and area. As a result, the absence of adhesive can be detected. This method displays prominently its application as NDT with the composite materials. This work gives a good perspective to characterize the laser beam, which is very useful for the next detection campaigns.

Keywords: CO2 LASER, Infrared Thermography, NDT, CFRP, Defect Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009
1360 Automatic Extraction of Arbitrarily Shaped Buildings from VHR Satellite Imagery

Authors: Evans Belly, Imdad Rizvi, M. M. Kadam

Abstract:

Satellite imagery is one of the emerging technologies which are extensively utilized in various applications such as detection/extraction of man-made structures, monitoring of sensitive areas, creating graphic maps etc. The main approach here is the automated detection of buildings from very high resolution (VHR) optical satellite images. Initially, the shadow, the building and the non-building regions (roads, vegetation etc.) are investigated wherein building extraction is mainly focused. Once all the landscape is collected a trimming process is done so as to eliminate the landscapes that may occur due to non-building objects. Finally the label method is used to extract the building regions. The label method may be altered for efficient building extraction. The images used for the analysis are the ones which are extracted from the sensors having resolution less than 1 meter (VHR). This method provides an efficient way to produce good results. The additional overhead of mid processing is eliminated without compromising the quality of the output to ease the processing steps required and time consumed.

Keywords: Building detection, shadow detection, landscape generation, label, partitioning, very high resolution satellite imagery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842