Structural-Geotechnical Effects of the Foundation of a Medium-Height Structure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Structural-Geotechnical Effects of the Foundation of a Medium-Height Structure

Authors: V. Rodas, L. Almache

Abstract:

The interaction effects between the existing soil and the substructure of a 5-story building with an underground one, were evaluated in such a way that the structural-geotechnical concepts were validated through the method of impedance factors with a program based on the method of the finite elements. The continuous wall-type foundation had a constant thickness and followed inclined and orthogonal directions, while the ground had homogeneous and medium-type characteristics. The soil considered was type C according to the Ecuadorian Construction Standard (NEC) and the corresponding foundation comprised a depth of 4.00 meters and a basement wall thickness of 40 centimeters. This project is part of a mid-rise building in the city of Azogues (Ecuador). The hypotheses raised responded to the objectives in such a way that the model implemented with springs had a variation with respect to the embedded base, obtaining conservative results.

Keywords: interaction, soil, substructure, springs, effects, modeling, embedment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 534

References:


[1] S. Ates, B. Atmaca, E. Yildirim, and N. A. Demiroz, “Effects of soil-structure interaction on construction stage analysis of highway bridges,” Comput. Concr., vol. 12, no. 2, pp. 169–186, 2013, doi: 10.12989/cac.2013.12.2.169.
[2] ASCE 41-17, Seismic Evaluation and Retrofit of Existing Buildings. 2017.
[3] A. S. Hokmabadi and B. Fatahi, “Influence of Foundation Type on Seismic Performance of Buildings Considering Soil-Structure Interaction,” Int. J. Struct. Stab. Dyn., vol. 16, no. 8, pp. 1–29, 2016, doi: 10.1142/S0219455415500431.
[4] Y. Tang and J. Zhang, “Probabilistic seismic demand analysis of a slender RC shear wall considering soil-structure interaction effects,” Eng. Struct., vol. 33, no. 1, pp. 218–229, 2011, doi: 10.1016/j.engstruct.2010.10.011.
[5] J. W. Baker, “Measuring bias in structural response caused by ground motion scaling,” Pacific Conf. Earthq. Eng., no. 056, pp. 1–6, 2007, doi: 10.1002/eqe.
[6] P. Raychowdhury, “Seismic response of low-rise steel moment-resisting frame (SMRF) buildings incorporating nonlinear soil-structure interaction (SSI),” Eng. Struct., vol. 33, no. 3, pp. 958–967, 2011, doi: 10.1016/j.engstruct.2010.12.017.
[7] G. Villarreal, Interaccion Suelo-Estructura En Edificios Altos, ASAMBLEA N. LIMA, 2009.
[8] M. Nakhaei and M. Ali Ghannad, “The effect of soil-structure interaction on damage index of buildings,” Eng. Struct., vol. 30, no. 6, pp. 1491–1499, 2008, doi: 10.1016/j.engstruct.2007.04.009.
[9] J. Leon, “Interaccion estatica suelo estructura analisis con el metodo de elementos finitos,” 2011.
[10] P. Trovalusci and R. Masiani, “Non-linear micropolar and classical continua for anisotropic discontinous materials,” Int. J. Solids Struct., vol. 40, no. 5, pp. 1281–1297, 2003, doi: 10.1016/S0020-7683(02)00584-X.
[11] C. G. Koh, B. Hong, and C. Y. Liaw, “Substructural and progressive structural identification methods,” Eng. Struct., vol. 25, no. 12, pp. 1551–1563, 2003, doi: 10.1016/S0141-0296(03)00122-6.
[12] Y. Lu, B. Li, F. Xiong, Q. Ge, P. Zhao, and Y. Liu, “Simple discrete models for dynamic structure-soil-structure interaction analysis,” Eng. Struct., vol. 206, no. January 2019, 2020, doi: 10.1016/j.engstruct.2020.110188.
[13] C. C. Spyrakos, C. A. Maniatakis, and I. A. Koutromanos, “Soil-structure interaction effects on base-isolated buildings founded on soil stratum,” Eng. Struct., vol. 31, no. 3, pp. 729–737, 2009, doi: 10.1016/j.engstruct.2008.10.012.
[14] M. I. Wallace, J. Sieber, S. A. Neild, D. J. Wagg, and B. Krauskopf, “Stability analysis of real-time dynamic substructuring using delay differential equation models,” Earthq. Eng. Struct. Dyn., vol. 34, no. 15, pp. 1817–1832, 2005, doi: 10.1002/eqe.513.
[15] H. Yazdani, M. Khatibinia, S. Gharehbaghi, and K. Hatami, “Probabilistic Performance-Based Optimum Seismic Design of RC Structures Considering Soil–Structure Interaction Effects,” ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng., vol. 3, no. 2, pp. 1–12, 2017, doi: 10.1061/ajrua6.0000880.
[16] E. A. Ávila, A. Á. Gutiérrez, and U. Maruri, “Aplicación de la prospección sísmica MASW para identificar los rellenos de lodos en un vertedero Application of MASW seismic surveys to identify sludge deposits in a landfill,” 2016.
[17] J. Navarro, “Aplicación del método masw para la caracterización sismica del sueló en zóna urbana,” 2018.
[18] B. G. Castrillo, “Análisis Y Aplicaciones Del Ruido Sísmico En México, Golfo De México Y Caribe : Tomografía De Ondas Superficiales Rayleigh Y Love Memoria Para Optar Al Grado De Doctor Presentada Por,” p. 227, 2013, (Online). Available: https://eprints.ucm.es/23557/1/T34898.pdf.
[19] L. Morales and A. Espinosa, “Influencia de la Interacción Suelo Estructura (ISE) de Cimentaciones Superficiales en Suelos no Cohesivos en el Comportamiento Estructural de una Edificación de 8 Pisos y un Subsuelo,” Ingenio, vol. 3, no. 1, pp. 5–26, 2020, doi: 10.29166/ingenio.v3i1.2391.
[20] NEC, “NEC-Geotécnicos Y Trabajos De Cimentación.” Miduvi, Quito, Ecuador, p. 200, 2015, (Online). Available: MIDUVI.GOB.EC.