Search results for: paste layer thickness
1225 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals
Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer
Abstract:
Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).
Keywords: Diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13461224 Effects of Chlorhexidine in Application to Hybrid Layers
Authors: Ilma Robo, Saimir Heta, Edona Hasanaj, Vera Ostreni
Abstract:
The hybrid layer (HL), the way it is created and how it is protected against degradation over time, is the key to the clinical success of a composite restoration. The composite supports the dentinal structure exactly with the realized surface of micro-retention. Thus, this surface is in direct proportion to its size versus the duration of clinical use of composite dental restoration. Micro-retention occurs between dentin or acidified enamel and adhesive resin extensions versus pre-prepared spaces, such as hollow dentinal tubules. The way the adhesive resin binds to the acidified dentinal structure depends on the physical or chemical factors of this interrelationship between two structures with very different characteristics. During the acidification process, a precursor to the placement of the adhesive resin layer, activation of metalloproteinases of dental origin occurs, enzymes which are responsible for the degradation of the HL. These enzymes have expressed activity depending on the presence of Zn2+ or Ca2+ ions. There are several ways to inhibit these enzymes, and consequently, there are several ways to inhibit the degradation process of the HL. The study aim is to evaluate chlorhexidine (CHX) as a solution element, inhibitor of dentin activated metalloproteinases, as a result of the application of acidification. This study aims to look at this solution in advantage or contraindication theories, already published in the literature.
Keywords: Hybrid layer, chlorhexidine, degradation, smear layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3491223 Metallic Coating for Carbon Fiber Reinforced Polymer Matrix Composite Substrate
Authors: Amine Rezzoug, Said Abdi, Nadjet Bouhelal, Ismail Daoud
Abstract:
This paper investigates the application of metallic coatings on high fiber volume fraction carbon/epoxy polymer matrix composites. For the grip of the metallic layer, a method of modifying the surface of the composite by introducing a mixture of copper and steel powder (filler powders) which can reduce the impact of thermal spray particles. The powder was introduced to the surface at the time of the forming. Arc spray was used to project the zinc coating layer. The substrate was grit blasted to avoid poor adherence. The porosity, microstructure, and morphology of layers are characterized by optical microscopy, SEM and image analysis. The samples were studied also in terms of hardness and erosion resistance. This investigation did not reveal any visible evidence damage to the substrates. The hardness of zinc layer was about 25.94 MPa and the porosity was around (∼6.70%). The erosion test showed that the zinc coating improves the resistance to erosion. Based on the results obtained, we can conclude that thermal spraying allows the production of protective coating on PMC. Zinc coating has been identified as a compatible material with the substrate. The filler powders layer protects the substrate from the impact of hot particles and allows avoiding the rupture of brittle carbon fibers.Keywords: Arc spray, coating, composite, erosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33851222 Stability of Square Plate with Concentric Cutout
Authors: B. S. Jayashankarbabu, Karisiddappa
Abstract:
The finite element method is used to obtain the elastic buckling load factor for square isotropic plate containing circular, square and rectangular cutouts. ANSYS commercial finite element software had been used in the study. The applied inplane loads considered are uniaxial and biaxial compressions. In all the cases the load is distributed uniformly along the plate outer edges. The effects of the size and shape of concentric cutouts with different plate thickness ratios and the influence of plate edge conditions, such as SSSS, CCCC and mixed boundary condition SCSC on the plate buckling strength have been considered in the analysis.
Keywords: Concentric cutout, Elastic buckling, Finite element method, Inplane loads, Thickness ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32261221 A Survey on Performance Tools for OpenMP
Authors: Mubarak S. Mohsen, Rosni Abdullah, Yong M. Teo
Abstract:
Advances in processors architecture, such as multicore, increase the size of complexity of parallel computer systems. With multi-core architecture there are different parallel languages that can be used to run parallel programs. One of these languages is OpenMP which embedded in C/Cµ or FORTRAN. Because of this new architecture and the complexity, it is very important to evaluate the performance of OpenMP constructs, kernels, and application program on multi-core systems. Performance is the activity of collecting the information about the execution characteristics of a program. Performance tools consists of at least three interfacing software layers, including instrumentation, measurement, and analysis. The instrumentation layer defines the measured performance events. The measurement layer determines what performance event is actually captured and how it is measured by the tool. The analysis layer processes the performance data and summarizes it into a form that can be displayed in performance tools. In this paper, a number of OpenMP performance tools are surveyed, explaining how each is used to collect, analyse, and display data collection.Keywords: Parallel performance tools, OpenMP, multi-core.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19221220 Microstructure and Corrosion Behavior of Laser Welded Magnesium Alloys with Silver Nanoparticles
Authors: M. Ishak, K. Yamasaki, K. Maekawa
Abstract:
Magnesium alloys have gained increased attention in recent years in automotive, electronics, and medical industry. This because of magnesium alloys have better properties than aluminum alloys and steels in respects of their low density and high strength to weight ratio. However, the main problems of magnesium alloy welding are the crack formation and the appearance of porosity during the solidification. This paper proposes a unique technique to weld two thin sheets of AZ31B magnesium alloy using a paste containing Ag nanoparticles. The paste containing Ag nanoparticles of 5 nm in average diameter and an organic solvent was used to coat the surface of AZ31B thin sheet. The coated sheet was heated at 100 °C for 60 s to evaporate the solvent. The dried sheet was set as a lower AZ31B sheet on the jig, and then lap fillet welding was carried out by using a pulsed Nd:YAG laser in a closed box filled with argon gas. The characteristics of the microstructure and the corrosion behavior of the joints were analyzed by opticalmicroscopy (OM), energy dispersive spectrometry (EDS), electron probe micro-analyzer (EPMA), scanning electron microscopy (SEM), and immersion corrosion test. The experimental results show that the wrought AZ31B magnesium alloy can be joined successfully using Ag nanoparticles. Ag nanoparticles insert promote grain refinement, narrower the HAZ width and wider bond width compared to weld without and insert. Corrosion rate of welded AZ31B with Ag nanoparticles reduced up to 44 % compared to base metal. The improvement of corrosion resistance of welded AZ31B with Ag nanoparticles due to finer grains and large grain boundaries area which consist of high Al content. β-phase Mg17Al12 could serve as effective barrier and suppressed further propagation of corrosion. Furthermore, Ag distribution in fusion zone provide much more finer grains and may stabilize the magnesium solid solution making it less soluble or less anodic in aqueous
Keywords: Laser welding, magnesium alloys, nanoparticles, mechanical property
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20731219 Factors Affecting Low Back Pain during Breastfeeding of Thai Women
Authors: N. Klinpikul, P. Srichandr, N. Poolthong, N. Thavarungkul
Abstract:
Breastfeeding has been receiving much attention of late. Prolonged sitting for breastfeeding often results in back pain of the mothers. This paper reports the findings of a study on the effect of some factors, especially lumbar support, on back pain of breastfeeding mothers. The results showed that the use of lumbar support can reduce back pain of breastfeeding mothers significantly. Back pain was found to increase with breastfeeding time and the rate of increase was lower when lumbar supports were used. When lumbar support thickness was increased gradually from zero (no support) to 11 cm., the degree of low back pain decreased; rapidly at first, then slowly, and leveled off when the thickness reached 9 cm. Younger mothers were less prone to back pain than older mothers. The implications of the findings are discussed.
Keywords: back pain, breastfeeding, lumbar support
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19831218 Curved Rectangular Patch Array Antenna Using Flexible Copper Sheet for Small Missile Application
Authors: Jessada Monthasuwan, Charinsak Saetiaw, Chanchai Thongsopa
Abstract:
This paper presents the development and design of the curved rectangular patch arrays antenna for small missile application. This design uses a 0.1mm flexible copper sheet on the front layer and back layer, and a 1.8mm PVC substrate on a middle layer. The study used a small missile model with 122mm diameter size with speed 1.1 Mach and frequency range on ISM 2.4 GHz. The design of curved antenna can be installation on a cylindrical object like a missile. So, our proposed antenna design will have a small size, lightweight, low cost and simple structure. The antenna was design and analysis by a simulation result from CST microwave studio and confirmed with a measurement result from a prototype antenna. The proposed antenna has a bandwidth covering the frequency range 2.35-2.48 GHz, the return loss below -10 dB and antenna gain 6.5 dB. The proposed antenna can be applied with a small guided missile effectively.
Keywords: Rectangular path arrays, small missile antenna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29311217 Multiscale Modelization of Multilayered Bi-Dimensional Soils
Authors: I. Hosni, L. Bennaceur Farah, N. Saber, R Bennaceur
Abstract:
Soil moisture content is a key variable in many environmental sciences. Even though it represents a small proportion of the liquid freshwater on Earth, it modulates interactions between the land surface and the atmosphere, thereby influencing climate and weather. Accurate modeling of the above processes depends on the ability to provide a proper spatial characterization of soil moisture. The measurement of soil moisture content allows assessment of soil water resources in the field of hydrology and agronomy. The second parameter in interaction with the radar signal is the geometric structure of the soil. Most traditional electromagnetic models consider natural surfaces as single scale zero mean stationary Gaussian random processes. Roughness behavior is characterized by statistical parameters like the Root Mean Square (RMS) height and the correlation length. Then, the main problem is that the agreement between experimental measurements and theoretical values is usually poor due to the large variability of the correlation function, and as a consequence, backscattering models have often failed to predict correctly backscattering. In this study, surfaces are considered as band-limited fractal random processes corresponding to a superposition of a finite number of one-dimensional Gaussian process each one having a spatial scale. Multiscale roughness is characterized by two parameters, the first one is proportional to the RMS height, and the other one is related to the fractal dimension. Soil moisture is related to the complex dielectric constant. This multiscale description has been adapted to two-dimensional profiles using the bi-dimensional wavelet transform and the Mallat algorithm to describe more correctly natural surfaces. We characterize the soil surfaces and sub-surfaces by a three layers geo-electrical model. The upper layer is described by its dielectric constant, thickness, a multiscale bi-dimensional surface roughness model by using the wavelet transform and the Mallat algorithm, and volume scattering parameters. The lower layer is divided into three fictive layers separated by an assumed plane interface. These three layers were modeled by an effective medium characterized by an apparent effective dielectric constant taking into account the presence of air pockets in the soil. We have adopted the 2D multiscale three layers small perturbations model including, firstly air pockets in the soil sub-structure, and then a vegetable canopy in the soil surface structure, that is to simulate the radar backscattering. A sensitivity analysis of backscattering coefficient dependence on multiscale roughness and new soil moisture has been performed. Later, we proposed to change the dielectric constant of the multilayer medium because it takes into account the different moisture values of each layer in the soil. A sensitivity analysis of the backscattering coefficient, including the air pockets in the volume structure with respect to the multiscale roughness parameters and the apparent dielectric constant, was carried out. Finally, we proposed to study the behavior of the backscattering coefficient of the radar on a soil having a vegetable layer in its surface structure.
Keywords: Multiscale, bi-dimensional, wavelets, SPM, backscattering, multilayer, air pockets, vegetable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6081216 The Effect of Discontinued Water Spray Cooling on the Heat Transfer Coefficient
Authors: J. Hrabovský, M. Chabičovský, J. Horský
Abstract:
Water spray cooling is a technique typically used in heat treatment and other metallurgical processes where controlled temperature regimes are required. Water spray cooling is used in static (without movement) or dynamic (with movement of the steel plate) regimes. The static regime is notable for the fixed position of the hot steel plate and fixed spray nozzle. This regime is typical for quenching systems focused on heat treatment of the steel plate. The second application of spray cooling is the dynamic regime. The dynamic regime is notable for its static section cooling system and moving steel plate. This regime is used in rolling and finishing mills. The fixed position of cooling sections with nozzles and the movement of the steel plate produce nonhomogeneous water distribution on the steel plate. The length of cooling sections and placement of water nozzles in combination with the nonhomogeneity of water distribution lead to discontinued or interrupted cooling conditions. The impact of static and dynamic regimes on cooling intensity and the heat transfer coefficient during the cooling process of steel plates is an important issue. Heat treatment of steel is accompanied by oxide scale growth. The oxide scale layers can significantly modify the cooling properties and intensity during the cooling. The combination of static and dynamic (section) regimes with the variable thickness of the oxide scale layer on the steel surface impact the final cooling intensity. The study of the influence of the oxide scale layers with different cooling regimes was carried out using experimental measurements and numerical analysis. The experimental measurements compared both types of cooling regimes and the cooling of scale-free surfaces and oxidized surfaces. A numerical analysis was prepared to simulate the cooling process with different conditions of the section and samples with different oxide scale layers.
Keywords: Heat transfer coefficient, numerical analysis, oxide layer, spray cooling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29781215 Investigation on Mesh Sensitivity of a Transient Model for Nozzle Clogging
Authors: H. Barati, M. Wu, A. Kharicha, A. Ludwig
Abstract:
A transient model for nozzle clogging has been developed and successfully validated against a laboratory experiment. Key steps of clogging are considered: transport of particles by turbulent flow towards the nozzle wall; interactions between fluid flow and nozzle wall, and the adhesion of the particle on the wall; the growth of the clog layer and its interaction with the flow. The current paper is to investigate the mesh (size and type) sensitivity of the model in both two and three dimensions. It is found that the algorithm for clog growth alone excluding the flow effect is insensitive to the mesh type and size, but the calculation including flow becomes sensitive to the mesh quality. The use of 2D meshes leads to overestimation of the clog growth because the 3D nature of flow in the boundary layer cannot be properly solved by 2D calculation. 3D simulation with tetrahedron mesh can also lead to an error estimation of the clog growth. A mesh-independent result can be achieved with hexahedral mesh, or at least with triangular prism (inflation layer) for near-wall regions.
Keywords: Clogging, nozzle, numerical model, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8411214 Electron Filling Factor and Sunlight Concentration Effects on the Efficiency of Intermediate Band Solar Cell
Authors: Nima Es'haghi Gorji, Hossein Movla, Foozieh Sohrabi, Alireza Mottaghizadeh, Mohammad Houshmand, Hassan Babaei, Arash Nikniazi
Abstract:
For a determined intermediate band position, the effects of electron filling factor and sunlight concentration on the active region thickness and efficiency of the quantum-dot intermediate band solar cell are calculated. For each value of electron filling factor, the maximum point of efficiency obtained and resulted in the optimum thickness of the cell under three different sunlight concentrations. We show the importance of filling factor as a parameter to be more considered. The photon recycling effect eliminated in all calculations.
Keywords: Intermediate band, Sunlight concentration, Efficiency limits, Electron filling factor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15341213 Graphene/h-BN Heterostructure Interconnects
Authors: Nikhil Jain, Yang Xu, Bin Yu
Abstract:
The material behavior of graphene, a single layer of carbon lattice, is extremely sensitive to its dielectric environment. We demonstrate improvement in electronic performance of graphene nanowire interconnects with full encapsulation by lattice-matching, chemically inert, 2D layered insulator hexagonal boron nitride (h- BN). A novel layer-based transfer technique is developed to construct the h-BN/MLG/h-BN heterostructures. The encapsulated graphene wires are characterized and compared with that on SiO2 or h-BN substrate without passivating h-BN layer. Significant improvements in maximum current-carrying density, breakdown threshold, and power density in encapsulated graphene wires are observed. These critical improvements are achieved without compromising the carrier transport characteristics in graphene. Furthermore, graphene wires exhibit electrical behavior less insensitive to ambient conditions, as compared with the non-passivated ones. Overall, h-BN/graphene/h- BN heterostructure presents a robust material platform towards the implementation of high-speed carbon-based interconnects.Keywords: Two-dimensional nanosheet, graphene, hexagonal boron nitride, heterostructure, interconnects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16941212 On Modified Numerical Schemes in Vortex Element Method for 2D Flow Simulation Around Airfoils
Authors: Ilia Marchevsky, Victoriya Moreva
Abstract:
The problem of incompressible steady flow simulation around an airfoil is discussed. For some simplest airfoils (circular, elliptical, Zhukovsky airfoils) the exact solution is known from complex analysis. It allows to compute the intensity of vortex layer which simulates the airfoil. Some modifications of the vortex element method are proposed and test computations are carried out. It-s shown that the these approaches are much more effective in comparison with the classical numerical scheme.
Keywords: Vortex element method, vortex layer, integral equation, ill-conditioned matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16721211 Evaluation for Punching Shear Strength of Slab-Column Connections with Ultra High Performance Fiber-Reinforced Concrete Overlay
Authors: H. S. Youm, S. G. Hong
Abstract:
This paper presents the test results on 5 slab-column connection specimens with Ultra High Performance Fiber-Reinforced Concrete (UHPFRC) overlay including 1 control specimen to investigate retrofitting effect of UHPFRC overlay on the punching shear capacity. The test parameters were the thickness of the UHPFRC overlay and the amount of steel re-bars in it. All specimens failed in punching shear mode with abrupt failure aspect. The test results showed that by adding a thin layer of UHPFRC over the Reinforced Concrete (RC) substrates, considerable increases in global punching shear resistance up to 82% and structural rigidity were achieved. Furthermore, based on the cracking patterns the composite systems appeared to be governed by two failure modes: 1) diagonal shear failure in RC section and 2) debonding failure at the interface.
Keywords: Punching shear strength, retrofit, slab-column connection, UHPFRC, UHPFRC overlay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10261210 Characterization of Two Hybrid Welding Techniques on SA 516 Grade 70 Weldments
Authors: M. T. Z. Butt, T. Ahmad, N. A. Siddiqui
Abstract:
Commercially SA 516 Grade 70 is frequently used for the manufacturing of pressure vessels, boilers and storage tanks etc. in fabrication industry. Heat input is the major parameter during welding that may bring significant changes in the microstructure as well as the mechanical properties. Different welding technique has different heat input rate per unit surface area. Materials with large thickness are dealt with different combination of welding techniques to achieve required mechanical properties. In the present research two schemes: Scheme 1: SMAW (Shielded Metal Arc Welding) & GTAW (Gas Tungsten Arc Welding) and Scheme 2: SMAW & SAW (Submerged Arc Welding) of hybrid welding techniques have been studied. The purpose of these schemes was to study hybrid welding effect on the microstructure and mechanical properties of the weldment, heat affected zone and base metal area. It is significant to note that the thickness of base plate was 12 mm, also welding conditions and parameters were set according to ASME Section IX. It was observed that two different hybrid welding techniques performed on two different plates demonstrated that the mechanical properties of both schemes are more or less similar. It means that the heat input, welding techniques and varying welding operating conditions & temperatures did not make any detrimental effect on the mechanical properties. Hence, the hybrid welding techniques mentioned in the present study are favorable to implicate for the industry using the plate thickness around 12 mm thick.
Keywords: Grade 70, GTAW, hybrid welding, SAW, SMAW.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13161209 An Experimental Study to Mitigate Swelling Pressure of Expansive Tabuk Shale, Saudi Arabia
Authors: A. A. Embaby, A. Abu Halawa, M. Ramadan
Abstract:
In Kingdom of Saudi Arabia, there are several areas where expansive soil exists in the form of variable-thicknesses layers in the developed regions. Severe distress to infrastructures can be caused by the development of heave and swelling pressure in this kind of expansive shale. Among the various techniques for expansive soil mitigation, the removal and replacement technique is very popular for lightly loaded structures and shallow foundations. This paper presents the result of an experimental study conducted for evaluating the effect of type and thickness of the cushion soils on mitigation of swelling characteristics of expanded shale. Seven undisturbed shale samples collected from Al Qadsiyah district, which is located in the Tabuk town north Kingdom of Saudi Arabia, are treated with two types of cushion coarse-grained sediments (CCS); sand and gravel. Each type is represented with three thicknesses, 22%, 33% and 44% in relation to the depth of the active zone. The test results indicated that the replacement of expansive shale by CCS reduces the swelling potential and pressure. It is found that the reduction in swelling depends on the type and thickness of CCS. The treatment by removing the original expansive shale and replacing it by cushion sand with 44% thickness reduced the swelling potential and pressure of about 53.29% and 62.78 %, respectively.
Keywords: Cushion coarse-grained sediments, expansive soil, Saudi Arabia, swelling pressure, Tabuk Shale.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15411208 Security Architecture for Cloud Networking: A Survey
Authors: Vishnu Pratap Singh Kirar
Abstract:
In the cloud computing hierarchy IaaS is the lowest layer, all other layers are built over it. Thus it is the most important layer of cloud and requisite more importance. Along with advantages IaaS faces some serious security related issue. Mainly Security focuses on Integrity, confidentiality and availability. Cloud computing facilitate to share the resources inside as well as outside of the cloud. On the other hand, cloud still not in the state to provide surety to 100% data security. Cloud provider must ensure that end user/client get a Quality of Service. In this report we describe possible aspects of cloud related security.
Keywords: Cloud Computing, Cloud Networking, IaaS, PaaS, SaaS, Cloud Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22441207 Depletion Layer Parameters of Al-MoO3-P-CdTe-Al MOS Structures
Authors: A. C. Sarmah
Abstract:
The Al-MoO3-P-CdTe-Al MOS sandwich structures were fabricated by vacuum deposition method on cleaned glass substrates. Capacitance versus voltage measurements were performed at different frequencies and sweep rates of applied voltages for oxide and semiconductor films of different thicknesses. In the negative voltage region of the C-V curve a high differential capacitance of the semiconductor was observed and at high frequencies (<10 kHz) the transition from accumulation to depletion and further to deep depletion was observed as the voltage was swept from negative to positive. A study have been undertaken to determine the value of acceptor density and some depletion layer parameters such as depletion layer capacitance, depletion width, impurity concentration, flat band voltage, Debye length, flat band capacitance, diffusion or built-in-potential, space charge per unit area etc. These were determined from C-V measurements for different oxide and semiconductor thicknesses.
Keywords: Debye length, Depletion width, flat band capacitance, impurity concentration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15691206 Magnetohydrodynamics Boundary Layer Flows over a Stretching Surface with Radiation Effect and Embedded in Porous Medium
Authors: Siti Khuzaimah Soid, Zanariah Mohd Yusof, Ahmad Sukri Abd Aziz, Seripah Awang Kechil
Abstract:
A steady two-dimensional magnetohydrodynamics flow and heat transfer over a stretching vertical sheet influenced by radiation and porosity is studied. The governing boundary layer equations of partial differential equations are reduced to a system of ordinary differential equations using similarity transformation. The system is solved numerically by using a finite difference scheme known as the Keller-box method for some values of parameters, namely the radiation parameter N, magnetic parameter M, buoyancy parameter l , Prandtl number Pr and permeability parameter K. The effects of the parameters on the heat transfer characteristics are analyzed and discussed. It is found that both the skin friction coefficient and the local Nusselt number decrease as the magnetic parameter M and permeability parameter K increase. Heat transfer rate at the surface decreases as the radiation parameter increases.Keywords: Keller-box, MHD boundary layer flow, permeability stretching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19801205 Simulation of Heat Transfer in the Multi-Layer Door of the Furnace
Authors: U. Prasopchingchana
Abstract:
The temperature distribution and the heat transfer rates through a multi-layer door of a furnace were investigated. The inside of the door was in contact with hot air and the other side of the door was in contact with room air. Radiation heat transfer from the walls of the furnace to the door and the door to the surrounding area was included in the problem. This work is a two dimensional steady state problem. The Churchill and Chu correlation was used to find local convection heat transfer coefficients at the surfaces of the furnace door. The thermophysical properties of air were the functions of the temperatures. Polynomial curve fitting for the fluid properties were carried out. Finite difference method was used to discretize for conduction heat transfer within the furnace door. The Gauss-Seidel Iteration was employed to compute the temperature distribution in the door. The temperature distribution in the horizontal mid plane of the furnace door in a two dimensional problem agrees with the one dimensional problem. The local convection heat transfer coefficients at the inside and outside surfaces of the furnace door are exhibited.Keywords: Conduction, heat transfer, multi-layer door, natural convection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20971204 Effect of Time-Periodic Boundary Temperature on the Onset of Nanofluid Convection in a Layer of a Saturated Porous Medium
Authors: J.C. Umavathi
Abstract:
The linear stability of nanofluid convection in a horizontal porous layer is examined theoretically when the walls of the porous layer are subjected to time-periodic temperature modulation. The model used for the nanofluid incorporates the effects of Brownian motion and thermopherosis, while the Darcy model is used for the porous medium. The analysis revels that for a typical nanofluid (with large Lewis number) the prime effect of the nanofluids is via a buoyancy effect coupled with the conservation of nanoparticles. The contribution of nanoparticles to the thermal energy equation being a second-order effect. It is found that the critical thermal Rayleigh number can be found reduced or decreased by a substantial amount, depending on whether the basic nanoparticle distribution is top-heavy or bottom-heavy. Oscillatory instability is possible in the case of a bottom-heavy nanoparticle distribution, phase angle and frequency of modulation.
Keywords: Brownian motion and thermophoresis, Porous medium, Nanofluid, Natural convection, Thermal modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21701203 Secondary Effects on Water Vapor Transport Properties Measured by Cup Method
Authors: Z. Pavlík, J. Fořt, J. Žumár, M. Pavlíková, R. Černý
Abstract:
The cup method is applied for the measurement of water vapor transport properties of porous materials worldwide. However, in practical applications the experimental results are often used without taking into account some secondary effects which can play an important role under specific conditions. In this paper, the effect of temperature on water vapor transport properties of cellular concrete is studied, together with the influence of sample thickness. At first, the bulk density, matrix density, total open porosity and sorption and desorption isotherms are measured for material characterization purposes. Then, the steady state cup method is used for determination of water vapor transport properties, whereas the measurements are performed at several temperatures and for three different sample thicknesses.
Keywords: Water vapor transport, cellular concrete, cup method, temperature, sample thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18961202 Solar Energy Collection using a Double-layer Roof
Authors: S. Kong Wang
Abstract:
The purpose of this study is to investigate the efficiency of a double-layer roof in collecting solar energy as an application to the areas such as raising high-end temperature of organic Rankine cycle (ORC). The by-product of the solar roof is to reduce building air-conditioning loads. The experimental apparatus are arranged to evaluate the effects of the solar roof in absorbing solar energy. The flow channel is basically formed by an aluminum plate on top of a plywood plate. The geometric configurations in which the effects of absorbing energy is analyzed include: a bare uncovered aluminum plate, a glass-covered aluminum plate, a glass-covered/black-painted aluminum plate, a plate with variable lengths, a flow channel with stuffed material (in an attempt on enhancement of heat conduction), and a flow channel with variable slanted angles. The experimental results show that the efficiency of energy collection varies from 0.6 % to 11 % for the geometric configurations mentioned above. An additional study is carried out using CFD simulation to investigate the effects of fins on the aluminum plate. It shows that due to vastly enhanced heat conduction, the efficiency can reach ~23 % if 50 fins are installed on the aluminum plate. The study shows that a double-layer roof can efficiently absorb solar energy and substantially reduce building air-conditioning loads. On the high end of an organic Rankine cycle, a solar pond is used to replace the warm surface water of the sea as OTEC (ocean thermal energy conversion) is the driving energy for the ORC. The energy collected from the double-layered solar roof can be pumped into the pond and raise the pond temperature as the pond surface area is equivalently increased by nearly one-fourth of the total area of the double-layer solar roof. The effect of raising solar pond temperature is especially prominent if the double-layer solar roofs are installed in a community area.Keywords: solar energy collection, double-layer solar roof, energy conservation, ORC, OTEC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23341201 Numerical Solutions of Boundary Layer Flow over an Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity
Authors: Ezad Hafidz Hafidzuddin, Roslinda Nazar, Norihan M. Arifin, Ioan Pop
Abstract:
In this paper, the problem of steady laminar boundary layer flow and heat transfer over a permeable exponentially stretching/shrinking sheet with generalized slip velocity is considered. The similarity transformations are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are then solved numerically using the bvp4c function in MATLAB. Dual solutions are found for a certain range of the suction and stretching/shrinking parameters. The effects of the suction parameter, stretching/shrinking parameter, velocity slip parameter, critical shear rate and Prandtl number on the skin friction and heat transfer coefficients as well as the velocity and temperature profiles are presented and discussed.
Keywords: Boundary Layer, Exponentially Stretching/Shrinking Sheet, Generalized Slip, Heat Transfer, Numerical Solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26981200 Efficient Oxyhydrogen Mixture Determination in Gas Detonation Forming
Authors: Morteza Khaleghi, Babak Seyed Aghazadeh, Hosein Bisadi
Abstract:
Oxyhydrogen is a mixture of Hydrogen (H2) and Oxygen (O2) gases. Detonative mixtures of oxyhydrogens with various combinations of these two gases were used in Gas Detonation Forming (GDF) to form sheets of mild steel. In die forming experiments, three types of conical dies with apex angles of 60, 90 and 120 degrees were used. Pressure of mixtures inside the chamber before detonation was varied from 3 Bar to 5 Bar to investigate the effect of pre-detonation pressure in the forming process. On each conical die, several experiments with different percentages of Hydrogen were carried out to determine the optimum gaseous mixture. According to our results the best forming process occurred when approximately 50-70%. Hydrogen was employed in the mixture. Furthermore, the experimental results were compared to the ones from FEM analysis. The FEM simulation results of thickness strain, hoop strain, thickness variation and deformed geometry are promising.
Keywords: Sheet metal forming, Gas detonation, FEM, Oxyhydrogen
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22561199 A Retrospective of High-Lift Device Technology
Authors: Andrea Dal Monte, Marco Raciti Castelli, Ernesto Benini
Abstract:
The present paper deals with the most adopted technical solutions for the enhancement of the lift force of a wing. In fact, during several flight conditions (such as take off and landing), the lift force needs to be dramatically enhanced. Both trailing edge devices (such as flaps) and leading edge ones (such as slats) are described. Finally, the most advanced aerodynamic solutions to avoid the separation of the boundary layer from aircraft wings at high angles of attack are reviewed.Keywords: High lift devices, Trailing Edge devices, Leading Edge devices, Boundary Layer Control devices
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39671198 Structural-Geotechnical Effects of the Foundation of a Medium-Height Structure
Authors: V. Rodas, L. Almache
Abstract:
The interaction effects between the existing soil and the substructure of a 5-story building with an underground one, were evaluated in such a way that the structural-geotechnical concepts were validated through the method of impedance factors with a program based on the method of the finite elements. The continuous wall-type foundation had a constant thickness and followed inclined and orthogonal directions, while the ground had homogeneous and medium-type characteristics. The soil considered was type C according to the Ecuadorian Construction Standard (NEC) and the corresponding foundation comprised a depth of 4.00 meters and a basement wall thickness of 40 centimeters. This project is part of a mid-rise building in the city of Azogues (Ecuador). The hypotheses raised responded to the objectives in such a way that the model implemented with springs had a variation with respect to the embedded base, obtaining conservative results.
Keywords: interaction, soil, substructure, springs, effects, modeling, embedment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5271197 Proportionally Damped Finite Element State-Space Model of Composite Laminated Plate with Localized Interface Degeneration
Authors: Shi Qi Koo, Ahmad Beng Hong Kueh
Abstract:
In the present work, the finite element formulation for the investigation of the effects of a localized interfacial degeneration on the dynamic behavior of the [90°/0°] laminated composite plate employing the state-space technique is performed. The stiffness of the laminate is determined by assembling the stiffnesses of subelements. This includes an introduction of an interface layer adopting the virtually zero-thickness formulation to model the interfacial degeneration. Also, the kinematically consistent mass matrix and proportional damping have been formulated to complete the free vibration governing expression. To simulate the interfacial degeneration of the laminate, the degenerated areas are defined from the center propagating outwards in a localized manner. It is found that the natural frequency, damped frequency and damping ratio of the plate decreases as the degenerated area of the interface increases. On the contrary, the loss factor increases correspondingly.
Keywords: Dynamic finite element, localized interface degeneration, proportional damping, state-space modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20821196 Characterization of Inertial Confinement Fusion Targets Based on Transmission Holographic Mach-Zehnder Interferometer
Authors: B. Zare-Farsani, M. Valieghbal, M. Tarkashvand, A. H. Farahbod
Abstract:
To provide the conditions for nuclear fusion by high energy and powerful laser beams, it is required to have a high degree of symmetry and surface uniformity of the spherical capsules to reduce the Rayleigh-Taylor hydrodynamic instabilities. In this paper, we have used the digital microscopic holography based on Mach-Zehnder interferometer to study the quality of targets for inertial fusion. The interferometric pattern of the target has been registered by a CCD camera and analyzed by Holovision software. The uniformity of the surface and shell thickness are investigated and measured in reconstructed image. We measured shell thickness in different zone where obtained non uniformity 22.82 percent.Keywords: Inertial confinement fusion, Mach-Zehnder interferometer, Digital holographic microscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314