
Defining a Semantic Web-based Framework for
Enabling Automatic Reasoning on CIM-based

Management Platforms
Fernando Alonso, Rafael Fernández, Sonia Frutos, and Javier Soriano

Abstract— CIM is the standard formalism for modeling manage-
ment information developed by the Distributed Management Task
Force (DMTF) in the context of its WBEM proposal, designed to
provide a conceptual view of the managed environment. In this
paper, we propose the inclusion of formal knowledge representation
techniques, based on Description Logics (DLs) and the Web Ontology
Language (OWL), in CIM-based conceptual modeling, and then we
examine the benefits of such a decision. The proposal is specified
as a CIM metamodel level mapping to a highly expressive subset
of DLs capable of capturing all the semantics of the models. The
paper shows how the proposed mapping provides CIM diagrams with
precise semantics and can be used for automatic reasoning about the
management information models, as a design aid, by means of new-
generation CASE tools, thanks to the use of state-of-the-art automatic
reasoning systems that support the proposed logic and use algorithms
that are sound and complete with respect to the semantics. Such a
CASE tool framework has been developed by the authors and its
architecture is also introduced. The proposed formalization is not
only useful at design time, but also at run time through the use of
rational autonomous agents, in response to a need recently recognized
by the DMTF.

Keywords— CIM, Knowledge-based Information Models, Ontol-
ogy Languages, OWL, Description Logics, Integrated Network Man-
agement, Intelligent Agents, Automatic Reasoning Techniques.

I. INTRODUCTION

THE growing complexity, heterogeneity and dynamism
inherent in emerging telecommunications networks, dis-

tributed systems and advanced information and communica-
tion services, as well as their increased criticality and strategic
importance in the networked economy, calls for the adoption
of increasingly more sophisticated technologies for their man-
agement, coordination and integration to assure adequate levels
of functionality, performance and reliability.

Of the available technologies, those associated with the
autonomous agent-based computation paradigm [16], [10] are
precisely the ones that are better accepted for conceiving
new techniques for developing management solutions with
a higher level of automation, greater potential for interop-
erability within open environments and better capabilities of
cooperation. Autonomous agent technology and, particularly,
Multi-Agent Systems provide in this respect a series of new

Manuscript received March 28, 2006. This work is being supported in
part by the Spanish Ministry of Science and Technology (contract TIC2001-
3451); and the Spanish Ministry of Industry, Tourism and Commerce under
its National Program of Service Technologies for the Information Society
(contract FIT-350110-2005-73).

F.Alonso, R. Fernández, S.Frutos and J.Soriano are with the with Depart-
ment of Computer Science, Technical University of Madrid (UPM), Spain.
(e-mail: {falonso,sfrutos,jsoriano}@fi.upm.es, rfdez@pegaso.ls.fi.upm.es)

and exciting possibilities in the field of network operations and
management [6], [7], such as formal semantic-level knowl-
edge representation, automatic reasoning and learning capa-
bilities, high-level communication languages and protocols,
frameworks for automated negotiation, goal-driven proactive
behavior or rational decision making.

The formalisms used in management information modeling
and representation are closely related to the capabilities of
automation, interoperation and cooperation of the management
solutions developed on their basis. The success of the process
of incorporating autonomous agents, capable of reasoning
and dynamically integrating knowledge and services, as an
enabling technology for new management solutions, largely
depends on the evolution of the information models of existing
management architectures [8] towards explicit declarative-type
semantic models, equipped with a solid formal basis, that
can capture the semantics of the management information
models, as well as their formal specification, communication
and automatic reasoning about these models. Knowledge Rep-
resentation and Conceptual Modeling [1] are the fields of
Artificial Intelligence that have progressed most in this respect.
However, they have had hardly any impact on any of the
management information models built to date.

Considering the advances achieved in the field of Knowl-
edge Representation by the international research community,
the strategy followed for building the existing management
information models should be reconsidered and the possibility
of including techniques related to the field of Knowledge
Representation should be examined, as should the benefits of
such a decision. In this paper, we demonstrate the adequacy
of the use of Description Logics [11] and the Web Ontology
Language OWL [18] for formally defining the structure and
constraints of management information in the context of the
information model of a management architecture.This model
determines the modelling approach and notation used to de-
scribe the managed elements, which includes their identifica-
tion, structure, behavior and relations to other elements.

Common Information Model (CIM) is the chosen infor-
mation model. CIM is the standard formalism for modeling
management information developed by the Distributed Man-
agement Task Force DMTF in the context of its WBEM
proposal [2], designed to provide a conceptual view of the
managed environment. There is widespread agreement on the
need to provide CIM diagrams with precise semantics that
can be used to establish a common understanding of the
formal meaning of the CIM metamodel constructs used for

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:2, 2008

555International Scholarly and Scientific Research & Innovation 2(2) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

2,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

20
6.

pd
f

the purpose of enabling interoperation and cooperation. This
point has been repeatedly recognized by the DMTF since a
keynote address presented at the IEEE Policy 2003 Conference
[17]. To our knowledge, however, no specific proposal for
CIM model formalization has yet been made. Although there
are proposals for formalizing structural UML diagrams [3],
[4] that are easily adaptable to CIM diagrams, none of these
proposals amounts to a solid foundation for the development
of automatic reasoning techniques based on algorithms that
are sound and complete with respect to the semantics.

In this paper, we propose the inclusion of formal knowl-
edge representation techniques, based on DLs, in CIM-based
conceptual modeling. The proposal is specified as a CIM
metamodel level mapping to a highly expressive subset of
DLs called ALεCNOQ−

HR+◦ . The aim is to be able to au-
tomatically reason about the management information models
conceptualized by CIM both in the design phase (to verify
formal properties of the models, such as their satisfiability,
extract logical implications from and detect inconsistencies
or redundancies in the models) and at run time, through the
use of rational agents that are able to exploit the DL-OWL
expressions of CIM models and their instances as domain on-
tologies in their deduction, coordination and action processes.
To achieve this latter aim, the proposal contemplates the use
of the Semantic Web ontology language OWL for XML-based
representation and exchange of the CIM models previously
formalized by means of DLs. This latter point amounts to a
significant advance over the use of the MOF (Managed Object
Format) textual specification language or CIM/XML mapping
proposed by the DMTF. The proposal as a whole makes up
an original Management Information Model, called CIMOnt,
and has been developed in the context of a novel Management
Architecture called Nesmarq.

The remainder of the paper is organized as follows. Section
II presents the findings of an analysis that takes all the infor-
mation models proposed to date into account and justifies the
need for a semantically-enabled information model. Section
III argues the adequacy of DLs as a representation formalism
capable of capturing the semantics of CIM models. Section IV
is the core of the paper and describes the proposed mapping
of CIM to the ALεCNOQ−

HR+◦ DL. Section V describes
the CIMOnt framework architecture, the set of new-generation
CASE tools that we have developed to help to demonstrate
the ideas presented in this paper. Section VI presents the new
reasoning services available as a result of the formalization
process for both the conceptual design phase and at run time.
Finally, section VII discusses the main conclusions of this
work.

II. MANAGEMENT INFORMATION MODELS AND THE NEED

FOR A SEMANTICS-BASED APPROACH

It is essential when constructing a management solution to
select the best architecture, as this architecture determines
to a large extent its capabilities. If reference management
architectures are available, open management platforms can be
constructed that ease the development of the final applications.

One of the primary goals of a management architecture
is to provide a conceptual framework for standardizing the

key elements that will later support the management platforms
and solutions developed on its basis. This framework is vital
for implementing an integrated management solution in an
open and strongly distributed environment like the Internet.
Management information specification lies therefore at the
heart of any management architecture. This is made accessible
as managed object definitions built according to a specific
model. The managed objects represent an abstraction of those
features of the resources and services involved that are consid-
ered relevant for the management process. The key elements
for standardization, then, include the modeling methods used
and the description of the management domain objects that
make up the management architecture information model.
The information model should provide consensus on how to
identify these objects, how to represent their state, how to
define their behavior and how they can be manipulated.

In [15] we analyzed and qualitatively compared the different
management architectures there are from the viewpoint of (a)
the information model, in terms of the expressiveness of its
respective models and the level of abstraction with which the
tasks are specified and (b) the organizational model adopted,
as well as the type and granularity of the permitted delegation.
This analysis enabled us to classify the existing architectures
with respect to the four key requirements needed to cover new
management needs: automation, interoperability, cooperation
and scalability. In this section we summarize the findings of
this analysis as regards information models and justify the
approach proposed in this article.

Fig. 1 shows the results of comparing the information
models of the different management architectures there are
from the viewpoints of their level of abstraction and their
expressiveness. As regards their abstraction, we find that all
the proposed architectures have need of a full specification
of the tasks to be done, except the incipient policy-based
management proposal. This proposal nonetheless requires a
high level of supervision. In terms of expressiveness, we find
a trend towards increasingly more expressive models (Time
evolves to the upper right-hand corner of the graph). Hence,
there is a move from the use of just data types, through
relationship modeling and the provision of graphical notations,
to being able to specify and exchange metadata and even
behavior.

We also find that none of the existing architectures makes
provision for automatic reasoning about the models built and
only one can model behavior, and its proposal is confined to
a mere graphical notation. Similarly, any metadata modeling
is done at a very elementary level. The conclusion is that
if the information model is to be semantically richer, with
the resulting improvement in terms of flexibility, automation
and interoperability, the object paradigm adopted by many
architectures should be abandoned in favor of a more evolved
theory like the cooperative paradigm. This will call for a
restatement of how concepts, their interrelations, metadata
should be specified and exchanged, and behavior should be
modeled, as well as new graphical modeling languages, along
the lines proposed in this paper. Fig. 1 also shows where
the architecture containing the proposed semantic information
model is positioned with respect to these classification param-

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:2, 2008

556International Scholarly and Scientific Research & Innovation 2(2) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

2,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

20
6.

pd
f

eters.

Fig. 1. Comparison between the information models of existing management
architectures and CIMOnt (referred to as Nesmarq in the figure).

Fig. 2. Qualitative comparison between existing management information
models and CIMOnt).

Fig. 2 illustrates how the architectures have evolved over
time, improving in terms of automation, interoperability, co-
operation and scalability, the optimal levels of which fall in
the upper right-hand corner of the graph (Actually, the plotted
evolution also depends on the other criteria addressed in the
study, apart from the ones we are dealing with here. This
is why the two graphs (Fig. 1 and Fig. 2) differ, but the
explanation for this difference is outside the scope of this
paper). However, the technologies used to date have made this
impossible to achieve.

Fig. 2 shows that the existing management architectures
have a marked tendency to develop models enabling a high
level of management automation, with the resulting increase
in scalability. Fig. 2 also shows how this trend implies the need
to provide a greater degree of cooperation and interoperability
through these models. All this leads to the need to introduce
new technologies into the development of the architecture
models to achieve of these objectives. One such technology is
agents. For the process of incorporating rational autonomous

agents, capable of reasoning and dynamically integrating
knowledge and services, to be successful, the management
architecture information model needs to evolve towards ex-
plicit declarative-type semantic models or ontologies based on
a sound formal foundation.

In this paper, we describe the semantic information model
that we developed for the Nesmarq architecture from the
viewpoint of the management information structure. Issues
related to the dynamic modeling of the interactions between
agents and to the organization model are left for later papers.

CIMOnt is based on DLs, formal ontology languages by
themselves, enabling a greater amount of management automa-
tion than traditional architecture models, thanks to its use by
rational autonomous agents, capable of reasoning, inferring
and dynamically integrating knowledge and services concep-
tualized using the CIM model and formalized semantically by
means of DLs. Using the developed model, we have been able
to develop a new generation of visual modeling tools capable
of reasoning about the models at design time thanks to auto-
matic reasoning engines based on DLs. CIMOnt also includes
a metamodel mapping of CIM to OWL (the Semantic Web
ontology language), which is a significant advance in the field
of XML-based representation and exchange of management
models and metadata.

III. ADEQUACY OF DLS FOR CIM-BASED CONCEPTUAL

MODELING

The CIM information model, developed by the DMTF in
the context of its WBEM proposal [2], is formally described
by means of an object-oriented metamodel based on the UML
modeling language [12], [14], called CIM Metaschema, which
defines the elements used to express the model, as well as their
use and their semantics. These elements are schemas, classes,
properties, methods, indications, associations and references.
Fig. 3 describes the CIM Metaschema.

Fig. 3. CIM Metaschema

The classes can be organized as generalization hierarchies
that form a directed graph which rules out single inheri-
tance. The associations are class types (i.e. they can also
be organized as generalization hierarchies) that represent the
relationships between two or more objects. The roles per-
formed by each object that participates in an association are
defined by a particular type of property called reference.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:2, 2008

557International Scholarly and Scientific Research & Innovation 2(2) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

2,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

20
6.

pd
f

The model also includes qualifiers that characterize other
elements and provide a controlled mechanism for extending
the metamodel. Accordingly, the association and indication
elements are defined by two standard qualifiers.

Like object-oriented modeling, CIM modeling is derived
from classical set theory and classification theory. CIM’s
abstraction and classification capabilities mean that it can
define the fundamental concepts of the management domain
(objects), and group these objects by types (classes), identi-
fying their common characteristics (properties), their interre-
lationships (associations) and their behavior (methods). This
makes the use of DLs suitable as a representation formalism,
based on concepts (classes) and roles (relationships), capable
of capturing and expressing the semantics present in the CIM
models, as well as formally representing other additional
aspects not accounted for by the CIM metamodel, such as
class disjunction, full class partitioning into subclasses or
association navigability. In particular, the ALεCNOQ−

HR+◦
logic proposed in this paper is especially suited for the highly
expressive CIM information structuring mechanisms.

DLs are decidable subsets of first-order logic, making them
an effective formalism for management knowledge repre-
sentation. This eases the design of intelligent management
solutions, furnished with inductive-style reasoning services
capable of reaching implicit consequences from the explicitly
represented management knowledge.

IV. MAPPING THE CIM METAMODEL TO

ALεCNOQ−
HR+◦ DL

In this section, we describe a CIM mapping to DLs designed
for the use of description-logic based automatic reasoning
systems, such as [5], [9].

Table I sets out the concepts and roles constructors used to
develop the proposed mapping for the purpose of configuring
a sufficiently expressive Description Logic. From the above
table, it is clear that a ALεCNOQ−

HR+◦ logic had to be used.
This decision is a compromise between the expressiveness
of the language used to build the terminology knowledge
bases (TBox), which contains the models, and the complexity
involved in the reasoning processes both on the TBox and
on the instance or assertion knowledge bases (ABox). In
this respect, the use of other types of Description Logic,
such as the family of logics derived from DLR logic, which
eliminate the binary roles constraint and introduce constructors
for n-ary roles, would have allowed us to develop a more
intuitive mapping than the one proposed, but at a much greater
computational cost. The tests run during the results generation
phase [15] showed that the RACER tool [5] classified a Tbox
knowledge base with all the CIM version 2.6 models built
by the DMTF expressed in DL according to the proposed
mapping in a matter of a few seconds, whereas this same
tool was unable to classify the knowledge base expressed in
DLRreg , that is, the extension of DLR with the constructors
of union, composition and transitive closure of binary roles as
a mapping of the n-ary roles on two of its components.

The selected logic is really a subset of the minimum logic
required for mapping, as we have the following equivalences:

C � D ≡ ¬(¬C � ¬D)
∃R.C ≡ ¬∀R¬C

which means that C ≡ Uε. However, we have opted not to
use these simplifications so as to make the mapping clearer
without introducing further computational complexity in doing
so, as the two logics are equally expressive.

Table I does not set out the permitted axioms for building
TBox knowledge bases. Apart from the traditional axioms of
concept subsumption (C � D) and concept equivalence (C ≡
D), constrained in the sense that only D can be a concept
expression (and, therefore, C must be an atomic concept), we
have also used the role subsumption axiom to be able to create
roles hierarchies. Hence, the subindex H.

The formal semantics of the mapping of the CIM
metaschema to ALεCNOQ−

HR+◦ is based on a Model Theory,
in which I = 〈D, ·I〉 is an interpretation where:

• D 	= ∅ represents a domain or universe of discourse such
that D = Σ ∪ Υ with Υ =

⋃n
i=1 ΥDi

, ΥDi
∩ ΥDj

= ∅,
and Σ ∩ Υ = ∅, such that Σ is the domain of managed
objects and ΥDi

is the set of values associated with each
basic data type Di supported by CIM (integer, string, etc).

• ·I is the interpretation function that maps:
– DI

i = ΥDi .
– CI

i ⊆ Σ.
– AI

i ⊆ Σ × Υ.
– RI

i ⊆ Σ × · · · × Σ ≡ Σn.

Fig. 4. CIM Core Model 2.6 (extract) edited with CIMOnt CASE tool

Table II summarizes the proposed CIM-ALεCNOQ−
HR+◦

mapping. The following sections describe this mapping. To
illustrate the results, we present, incrementally, part of the
process of translating the CIM Core Model shown in fig. 4.

A. Mapping CIM classes

A CIM class denotes a set of objects with common
characteristics in terms of properties, methods and associa-

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:2, 2008

558International Scholarly and Scientific Research & Innovation 2(2) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

2,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

20
6.

pd
f

TABLE I

TYPES OF DESCRIPTION LOGICS USED TO DEVELOP THE PROPOSED MAPPING

Constructor Syntax Semantics DL

Atomic Concept A AI ⊆ ∆I FL0

Domain | Empty � | ⊥ ∆I | ∅
Conjunction C � D CI ∩ DI

Universal ∀R.C {x | ∀y : RI(x, y) → CI(y)}
Existential ∃R.� {x | ∃y : RI(x, y)} FL−

Atomic Negation ¬A ∆I\AI AL
Qualified Existential ∃R.C {x | ∃y : RI(x, y) ∧ CI(y)} E
Concept Negation ¬C ∆I\CI C
Enumeration a1 · · · an aI

1
· · · aI

n O

Disjunction C � D CI ∪ DI U
Cardinality ≥ nR {x | �{y | RI(x, y)} ≥ n} N

≤ nR {x | �{y | RI(x, y)} ≤ n}
= nR {x | �{y | RI(x, y)} = n}

Qualified ≥ nR.C {x | �{y | RI(x, y) ∧ CI(y)} ≥ n} Q
Cardinality ≤ nR.C {x | �{y | RI(x, y) ∧ CI(y)} ≤ n}

= nR.C {x | �{y | RI(x, y) ∧ CI(y)} = n}
Selection f : C {x ∈ Dom(fI) | CI(fI(x))} RF
Transitive Roles R+

⋃

n≥1
(RI)n ()+

Inverse Roles R− {(y, x) ∈ ∆I × ∆I | RI(a, b)} ()R−

Role Composition R ◦ S RI ◦ SI = {(x, z) | ∃y ∈ ∆I · RI(x, y) ∧ SI(y, z)} ()R◦

tions, which means that it is represented as a concept C in
ALεCNOQ−

HR+◦ DL.

B. Mapping Generalization Hierarchies

A generalization or inheritance relationship between two
CIM classes specifies that each instance of the child class is
also an instance of the parent class, and that the instances of
the child class inherit properties present in the parent class (and
satisfy other additional properties) and can participate in its
associations. The CIM generalization relationship is expressed
as an inheritance between ALεCNOQ−

HR+◦ concepts, taking
advantage of the fact that the semantics of the inclusion
assertions (Ci � Cj) is based on set inclusion and respects
the concept of substitution.

The CIM generalization relationship can distinguish be-
tween four types of situation with different semantics: Partial
and non-disjoint, Partial and disjoint, Total and non-disjoint,
and Total and Disjoint.

Partial and non-disjoint.
The meaning of this constraint is:

CI
i ⊆ CI , i = 1, ..., n.

which can be translated to a set of first-order logic
formulae:

∀x · Ci(x) → C(x), i = 1, ..., n.

Expression (1) specifies this constraint in
ALεCNOQ−

HR+◦ Description Logic.

Ci � C, i = 1, ..., n. (1)

Partial and disjoint.
The meaning of this constraint is:

CI
i ⊆ CI , i = 1, ..., n

CI
i ∩ CI

j = ∅, i = 1, ..., n

which can be translated to a set of first-order logic
formulae:

∀x · Ci(x) → C(x) ∧
n
∧

j=i+1

¬Cj(x), i = 1, ..., n

Expression (2) specifies this relationship in
ALεCNOQ−

HR+◦ Description Logic.

Ci � C, i = 1, ..., n

Ci � ¬Cj , ∀i 	= j
(2)

Total and non-disjoint.
The meaning of this constraint is:

CI
i ⊆ CI , i = 1, ..., n

CI ⊆
n
⋃

i=1

CI
i

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:2, 2008

559International Scholarly and Scientific Research & Innovation 2(2) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

2,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

20
6.

pd
f

TABLE II

SUMMARY OF THE CIM-ALεCNOQ−
HR+◦ MAPPING

CIM Element Concepts and roles DL Axioms introduced

Class C Concept C

Attr. a of C with type T Binary role C � 〈= 1a〉 � ∃a.T (5)

Key attribute a of C Binary role a C � 〈= 1A〉 � ∃A.D � 〈≤ 1A−〉 (8)

Attr. a of C with type T[] Binary role a C � 〈≥ 1a〉 � ∀a.T (6)

Attr. a with card. (ni..nj) Binary role a C � 〈≥ nia〉 � 〈≤ nja〉 � ∀a.T (7)

Dependency A Binary role A � � ∀A.C2 � ∀A−.C1

Roles R1 and R2 C1 � ∀A.C2 � [≥ niA] � [≤ njA] (11)

C2 � ∀A−.C1 � [≥ miA
−] � [≤ mjA−]

A � R1, R1 � A, A− � R2, R2 � A−

N-ary association Concept A A � ∃R1.C1 � · · · � ∃Rn.Cn�
with multiplicity Roles Ar, R1 . . . Rn 〈≤ 1R1〉 � · · · � 〈≤ 1Rn〉 (9)

Ci � ∀R−
i .A � 〈≥ niR

−
i 〉 � 〈≤ njR−

i 〉
i = 1, ..., n

Binary association Concept A A � ∃R1.C1 � ∃R2.C2

with multiplicity Roles Ar, R1 and R2 �〈≤ 1R1〉 � 〈≤ 1R2〉
C1 � ∀R−

1
.A � 〈≥ miR

−
1
〉 � 〈≤ mjR−

1
〉

C2 � ∀R−
2

.A � 〈≥ niR
−
2
〉 � 〈≤ njR−

2
〉 (10)

Ar ≡ R−
1

◦ R2

C1 � ∀Ar.C2 � 〈≥ miAr〉 � 〈≤ mjAr〉
C2 � ∀A−

r .C2 � 〈≥ miA
−
r 〉 � 〈≤ mjAr〉

Inheritance relationship Ci � C, i = 1, ..., n (1)

(partial and not disjoint)

Inheritance relationship Ci � C, i = 1, ..., n (2)

(partial and disjoint) Ci � ¬C, ∀i �= j

Inheritance relationship Ci � C, i = 1, ..., n (3)

(total and not disjoint) C � ⊔n
i=1

Ci

Inheritance relationship Ci � C, i = 1, ..., n

(total and disjoint) Ci � ¬C, ∀i �= j (4)

C � ⊔n
i=1

Ci

which can be translated to a set of first-order logic
formulae:

∀x · Ci(x) → C(x), i = 1, ..., n

∀x · C(x) →
n
∨

i=1

Ci(x)

Expression (3) specifies this constraint in
ALεCNOQ−

HR+◦ Description Logic.

Ci � C, i = 1, ..., n

C �
n
⊔

i=1

Ci
(3)

Total and disjoint.
This is the relationship type least used in the con-
text of knowledge representation languages owing
to the intrinsic openness of ontologies. However, its

presence should be considered, as it is the type that
contributes more semantics to the CIM model. The
meaning of this constraint is:

CI
i ⊆ CI , i = 1, ..., n

CI
i ∩ CI

j = ∅,∀i 	= j

CI ⊆
n
⋃

i=1

CI
i

which can be translated to a set of first-order logic
formulae:

∀x · Ci(x) →
n
∨

i=1

Ci(x)

∀x · Ci(x) → C(x) ∧
n
∧

j=i+1

¬Cj(x)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:2, 2008

560International Scholarly and Scientific Research & Innovation 2(2) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

2,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

20
6.

pd
f

Expression (4) specifies this constraint in
ALεCNOQ−

HR+◦ Description Logic.

Ci � C, i = 1, ..., n

Ci � ¬Cj , ∀i 	= j

C �
n
⊔

i=1

Ci

(4)

This formalization also captures the generalization relation-
ship between CIM associations. The CIM metaschema cannot
formally express the above-mentioned generalization relation-
ship types, although they are usually specified graphically in a
diagram either using textual or UML notation.Below we give
an example of how to formalize the total and disjoint gen-
eralization relationship between the ManagedSystemElement,
PhysicalElement and LogicalElement concepts.

ManagedSystemElement � Class �
(PhysicalElement � LogicalElement)

PhysicalElement � Class�ManagedSystemElement�
¬LogicalElement

LogicalElement � Class � ManagedSystemElement �
¬PhysicalElement

ALεCNOQ−
HR+◦ DLs have a direct mapping to OWL

[11]. To illustrate this idea, we show below the OWL expres-
sion of this DL formalization. The rest of the OWL expression
for the CIM Core model is omitted for reasons of space and
the verbosity of the OWL notation.

<owl:Class rdf:ID="ManagedSystemElement">
<rdfs:comment>ManagedSystemElement</rdfs:comment>
<rdfs:label xml:lang="en">Managed System Element
</rdfs:label>

</owl:Class> <owl:Class rdf:ID="LogicalElement">
<rdfs:comment>LogicalElement</rdfs:comment>
<rdfs:label xml:lang="en">Logical Element
</rdfs:label>
<rdfs:functionalSubClassOf

rdf:resource="#ManagedSystemElement"/>
<owl:disjointWith

rdf:resource="#PhysicalElement"/>
</owl:Class> <owl:Class rdf:ID="PhysicalElement">

<rdfs:comment>PhysicalElement</rdfs:comment>
<rdfs:label xml:lang="en">Physical Element
</rdfs:label>
<rdfs:functionalSubClassOf

rdf:resource="#ManagedSystemElement"/>
<owl:disjointWith

rdf:resource="#LogicalElement"/>
</owl:Class>

C. Mapping CIM Properties

The constraint imposed by assigning a property A with a
data type D to a class C is:

CI ⊆ {x ∈ Σ | �(AI ∩ ({x} × ΥD)) ≥ 1}
which can be translated to a first-order logic formula:

∀x · C(x) → ∃y · A(x, y) ∧ D(y)

The axioms set out in (5), (6), and (7) express this relation-
ship in ALεCNOQ−

HR+◦ DL.

C � 〈= 1A〉 � ∃A.D (5)

for single-value properties,

C � 〈≥ 1A〉 � ∀A.D (6)

for type A[] properties, and

C � 〈≥ niA〉 � 〈≤ njA〉 � ∀A.D (7)

for properties with cardinality (ni..nj), where C is a concept,
A is a binary role and D is a data type.

The CIM mapping to Description Logics described above
can only express the semantics of properties acting as simple
keys, by including the axiom (8).

C � 〈= 1A〉 � ∃A.D � 〈≤ 1A−〉 (8)

The semantics of a compound key is defined by the rela-
tionship

R : C → (A1 × A2 × · · · × An)

such that R is injective and R− is functional, which means
that it would be necessary to be able to consider the rela-
tionship (A1 × A2 × · · · × An) as a concept such that its
instances could constitute the range of the relationship R. In
DL, however, concepts and roles represent disjoint sets.

Below we show the mapping of the System class attributes.
They are all single attributes of the type String, except Roles,
which is a multi-valued attribute.

System �Class � LogicalElement�
∃CreationClassName.string�
〈≤ 1CreationClassName〉�
∃Name.string � 〈≤ 1Name〉�
∃NameFormat.string � 〈≤ 1NameFormat〉�
∃PrimaryOwnerName.string�
〈≤ 1PrimaryOwnerName〉�
∃PrimaryOwnerContact.string�
〈≤ 1PrimaryOwnerContact〉�
∀Roles.string � 〈≥ 1Roles〉

D. Mapping CIM Associations and Dependencies

The constraint imposed by the interrelationship of n classes
C1 · · ·Cn by means of an association R is:

RI ⊆ CI
1 × · · · × CI

n

which can be translated to a first-order logic formula:

∀x1, ..., xn · R(x1, ..., xn) → C1(x) ∧ · · · ∧ Cn(x)

This constraint can be expressed in description logic by
means of an n-ary role or by mapping the association R to a
concept A and n roles r1...rn, as shown in equation (IV-D).
This latter option can easily represent properties and qualifiers
associated with this association by means of new roles as
described in section IV-C. Additionally, this latter option obeys
CIM semantics, which states that the associations should not
be handled as inverse relationships with references associated

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:2, 2008

561International Scholarly and Scientific Research & Innovation 2(2) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

2,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

20
6.

pd
f

with each participant class, but as a different object that has
references associated with the participant classes.

A � ∃r1.C1 � · · · � ∃rn.Cn � 〈≤ 1r1〉 � · · · � 〈≤ 1rn〉
As a CIM association is a specialization of a CIM class,

there may be, apart from properties whose domain is an as-
sociation, relationships of generalization between associations.
The latter are dealt with like inheritance relationships between
concepts.

Unlike CIM associations, a CIM dependency can only be
binary and has no roles. So, a dependency can be expressed
by means of a binary role, as shown in (11) in Table II.

1) Expressing Cardinalities: CIM can associate cardinal-
ities with the association roles. This amounts to a new con-
straint for each role that can be expressed as:

CI
i ⊆ {x ∈ Σ | mi ≤ �(RI∩(Σ×{x}×Σ)) ≥ ni}i = 1, ..., n

which can be translated to a first-order logic formula:

∀xi · C(xi) →∃≥px1, ..., xi−1, xi+1, ..., xn · R(x1, ..., xn)∧
∃≤px1, ..., xi−1, xi+1, ..., xn · R(x1, ..., xn)

with

∃≤nx·R(x, y) ≡
∀x1, ..., xn, xn+1 · R(x1, y) ∧ · · · ∧ R(xn, y)
∧ R(x,n+1 , y) →
(x1 = x2) ∨ · · · ∨ (x1 = xn) ∨ (x1 = xn+1)∨
(x2 = x3) ∨ · · · ∨ (x2 = xn) ∨ (x2 = xn+1)∨
· · · ∨ (xn = xn+1)

and

∃≥nx·R(x, y) ≡
∃x1, ..., xn · R(x1, y) ∧ · · · ∧ R(xn, y)
∧ R(xn+1, y)∧
¬(x1 = x2) ∧ · · · ∧ ¬(x1 = xn)∧
¬(x2 = x3) ∧ · · · ∧ ¬(x2 = xn)∧
· · · ∧ (xn−1 = xn)

Therefore, an n-ary association with cardinalities (ki..li) can
be expressed in ALεCNOQ−

HR+◦ description logic by means
of the axioms set out in expression (9). Note that, generally,
cardinalities can only be defined for non-transitive roles that,
in turn, have no transitive roles. This is not an intrinsic
constraint of the DL used, but of the deductive reasoning
systems associated with such logics.

A � ∃r1.C1 � · · · � ∃rn.Cn � 〈≤ 1r1〉 � · · · � 〈≤ 1rn〉
Ci � ∀r−i .A � 〈≥ kir

−
i 〉 � 〈≤ lir

−
i 〉, i = 1, ..., n

(9)

2) Expressing Association Navigability: In the case of a
binary association, a new role Ar is introduced to constrain
the cardinality of the concept acting as domain and specify
association navigability, as shown by the set of axioms set out
in (10).

Ar ≡ r−1 ◦ r2

C1 � ∀Ar.C2 � 〈≥ miAr〉 � 〈≤ mjAr〉
C2 � ∀A−

r .C2 � 〈≥ miA
−
r 〉 � 〈≤ mjAr〉

A � ∃r1.C1 � ∃r2.C2 � 〈≤ 1r1〉 � 〈≤ 1r2〉
C1 � ∀r−1 .A � 〈≥ mir

−
1 〉 � 〈≤ mjr

−
1 〉

C2 � ∀r−2 .A � 〈≥ nir
−
2 〉 � 〈≤ njr

−
2 〉

(10)

Role Ar can also specify the transitivity of an association
(bear in mind that r1 and r2 are not transitive roles).

The following is the mapping of the ServiceComponent
aggregation and the binary association HostedService with
cardinality (1..1) in its domain and cardinality (0..*) in its
range. The example also shows the use of the ServiceCom-
ponentRole role to specify the navigability of the Service-
Component association. CIM specifies this same semantics
informally by means of a naming rule for the references of
the respective association class. The suffixes A, D, G and P
denote antecedent, dependent, group and part respectively.

System �∀HostedService A−.HostedService�
∀HostedServiceRole.Service�

Service �∀ServiceComp G−.ServiceComp�
∀ServiceComp P−.ServiceComp�
∀ServiceCompRole.Service�
∃HostedService D−.HostedService�
〈≤ 1HostedService D−〉�
∃HostedServiceRole−.System�
〈≤ 1HostedServiceRole〉

HostedService �Association�
∃HostedService A.System�
〈≤ 1HostedService A〉�
∃HostedService D.Service�
〈≤ 1HostedService D〉

HostedServiceRole ≡HostedService A− ◦ HostedService D

ServiceComp �Aggregation�
∃ServiceComp G.Service�
〈≤ 1ServiceComp G〉�
∃ServiceComp P.Service�
〈≤ 1ServiceComp P 〉

ServiceCompRole ≡ServiceComp G− ◦ ServiceComp P

E. Mapping Qualifiers

The following methodological criterion has been used to
map CIM qualifiers:

If the distinction between two concepts has definite
implications for their relationships with other con-
cepts or involves constraints on other properties of

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:2, 2008

562International Scholarly and Scientific Research & Innovation 2(2) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

2,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

20
6.

pd
f

other concepts, create a new concept. Otherwise, opt
for the use of a property to express this distinction.

In the case of the CIM metaschema, the only qualifiers
that require the creation of new concepts are Aggregation
and Aggregate. The others can be expressed by means of
properties associated with the concepts included in the scope
of the qualifier. The CIM metaschema expression shown in the
following section sets out the mapping of the CIM qualifiers
according to this criterion.

F. Expressing the CIM metaschema in ALεCNOQ−
HR+◦

For the purpose of illustrating the CIM qualifiers mapping
proposed in the preceding section, the following shows the
expression of the CIM metaschema described in Fig. 3 in
ALεCNOQ−

HR+◦ according to the formalization process pre-
sented above. The concepts and roles created are used as a
basis for establishing the ALεCNOQ−

HR+◦ representations
of other CIM schemas. This will ease the construction of
advanced CASE tools with built-in reasoning systems that will
help to detect inconsistencies. An example is the detection of
an incorrect generalization relationship between a class and
an association [class]. Even so, the CIM metamodel semantics
cannot express this constraint by itself.

NamedElement � ∃Name.String � 〈≤ 1Name〉�
∃ElementSchema.Element−.ElementSchema�
〈≤ 1ElementSchema.Element−〉�
∀Characteristics.Qualifier�
∀ElementTrigger Element−.ElementTrigger�
∀ElementTriggerRole.T rigger

ElementTrigger � ∃ElementTrigger Element.NamedElement�
∃ElementTrigger Trigger.Trigger�
〈≤ 1ElementTrigger Element〉�
〈≤ 1ElementTrigger Trigger〉

ElementTriggerRole ≡ ElementTrigger Element−◦
ElementTrigger Trigger

Class � NamedElement �
¬〈Property � Qualifier � Method �
Trigger � Schema〉 �
∀PropertyDomain.Property �
∀MethodDomain.Method �
∀Subtype.Class � 〈≤ 1Subtype〉 �
∀Subtype−.Class �
∀Range Class−.Range �
〈≤ 1Range Class−〉 �
∀RangeRole.Reference

Supertype ≡ Subtype−

Range � ∃Range Class.Class�
∃Range Reference.Reference�
〈≤ 1Range Class〉�
〈≤ 1Range Reference〉

RangeRole ≡ Range Class− ◦ Range Reference

Association � Class�
∀hasReference.Reference �
〈≥ 2hasReference〉

Indication � Class � ¬Association

Qualifier � NamedElement �
∃V alue.V ariant � 〈≤ 1V alue〉 �
¬〈Property � Class � Method �
Trigger � Schema〉 �
∃Characteristics−.NamedElement �
〈≤ 1Characteristics−〉

Property � NamedElement�
¬〈Method � Trigger � Schema 〉�
∃PropertyOverride.Property �
〈≤ 1PropertyOverride〉 �
∀PropertyOverride−.P roperty�
∃PropertyDomain−.Class �
〈≤ 1PropertyDomain−〉

Method � NamedElement �
¬〈Trigger � Schema〉 �
∀MethodOverride.Method �
〈≤ 1MethodOverride〉 �
∀MethodOverride−.Method �
∃MethodDomain−.Class �
〈≤ 1MethodDomain−〉

Trigger � NamedElement �
¬〈Schema〉 �
∀ElementTrigger Trigger−.ElementTrigger�
〈≥ 1ElementTrigger Trigger−〉�
∀ElementTriggerRole−.NamedElement�
〈≥ 1ElementTriggerRole−〉

Schema � NamedElement �
∀ElementSchema−.NamedElement

Reference � Property � ∃Range Class−.Range �
〈≤ 1Range Reference−〉�
∃RangeRole−.Class �
〈≤ 1RangeRole−〉�
∃HasReference−.Association �
〈≤ 1HasReference−〉

Below, the ALεCNOQ−
HR+◦ expression of the CIM

metaschema is extended with the standard qualifiers defined

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:2, 2008

563International Scholarly and Scientific Research & Innovation 2(2) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

2,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

20
6.

pd
f

by DMTF:
• New concepts:

Aggregation � Association �
∀hasReference.Aggregate �
〈= 2hasReference〉

Aggregate � Reference

• New constraints on existing concepts:

NamedElement � ∀Description.String �
〈≤ 1Description〉 �
∀DisplayString.String �
〈≤ 1DisplayString〉

Property � ∀Key.Boolean �
〈≤ 1Key〉 �
∀MappingStrings.String �
∀Alias.String �
〈≤ 1Alias〉 �
∀Counter.Boolean �
〈≤ 1Counter〉 �
∀Gauge.Boolean �
〈≤ 1Gauge 〉

Class � ∀Abstract.Boolean �
〈≤ 1Abstract〉 �
∀MappingStrings.String

V. CIMONT FRAMEWORK ARCHITECTURE

For the purpose of demonstrating the utility of the mapping
proposed in this paper, we have developed a number of tools,
which, together, are termed CIMOnt and make up a framework
for experimental design. Specifically, a set of CASE tools
have been developed for visual ontologies modelling. These
tools enhance (a) the visual development of CIM models
using MS Visio, (b) the formalization in DL of these models,
and (c) their OWL specification according to the proposed
mapping. This way the developed CIM models can be checked
for logical consistency (on their own and with respect to
the other CIM models proposed by DMTF) at design time,
and inconsistencies, such as the presence of non-instantiable
classes, non-implementable associations, redundancies, etc.,
can be detected more easily. Fig. 5 shows the proposed
architecture for this framework.

CIM management information models are developed visu-
ally using MS Visio, thanks the CIMaddin plug-in developed
as part of CIMOnt. Using this plug-in the syntactic represen-
tation of these models can be generated following the MOF
(Managed Object Format) [13] textual specification language
or the CIM/XML mapping proposed by DMTF, as can their
semantic representation in both DL and the OWL ontologies
language. Figure 2 shows a screenshot of the CIMOnt CASE
tool while editing the CIM Core Model 2.6.

Fig. 5. CIMOnt Framework Architecture

To undertake automatic reasoning about the developed mod-
els and check their consistency, CIMaddin accesses the DL
reasoner RACER [5] in a distributed fashion. This reasoner
provides for the expression of models in both DL and in
OWL. The proposed architecture provides for the persistency
of models built in a distributed fashion in a centralized Model
Repository In this manner, the RACER reasoning engine can
dynamically access models stored earlier in later validations
that make use of these models. Using the CIMaddin plug-in
the CIM models can be retrieved from the Models Repository
and their visual representation can be generated automatically
from their different syntactic expressions in MOF, DL and
OWL.

VI. AUTOMATIC REASONING SERVICES ABOUT A CIM
CONCEPTUALIZATION

The CIM-ALεCNOQ−
HR+◦ mapping amounts to a seman-

tic formalization of CIM conceptualizations that can be used to
implement automatic reasoning services. The knowledge base
semantics likens it to a set of first-order predicate logic axioms.
Therefore, like any other set of axioms, it contains implicit
knowledge that can be specified through logical inference. The
fundamental inference service is consistency verification for
assertion knowledge bases (ABox) on the basis of which the
remainder can be expressed.

A. Reasoning about CIM models

The mapping of a CIM model to a TBox amounts to the
construction of a terminology T . During the construction of
a CIM model, it is important to discover whether a new class
makes sense or, contrariwise, is contradictory to the remainder
of the model, in which case it will never be able to be
instantiated consistently. From the logical viewpoint, a new
concept C makes sense if there exists at least one interpretation
I that satisfies the axioms of T and for which the concept
denotes a non-empty set. This interpretation is called a model
and is written T � C. This property of the concept C with
respect to T is called satisfiability.

CIM conceptualization designers will use the reasoning
services offered by the DL subsystem of their modeling tool

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:2, 2008

564International Scholarly and Scientific Research & Innovation 2(2) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

2,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

20
6.

pd
f

to verify that all the classes created are satisfiable with respect
to the remainder of the model and that they comply with the
expected generalization/specialization relationships. All the
reasoning services will be based on the following prototype
services:

Satisfiability
A concept C is satisfiable with respect to a termi-
nology T if there exists a model I of T such that
CI 	= ∅. It is written T � C. The satisfiability
of T itself is expressed as T �. In other words,
satisfiability is the problem of checking whether
a concept expression does not necessarily denote
the empty concept. Thanks to this, we can infer
for example that a class called Router makes sense
within the CIM Network model, because we can
have routers as systems. Nevertheless, such a class
may make no sense in other domain models.

Subsumption
A concept C is subsumed by a concept D with
respect to T if CI ⊆ DI for all models I of T . It is
written T � C � D. Determining subsumption is the
problem of checking whether the concept denoted by
D is considered more general than the one denoted
by C. Subsumption can be expressed in terms of
satisfiability as T � C � D ⇔ T � C � ¬D.
Likewise, satisfiability can be expressed in terms of
subsumption as T � C ⇔ T � C �⊥. Using
subsumption we can express that those routers whose
firmware can be updated via web are subsumed by
the set of routers that have an http server running on
them.

Equivalence
A concept C is equivalent to a concept D with
respect to T if CI = DI for all models I of T . It is
written T � C ≡ D. Equivalence can be expressed in
terms of satisfiability as T � C ≡ D ⇔ T � C�¬D
and T � ¬C � D, and in terms of subsumption as
T � C ≡ D ⇔ T � C � D and T � D � D. For
example, thanks to the equivalence we can express
that the Router class is equivalent to the Gateway
class.

Disjunction
Two concepts C and D are disjoint with respect to T
if CI ∩DI = ∅ for all models I of T . Disjunction
can be expressed in terms of satisfiability as T � C�
D, and in terms of subsumption as T � C �D �⊥.
Thanks to this property, we can distinguish between
laser, ink jet, and dot-matrix printers. We will not
be able to have a printer that is both a laser and a
dot-matrix printer.

B. Reasoning About Management Agent Assertive Knowledge

The management agents that follow the proposed informa-
tion model handle both the domain TBox, generally derived
from the OWL syntax representation of a CIM conceptual-
ization, and an ABox. While the agents can make use of the
reasoning services discussed in the preceding section, mainly

concept classification, they are much more likely to require
inference services associated with the assertion knowledge
about the individuals in the environment. The principal service
of this type is related to checking the consistency of the
knowledge representation from a strictly logical viewpoint, as
incoherent conclusions could be extracted otherwise. Having
verified the consistency of the assertion knowledge base, an
agent will be able to infer knowledge about the relationships
between concepts, roles and individuals (and, therefore, CIM
classes, associations and objects) based on the following
prototype services:

Consistency
An assertion knowledge base (ABox) A is consistent
with respect to a TBox T if there exists at least
one interpretation I that is both a model of T and
of A. In other words, our agents will be able to
check if all the instances in the knowledge base
(ABox) can be classified in the proper place within
the concept hierarchy (TBox). That is, for example,
if the ABox contains the assertions Router(CISCO 1)
and Printer(CISCO 1), the system will be able to
infer that, according to the CIM Network TBox,
these statements are inconsistent since Router and
Printer are interpreted as disjoint sets.

Instance checking
This involves checking that an assertion is a logical
consequence of the knowledge stored in the ABox
A. An assertion α is a logical consequence of A,
and is written A � α, if any interpretation that
satisfies A (that is, any model of A), also satisfies
α. If α is C(a), this service can be reduced to the
consistency service, since A � C(a) ⇔ A∪{¬C(a)}
is inconsistent. This service deals with the basic
reasoning task in an ABox.

Membership (extension)
An agent will generally want to know all the individ-
uals that are an instance of a given concept (both a
basic concept and a concept expression). The mem-
bership or extension service can use the description
language to formulate this type of queries. Given an
ABox A, the extension service retrieves the set of
individuals {a | A � C(a)}. For example, our agents
could be interested in finding out from the system all
domains that have at least two border routers.

Implementation (Instance classification)
This is a dual inference service to the extension
service: given an individual a and an ABox A, the
implementation service finds the set of more specific
concepts {C | A � C(a)}. In this context, more
specific concepts means concepts that are minimum
with respect to the order induced by the subsumption
operator �. Thanks to this service, our agents will
be able to decide if one printer should be classified
merely as a printer (general concept) or as an inkjet
printer (more specific concept).

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:2, 2008

565International Scholarly and Scientific Research & Innovation 2(2) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

2,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

20
6.

pd
f

VII. CONCLUSIONS AND RESULTS

On the basis of the advances achieved in the Knowledge
Representation field by the international Artificial Intelligence
community, this paper has reconsidered the strategy followed
to build the information models of the existing management
architectures, and has examined the possibility of including
formal techniques related to the Knowledge Representation
research field, as well as the benefits of such a decision.

In particular, the paper has shown ALεCNOQ−
HR+◦ to

be a highly expressive subset of DLs capable of completely
formalizing the semantics of CIM models. For this purpose,
a mapping to ALεCNOQ−

HR+◦ DL for each of the CIM
metamodel constructors has been elaborated. The principal
advantage of the proposed mapping lies in the decidability
and computability of the selected logic. This permits the use
of state-of-the-art automatic reasoning systems based on this
logic, which use semantically sound and complete algorithms.

The paper has also presented the main automatic reasoning
services available both for building new generation CASE
tools and for use at run time by rational autonomous agents.
These CASE tools can verify the satisfiability of the cre-
ated models, extract logical consequences from and detect
inconsistencies and redundancies in the models,whereas the
autonomous agents can use the DL expressions of the models
and their instances as domain ontologies in their deduction,
coordination and action processes. To further this latter ob-
jective, the proposal includes the use of the OWL ontologies
language for XML-based representation and exchange of the
CIM models previously formalized by means of DLs, which
amounts to a significant advance with respect to the use of
the MOF textual specification language or the CIM/XML
mapping proposed by DMTF. A significant original finding
generated by applying the ideas set out in this paper is that
we have classified and verified the satisfiability of the entire
CIM model (version 2.7) proposed by the DMTF based on
the presented CIM-ALεCNOQ−

HR+◦ ”mapping”. This CIM
version is composed of 14 models and 89 submodels, and
includes a total of 1069 classes, 2444 attributes and 1044
references, which gives an idea of the magnitude of the
problem. As a result of this classification, we have been able
to formally verify model consistency for the first time. All
in all, we have formalized, classified and reasoned about the
properties of all 14 models.

Other highly important results are related to the automatic
deductive reasoning capability provided by the described ar-
chitecture models. Accordingly, by connecting the developed
CIM-based visual modeling tools (CIMOnt) with a reasoning
engine like RACER, which supports the expressivity level
required by the proposed mapping [5], such CASE tools can
be given with logical inference capabilities for the developed
models. In this respect, a CIM-conceptualized information
base manager designer will be able to check the consistency
of his or her models with respect to the other CIM models
developed by the DMTF and/or third parties according to the
elements (classes, associations, triggers, indicators, etc.) of
these models to which their own models refer. These ideas
are valid and applicable by extension to other modeling tools

based on other general-purpose modeling languages like, for
example, UML.

REFERENCES

[1] O. Dieste, N. Juristo, A. M. Moreno, J. Pazos, and A. Sierra. Handbook
of Software Engineering and Knowledge Engineering, volume 1, chapter
Conceptual Modelling in Software Engineering and Knowledge Engi-
neering: Concepts, Techniques and Trends. World Scientific Publishing
Company, 2000.

[2] Web-Based Enterprise Management (WBEM). Technical report, Dis-
tributed Management Task Force, 2003.

[3] A. S. Evans. Foundations of the Unified Modeling Language. In
D. Duke and A. S. Evans, editors, Proceedings of the 2nd Northen
Formal Methods Workshop, LNCS, pages 75–81, Heidelberg, Germany,
1997. Springer Verlag.

[4] A. S. Evans. Reasoning with UML class diagrams. In Proceedings of the
2nd Workshop on Industrial Strength Formal Specification Techniques.
IEEE Computer Society Press, 1998.

[5] V. Haarslev and R. Mller. RACER system description. In Proceedings
of the IJCAR 2001, number 2083 in LNAI, pages 701–705, Heidelberg,
Berlin, 2001. Springer Verlag.

[6] A. L. G. Hayzelden and J. Bigham, editors. Software Agents for Future
Communication Systems. Springer-Verlag, Heidelberg, Berlin, 1999.

[7] A. L. G. Hayzelden and R. A. Bourne, editors. Agent Technology for
Communication Infrastructures. John Wiley and Sons, LTD, 2001.

[8] H. Hegering, S. Abeck, and B. Neumair. Integrated Management
of Networked Systems: Concepts, Architectures and their Operational
Application. Series in Networking. Morgan Kaufmann, 1998.

[9] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive
description logics. In Springer Verlag, editor, LPAR’99, number 1705
in LNCS, pages 161–180, Heidelberg, Berlin, 1999. Springer Verlag.

[10] M. D’Inverno and M. Luck, editors. Understanding Agent Systems.
Springer-Verlag, 2002.

[11] D. L. McGuinness et al. The Description Logic Handbook: Theory,
Implementation and Applications. Cambridge University Press, 2003.

[12] OMG. Unified Modeling Language Specification Version 1.4. Technical
report, OMG, 2001.

[13] OMG. Meta-object facility (MOF) specification. Technical report,
Object Management Group, 2002.

[14] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling
Language Reference Manual. Object Technology Series. Addison-
Wesley, 1999.

[15] J. Soriano. Architectural Model for Distributed Systems and Services
Management based on Holons and Autonomous Agents. PhD thesis,
Technical University of Madrid, Madrid, Spain.

[16] G. Weiss, editor. Multi-Agent Systems: A Modern Approach to Dis-
tributed Artificial Intelligence. MIT Press, Cambridge, MA, 1999.

[17] A. Westerinen. What is policy and what can it be?. (keynote). In
Proceedings of the IEEE Policy 2003 Conference. IEEE Computer
Society Press, 2003.

[18] W3C WebOnt WG. Web ontology language (owl) guide. Last call
working draft, World Wide Web Consortium, 2003.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:2, 2008

566International Scholarly and Scientific Research & Innovation 2(2) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

2,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

20
6.

pd
f

