Search results for: graphical decision models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3975

Search results for: graphical decision models

3675 A Comparative Study of PV Models in Matlab/Simulink

Authors: Mohammad Seifi, Azura Bt. Che Soh, Noor Izzrib. Abd. Wahab, Mohd Khair B. Hassan

Abstract:

Solar energy has a major role in renewable energy resources. Solar Cell as a basement of solar system has attracted lots of research. To conduct a study about solar energy system, an authenticated model is required. Diode base PV models are widely used by researchers. These models are classified based on the number of diodes used in them. Single and two-diode models are well studied. Single-diode models may have two, three or four elements. In this study, these solar cell models are examined and the simulation results are compared to each other. All PV models are re-designed in the Matlab/Simulink software and they examined by certain test conditions and parameters. This paper provides comparative studies of these models and it tries to compare the simulation results with manufacturer-s data sheet to investigate model validity and accuracy. The results show a four- element single-diode model is accurate and has moderate complexity in contrast to the two-diode model with higher complexity and accuracy

Keywords: Fill Factor (FF), Matlab/Simulink, Maximum PowerPoint (MPP), Maximum Power Point Tracker (MPPT), Photo Voltaic(PV), Solar cell, Standard Test Condition (STC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5806
3674 Design, Modeling and Fabrication of a Tactile Sensor and Display System for Application in Laparoscopic Surgery

Authors: M. Ramezanifard, J. Dargahi, S. Najarian, N. Narayanan

Abstract:

One of the major disadvantages of the minimally invasive surgery (MIS) is the lack of tactile feedback to the surgeon. In order to identify and avoid any damage to the grasped complex tissue by endoscopic graspers, it is important to measure the local softness of tissue during MIS. One way to display the measured softness to the surgeon is a graphical method. In this paper, a new tactile sensor has been reported. The tactile sensor consists of an array of four softness sensors, which are integrated into the jaws of a modified commercial endoscopic grasper. Each individual softness sensor consists of two piezoelectric polymer Polyvinylidene Fluoride (PVDF) films, which are positioned below a rigid and a compliant cylinder. The compliant cylinder is fabricated using a micro molding technique. The combination of output voltages from PVDF films is used to determine the softness of the grasped object. The theoretical analysis of the sensor is also presented. A method has been developed with the aim of reproducing the tactile softness to the surgeon by using a graphical method. In this approach, the proposed system, including the interfacing and the data acquisition card, receives signals from the array of softness sensors. After the signals are processed, the tactile information is displayed by means of a color coding method. It is shown that the degrees of softness of the grasped objects/tissues can be visually differentiated and displayed on a monitor.

Keywords: Minimally invasive surgery, Robotic surgery, Sensor, Softness, Tactile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
3673 Ecosystem Model for Environmental Applications

Authors: Cristina Schreiner, Romeo Ciobanu, Marius Pislaru

Abstract:

This paper aims to build a system based on fuzzy models that can be implemented in the assessment of ecological systems, to determine appropriate methods of action for reducing adverse effects on environmental and implicit the population. The model proposed provides new perspective for environmental assessment, and it can be used as a practical instrument for decision –making.

Keywords: Ecosystem model, Environmental security, Fuzzy logic, Sustainability of habitable regions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
3672 Feasibility Analysis Studies on New National R&D Programs in Korea

Authors: Seongmin Yim, Hyun-Kyu Kang

Abstract:

As a part of evaluation system for R&D program, the Korean government has applied feasibility analysis since 2008. Various professionals put forth a great effort in order to catch up the high degree of freedom of R&D programs, and make contributions to evolving the feasibility analysis. We analyze diverse R&D programs from various viewpoints, such as technology, policy, and Economics, integrate the separate analysis, and finally arrive at a definite result; whether a program is feasible or unfeasible. This paper describes the concept and method of the feasibility analysis as a decision making tool. The analysis unit and content of each criterion, which are key elements in a comprehensive decision making structure, are examined

Keywords: Decision Making of New Government R&D Program, Feasibility Analysis Study

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
3671 Defining a Semantic Web-based Framework for Enabling Automatic Reasoning on CIM-based Management Platforms

Authors: Fernando Alonso, Rafael Fernandez, Sonia Frutos, Javier Soriano

Abstract:

CIM is the standard formalism for modeling management information developed by the Distributed Management Task Force (DMTF) in the context of its WBEM proposal, designed to provide a conceptual view of the managed environment. In this paper, we propose the inclusion of formal knowledge representation techniques, based on Description Logics (DLs) and the Web Ontology Language (OWL), in CIM-based conceptual modeling, and then we examine the benefits of such a decision. The proposal is specified as a CIM metamodel level mapping to a highly expressive subset of DLs capable of capturing all the semantics of the models. The paper shows how the proposed mapping provides CIM diagrams with precise semantics and can be used for automatic reasoning about the management information models, as a design aid, by means of newgeneration CASE tools, thanks to the use of state-of-the-art automatic reasoning systems that support the proposed logic and use algorithms that are sound and complete with respect to the semantics. Such a CASE tool framework has been developed by the authors and its architecture is also introduced. The proposed formalization is not only useful at design time, but also at run time through the use of rational autonomous agents, in response to a need recently recognized by the DMTF.

Keywords: CIM, Knowledge-based Information Models, OntologyLanguages, OWL, Description Logics, Integrated Network Management, Intelligent Agents, Automatic Reasoning Techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
3670 System Identification Based on Stepwise Regression for Dynamic Market Representation

Authors: Alexander Efremov

Abstract:

A system for market identification (SMI) is presented. The resulting representations are multivariable dynamic demand models. The market specifics are analyzed. Appropriate models and identification techniques are chosen. Multivariate static and dynamic models are used to represent the market behavior. The steps of the first stage of SMI, named data preprocessing, are mentioned. Next, the second stage, which is the model estimation, is considered in more details. Stepwise linear regression (SWR) is used to determine the significant cross-effects and the orders of the model polynomials. The estimates of the model parameters are obtained by a numerically stable estimator. Real market data is used to analyze SMI performance. The main conclusion is related to the applicability of multivariate dynamic models for representation of market systems.

Keywords: market identification, dynamic models, stepwise regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
3669 Face Recognition with Image Rotation Detection, Correction and Reinforced Decision using ANN

Authors: Hemashree Bordoloi, Kandarpa Kumar Sarma

Abstract:

Rotation or tilt present in an image capture by digital means can be detected and corrected using Artificial Neural Network (ANN) for application with a Face Recognition System (FRS). Principal Component Analysis (PCA) features of faces at different angles are used to train an ANN which detects the rotation for an input image and corrected using a set of operations implemented using another system based on ANN. The work also deals with the recognition of human faces with features from the foreheads, eyes, nose and mouths as decision support entities of the system configured using a Generalized Feed Forward Artificial Neural Network (GFFANN). These features are combined to provide a reinforced decision for verification of a person-s identity despite illumination variations. The complete system performing facial image rotation detection, correction and recognition using re-enforced decision support provides a success rate in the higher 90s.

Keywords: Rotation, Face, Recognition, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
3668 An Application of Generalized Fuzzy Soft Sets in a Social Decision Making Problem

Authors: Nisha Singhal, Usha Chouhan

Abstract:

At present, application of the extension of soft set theory in decision making problems in day to day life is progressing rapidly. The concepts of fuzzy soft set and its properties have been evolved as an area of interest for the researchers. The generalization of the concepts recently got importance and a rapid growth in the research in this area witnessed its vital-ness. In this paper, an application of the concept of generalized fuzzy soft set to make decision in a social problem is presented. Further, this paper also highlights some of the key issues of the related areas.

Keywords: Soft set, Fuzzy Soft set, Generalized Fuzzy Soft set, Membership and Non-Membership Score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947
3667 Talent Management through Integration of Talent Value Chain and Human Capital Analytics Approaches

Authors: Wuttigrai Ngamsirijit

Abstract:

Talent management in today’s modern organizations has become data-driven due to a demand for objective human resource decision making and development of analytics technologies. HR managers have been faced with some obstacles in exploiting data and information to obtain their effective talent management decisions. These include process-based data and records; insufficient human capital-related measures and metrics; lack of capabilities in data modeling in strategic manners; and, time consuming to add up numbers and make decisions. This paper proposes a framework of talent management through integration of talent value chain and human capital analytics approaches. It encompasses key data, measures, and metrics regarding strategic talent management decisions along the organizational and talent value chain. Moreover, specific predictive and prescriptive models incorporating these data and information are recommended to help managers in understanding the state of talent, gaps in managing talent and the organization, and the ways to develop optimized talent strategies.    

Keywords: Decision making, human capital analytics, talent management, talent value chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 966
3666 Payment for Pain: Differences between Hypothetical and Real Preferences

Authors: J. Trarbach, S. Schosser, B. Vogt

Abstract:

Decision-makers tend to prefer the first alternative over subsequent alternatives which is called the primacy effect. To reliably measure this effect, we conducted an experiment with real consequences for preference statements. Therefore, we elicit preferences of subjects using a rating scale, i.e. hypothetical preferences, and willingness to pay, i.e. real preferences, for two sequences of pain. Within these sequences, both overall intensity and duration of pain are identical. Hence, a rational decision-maker should be indifferent, whereas the primacy effect predicts a stronger preference for the first sequence. What we see is a primacy effect only for hypothetical preferences. This effect vanishes for real preferences.

Keywords: Decision making, primacy effect, real incentives, willingness to pay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 872
3665 Artificial Intelligence Support for Interferon Treatment Decision in Chronic Hepatitis B

Authors: Alexandru George Floares

Abstract:

Chronic hepatitis B can evolve to cirrhosis and liver cancer. Interferon is the only effective treatment, for carefully selected patients, but it is very expensive. Some of the selection criteria are based on liver biopsy, an invasive, costly and painful medical procedure. Therefore, developing efficient non-invasive selection systems, could be in the patients benefit and also save money. We investigated the possibility to create intelligent systems to assist the Interferon therapeutical decision, mainly by predicting with acceptable accuracy the results of the biopsy. We used a knowledge discovery in integrated medical data - imaging, clinical, and laboratory data. The resulted intelligent systems, tested on 500 patients with chronic hepatitis B, based on C5.0 decision trees and boosting, predict with 100% accuracy the results of the liver biopsy. Also, by integrating the other patients selection criteria, they offer a non-invasive support for the correct Interferon therapeutic decision. To our best knowledge, these decision systems outperformed all similar systems published in the literature, and offer a realistic opportunity to replace liver biopsy in this medical context.

Keywords: Interferon, chronic hepatitis B, intelligent virtualbiopsy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
3664 Virtual Reality Models used on the Visualization of Construction Activities in Civil Engineering Education

Authors: Alcínia Z. Sampaio, Pedro G. Henriques

Abstract:

Three-dimensional geometric models have been used to present architectural and engineering works, showing their final configuration. When the clarification of a detail or the constitution of a construction step in needed, these models are not appropriate. They do not allow the observation of the construction progress of a building. Models that could present dynamically changes of the building geometry are a good support to the elaboration of projects. Techniques of geometric modeling and virtual reality were used to obtain models that could visually simulate the construction activity. The applications explain the construction work of a cavity wall and a bridge. These models allow the visualization of the physical progression of the work following a planned construction sequence, the observation of details of the form of every component of the works and support the study of the type and method of operation of the equipment applied in the construction. These models presented distinct advantage as educational aids in first-degree courses in Civil Engineering. The use of Virtual Reality techniques in the development of educational applications brings new perspectives to the teaching of subjects related to the field of civil construction.

Keywords: Education, Engineering, virtual reality, visualsimulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
3663 Efficient Realization of an ADFE with a New Adaptive Algorithm

Authors: N. Praveen Kumar, Abhijit Mitra, C. Ardil

Abstract:

Decision feedback equalizers are commonly employed to reduce the error caused by intersymbol interference. Here, an adaptive decision feedback equalizer is presented with a new adaptation algorithm. The algorithm follows a block-based approach of normalized least mean square (NLMS) algorithm with set-membership filtering and achieves a significantly less computational complexity over its conventional NLMS counterpart with set-membership filtering. It is shown in the results that the proposed algorithm yields similar type of bit error rate performance over a reasonable signal to noise ratio in comparison with the latter one.

Keywords: Decision feedback equalizer, Adaptive algorithm, Block based computation, Set membership filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
3662 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Authors: Megha Gupta, Nupur Prakash

Abstract:

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 638
3661 Management of Cultural Heritage: Bologna Gates

Authors: A. Ippolito, C. Bartolomei

Abstract:

A growing demand is felt today for realistic 3D models enabling the cognition and popularization of historical-artistic heritage. Evaluation and preservation of Cultural Heritage is inextricably connected with the innovative processes of gaining, managing, and using knowledge. The development and perfecting of techniques for acquiring and elaborating photorealistic 3D models, made them pivotal elements for popularizing information of objects on the scale of architectonic structures.

Keywords: Cultural heritage, databases, non-contact survey, 2D- 3D models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249
3660 On the Symbol Based Decision Feedback Equalizer

Authors: Mohammed Nafie

Abstract:

Decision Feedback equalizers (DFEs) usually outperform linear equalizers for channels with intersymbol interference. However, the DFE performance is highly dependent on the availability of reliable past decisions. Hence, in coded systems, where reliable decisions are only available after decoding the full block, the performance of the DFE will be affected. A symbol based DFE is a DFE that only uses the decision after the block is decoded. In this paper we derive the optimal settings of both the feedforward and feedback taps of the symbol based equalizer. We present a novel symbol based DFE filterbank, and derive its taps optimal settings. We also show that it outperforms the classic DFE in terms of complexity and/or performance.

Keywords: Coding, DFE, Equalization, Exponential Channelmodels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305
3659 Knowledge and Attitude among Women and Men in Decision Making on Pap Smear Screening in Kelantan, Malaysia

Authors: Siti Waringin Oon, Rashidah Shuib, Siti Hawa Ali, Nik Hazlina Nik Hussain, Juwita Shaaban, Harmy Mohd Yusoff

Abstract:

This paper explores the knowledge and attitude of women and men in decision making on pap smear screening. This qualitative study recruited 52 respondents with 44 women and 8 men, using the purposive sampling with snowballing technique through indepth interviews. This study demonstrates several key findings: Female respondents have better knowledge compared to male. Most of the women perceived that pap smear screening is beneficial and important, but to proceed with the test is still doubtful. Male respondents were supportive in terms of sending their spouses to the health facilities or give more freedom to their wives to choose and making decision on their own health due to prominent reason that women know best on their own health. It is expected that the results from this study will provide useful guideline for healthcare providers to prepare any action/intervention to provide an extensive education to improve people-s knowledge and attitude towards pap smear.

Keywords: Attitude, decision making, knowledge, pap smearscreening..

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
3658 Hybrid Machine Learning Approach for Text Categorization

Authors: Nerijus Remeikis, Ignas Skucas, Vida Melninkaite

Abstract:

Text categorization - the assignment of natural language documents to one or more predefined categories based on their semantic content - is an important component in many information organization and management tasks. Performance of neural networks learning is known to be sensitive to the initial weights and architecture. This paper discusses the use multilayer neural network initialization with decision tree classifier for improving text categorization accuracy. An adaptation of the algorithm is proposed in which a decision tree from root node until a final leave is used for initialization of multilayer neural network. The experimental evaluation demonstrates this approach provides better classification accuracy with Reuters-21578 corpus, one of the standard benchmarks for text categorization tasks. We present results comparing the accuracy of this approach with multilayer neural network initialized with traditional random method and decision tree classifiers.

Keywords: Text categorization, decision trees, neural networks, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
3657 A Comparative Study of Turbulence Models Performance for Turbulent Flow in a Planar Asymmetric Diffuser

Authors: Samy M. El-Behery, Mofreh H. Hamed

Abstract:

This paper presents a computational study of the separated flow in a planer asymmetric diffuser. The steady RANS equations for turbulent incompressible fluid flow and six turbulence closures are used in the present study. The commercial software code, FLUENT 6.3.26, was used for solving the set of governing equations using various turbulence models. Five of the used turbulence models are available directly in the code while the v2-f turbulence model was implemented via User Defined Scalars (UDS) and User Defined Functions (UDF). A series of computational analysis is performed to assess the performance of turbulence models at different grid density. The results show that the standard k-ω, SST k-ω and v2-f models clearly performed better than other models when an adverse pressure gradient was present. The RSM model shows an acceptable agreement with the velocity and turbulent kinetic energy profiles but it failed to predict the location of separation and attachment points. The standard k-ε and the low-Re k- ε delivered very poor results.

Keywords: Turbulence models, turbulent flow, wall functions, separation, reattachment, diffuser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3769
3656 Predicting Protein Function using Decision Tree

Authors: Manpreet Singh, Parminder Kaur Wadhwa, Surinder Kaur

Abstract:

The drug discovery process starts with protein identification because proteins are responsible for many functions required for maintenance of life. Protein identification further needs determination of protein function. Proposed method develops a classifier for human protein function prediction. The model uses decision tree for classification process. The protein function is predicted on the basis of matched sequence derived features per each protein function. The research work includes the development of a tool which determines sequence derived features by analyzing different parameters. The other sequence derived features are determined using various web based tools.

Keywords: Sequence Derived Features, decision tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
3655 Improving Air Temperature Prediction with Artificial Neural Networks

Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom

Abstract:

The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. Previous work established that the Ward-style artificial neural network (ANN) is a suitable tool for developing such models. The current research focused on developing ANN models with reduced average prediction error by increasing the number of distinct observations used in training, adding additional input terms that describe the date of an observation, increasing the duration of prior weather data included in each observation, and reexamining the number of hidden nodes used in the network. Models were created to predict air temperature at hourly intervals from one to 12 hours ahead. Each ANN model, consisting of a network architecture and set of associated parameters, was evaluated by instantiating and training 30 networks and calculating the mean absolute error (MAE) of the resulting networks for some set of input patterns. The inclusion of seasonal input terms, up to 24 hours of prior weather information, and a larger number of processing nodes were some of the improvements that reduced average prediction error compared to previous research across all horizons. For example, the four-hour MAE of 1.40°C was 0.20°C, or 12.5%, less than the previous model. Prediction MAEs eight and 12 hours ahead improved by 0.17°C and 0.16°C, respectively, improvements of 7.4% and 5.9% over the existing model at these horizons. Networks instantiating the same model but with different initial random weights often led to different prediction errors. These results strongly suggest that ANN model developers should consider instantiating and training multiple networks with different initial weights to establish preferred model parameters.

Keywords: Decision support systems, frost protection, fruit, time-series prediction, weather modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2725
3654 Application of Intuitionistic Fuzzy Cross Entropy Measure in Decision Making for Medical Diagnosis

Authors: Shikha Maheshwari, Amit Srivastava

Abstract:

In medical investigations, uncertainty is a major challenging problem in making decision for doctors/experts to identify the diseases with a common set of symptoms and also has been extensively increasing in medical diagnosis problems. The theory of cross entropy for intuitionistic fuzzy sets (IFS) is an effective approach in coping uncertainty in decision making for medical diagnosis problem. The main focus of this paper is to propose a new intuitionistic fuzzy cross entropy measure (IFCEM), which aid in reducing the uncertainty and doctors/experts will take their decision easily in context of patient’s disease. It is shown that the proposed measure has some elegant properties, which demonstrates its potency. Further, it is also exemplified in detail the efficiency and utility of the proposed measure by using a real life case study of diagnosis the disease in medical science.

Keywords: Intuitionistic fuzzy cross entropy (IFCEM), intuitionistic fuzzy set (IFS), medical diagnosis, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045
3653 Using the PARIS Method for Multiple Criteria Decision Making in Unmanned Combat Aircraft Evaluation and Selection

Authors: C. Ardil

Abstract:

Unmanned combat aircraft (UCA) are expanding significantly in several defense industries, along with artificial intelligence improvements in highly precise technology. UCA is crucial in military settings for targeting enemy elements, and objects. UCA is also utilized for highly precise reconnaissance and surveillance tasks. To select the best alternative for critical missions, a methodical and effective strategy for UCA selection is required. Multiple criteria decision-making (MCDM) methodologies are ideally equipped to handle the complexity of alternative aircraft selection. To analyze UCA alternatives for the selection process, an integrated methodology built on the objective criteria weights and preference analysis for reference ideal solution (PARIS). First, the weights of essential elements are determined using the average weight (AW), standard deviation (SW) and entropy weight (EW) approach. The weights of the evaluation criteria affect the decision-making process. The aircraft choices in the decision problem are then ranked using objective criteria weights along with the PARIS technique. The validation and sensitivity analysis of the proposed MCDM approach are discussed.

Keywords: unmanned combat aircraft (UCA), multiple criteria decision making, MCDM, PARIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 474
3652 Digital Marketing Maturity Models: Overview and Comparison

Authors: Elina Bakhtieva

Abstract:

The variety of available digital tools, strategies and activities might confuse and disorient even an experienced marketer. This applies in particular to B2B companies, which are usually less flexible in uptaking of digital technology than B2C companies. B2B companies are lacking a framework that corresponds to the specifics of the B2B business, and which helps to evaluate a company’s capabilities and to choose an appropriate path. A B2B digital marketing maturity model helps to fill this gap. However, modern marketing offers no widely approved digital marketing maturity model, and thus, some marketing institutions provide their own tools. The purpose of this paper is building an optimized B2B digital marketing maturity model based on a SWOT (strengths, weaknesses, opportunities, and threats) analysis of existing models. The current study provides an analytical review of the existing digital marketing maturity models with open access. The results of the research are twofold. First, the provided SWOT analysis outlines the main advantages and disadvantages of existing models. Secondly, the strengths of existing digital marketing maturity models, helps to identify the main characteristics and the structure of an optimized B2B digital marketing maturity model. The research findings indicate that only one out of three analyzed models could be used as a separate tool. This study is among the first examining the use of maturity models in digital marketing. It helps businesses to choose between the existing digital marketing models, the most effective one. Moreover, it creates a base for future research on digital marketing maturity models. This study contributes to the emerging B2B digital marketing literature by providing a SWOT analysis of the existing digital marketing maturity models and suggesting a structure and main characteristics of an optimized B2B digital marketing maturity model.

Keywords: B2B digital marketing strategy, digital marketing, digital marketing maturity model, SWOT analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3318
3651 Cost Sensitive Feature Selection in Decision-Theoretic Rough Set Models for Customer Churn Prediction: The Case of Telecommunication Sector Customers

Authors: Emel Kızılkaya Aydogan, Mihrimah Ozmen, Yılmaz Delice

Abstract:

In recent days, there is a change and the ongoing development of the telecommunications sector in the global market. In this sector, churn analysis techniques are commonly used for analysing why some customers terminate their service subscriptions prematurely. In addition, customer churn is utmost significant in this sector since it causes to important business loss. Many companies make various researches in order to prevent losses while increasing customer loyalty. Although a large quantity of accumulated data is available in this sector, their usefulness is limited by data quality and relevance. In this paper, a cost-sensitive feature selection framework is developed aiming to obtain the feature reducts to predict customer churn. The framework is a cost based optional pre-processing stage to remove redundant features for churn management. In addition, this cost-based feature selection algorithm is applied in a telecommunication company in Turkey and the results obtained with this algorithm.

Keywords: Churn prediction, data mining, decision-theoretic rough set, feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
3650 Energy Models for Analyzing the Economic Wide Impact of the Environmental Policies

Authors: Majdi M. Alomari, Nafesah I. Alshdaifat, Mohammad S. Widyan

Abstract:

Different countries have introduced different schemes and policies to counter global warming. The rationale behind the proposed policies and the potential barriers to successful implementation of the policies adopted by the countries were analyzed and estimated based on different models. It is argued that these models enhance the transparency and provide a better understanding to the policy makers. However, these models are underpinned with several structural and baseline assumptions. These assumptions, modeling features and future prediction of emission reductions and other implication such as cost and benefits of a transition to a low-carbon economy and its economy wide impacts were discussed. On the other hand, there are potential barriers in the form political, financial, and cultural and many others that pose a threat to the mitigation options.

Keywords: Economic wide impact, energy models, environmental policy instruments, mitigating CO2 emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
3649 A New DIDS Design Based on a Combination Feature Selection Approach

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original dataset. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 dataset is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.

Keywords: Distributed intrusion detection system, mobile agent, feature selection, Bees Algorithm, decision tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
3648 Decision Support for the Selection of Electric Power Plants Generated from Renewable Sources

Authors: Aumnad Phdungsilp, Teeradej Wuttipornpun

Abstract:

Decision support based upon risk analysis into comparison of the electricity generation from different renewable energy technologies can provide information about their effects on the environment and society. The aim of this paper is to develop the assessment framework regarding risks to health and environment, and the society-s benefits of the electric power plant generation from different renewable sources. The multicriteria framework to multiattribute risk analysis technique and the decision analysis interview technique are applied in order to support the decisionmaking process for the implementing renewable energy projects to the Bangkok case study. Having analyses the local conditions and appropriate technologies, five renewable power plants are postulated as options. As this work demonstrates, the analysis can provide a tool to aid decision-makers for achieving targets related to promote sustainable energy system.

Keywords: Analytic Hierarchy Process, Bangkok, MultiattributeRisk Analysis, Renewable Energy Technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
3647 On the Fast Convergence of DD-LMS DFE Using a Good Strategy Initialization

Authors: Y.Ben Jemaa, M.Jaidane

Abstract:

In wireless communication system, a Decision Feedback Equalizer (DFE) to cancel the intersymbol interference (ISI) is required. In this paper, an exact convergence analysis of the (DFE) adapted by the Least Mean Square (LMS) algorithm during the training phase is derived by taking into account the finite alphabet context of data transmission. This allows us to determine the shortest training sequence that allows to reach a given Mean Square Error (MSE). With the intention of avoiding the problem of ill-convergence, the paper proposes an initialization strategy for the blind decision directed (DD) algorithm. This then yields a semi-blind DFE with high speed and good convergence.

Keywords: Adaptive Decision Feedback Equalizer, PerformanceAnalysis, Finite Alphabet Case, Ill-Convergence, Convergence speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
3646 A New Model for Production Forecasting in ERP

Authors: S. F. Wong, W. I. Ho, B. Lin, Q. Huang

Abstract:

ERP has been used in many enterprises for management, the accuracy of the production forecasting module is vital to the decision making of the enterprise, and the profit is affected directly. Therefore, enhancing the accuracy of the production forecasting module can also increase the efficiency and profitability. To deal with a lot of data, a suitable, reliable and accurate statistics model is necessary. LSSVM and Grey System are two main models to be studied in this paper, and a case study is used to demonstrate how the combination model is effective to the result of forecasting.

Keywords: ERP, Grey System, LSSVM, production forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793