Search results for: Quantum Support Vector Machines
2434 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments
Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard
Abstract:
With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.Keywords: Activities of daily living, classification, internet of things, machine learning, smart home.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17702433 Color Image Segmentation Using Kekre-s Algorithm for Vector Quantization
Authors: H. B. Kekre, Tanuja K. Sarode, Bhakti Raul
Abstract:
In this paper we propose segmentation approach based on Vector Quantization technique. Here we have used Kekre-s fast codebook generation algorithm for segmenting low-altitude aerial image. This is used as a preprocessing step to form segmented homogeneous regions. Further to merge adjacent regions color similarity and volume difference criteria is used. Experiments performed with real aerial images of varied nature demonstrate that this approach does not result in over segmentation or under segmentation. The vector quantization seems to give far better results as compared to conventional on-the-fly watershed algorithm.Keywords: Image Segmentation, , Codebook, Codevector, data compression, Encoding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21952432 SVM-based Multiview Face Recognition by Generalization of Discriminant Analysis
Authors: Dakshina Ranjan Kisku, Hunny Mehrotra, Jamuna Kanta Sing, Phalguni Gupta
Abstract:
Identity verification of authentic persons by their multiview faces is a real valued problem in machine vision. Multiview faces are having difficulties due to non-linear representation in the feature space. This paper illustrates the usability of the generalization of LDA in the form of canonical covariate for face recognition to multiview faces. In the proposed work, the Gabor filter bank is used to extract facial features that characterized by spatial frequency, spatial locality and orientation. Gabor face representation captures substantial amount of variations of the face instances that often occurs due to illumination, pose and facial expression changes. Convolution of Gabor filter bank to face images of rotated profile views produce Gabor faces with high dimensional features vectors. Canonical covariate is then used to Gabor faces to reduce the high dimensional feature spaces into low dimensional subspaces. Finally, support vector machines are trained with canonical sub-spaces that contain reduced set of features and perform recognition task. The proposed system is evaluated with UMIST face database. The experiment results demonstrate the efficiency and robustness of the proposed system with high recognition rates.
Keywords: Biometrics, Multiview face Recognition, Gaborwavelets, LDA, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15032431 A Novel SVM-Based OOK Detector in Low SNR Infrared Channels
Authors: J. P. Dubois, O. M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.
Keywords: Least square-support vector machine, on-off keying, matched filter, maximum likelihood detector, wireless infrared communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19532430 FPGA Implementation of the BB84 Protocol
Authors: Jaouadi Ikram, Machhout Mohsen
Abstract:
The development of a quantum key distribution (QKD) system on a field-programmable gate array (FPGA) platform is the subject of this paper. A quantum cryptographic protocol is designed based on the properties of quantum information and the characteristics of FPGAs. The proposed protocol performs key extraction, reconciliation, error correction, and privacy amplification tasks to generate a perfectly secret final key. We modeled the presence of the spy in our system with a strategy to reveal some of the exchanged information without being noticed. Using an FPGA card with a 100 MHz clock frequency, we have demonstrated the evolution of the error rate as well as the amounts of mutual information (between the two interlocutors and that of the spy) passing from one step to another in the key generation process.
Keywords: QKD, BB84, protocol, cryptography, FPGA, key, security, communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8592429 Discrete Vector Control for Induction Motor Drives with the Rotor Time Constant Update
Authors: A.Larabi, M.S. Boucherit
Abstract:
In this paper, we investigated vector control of an induction machine taking into account discretization problems of the command. In the purpose to show how to include in a discrete model of this current control and with rotor time constant update. The results of simulation obtained are very satisfaisant. That was possible thanks to the good choice of the values of the parameters of the regulators used which shows, the founded good of the method used, for the choice of the parameters of the discrete regulators. The simulation results are presented at the end of this paper.
Keywords: Induction motor, discrete vector control, PIRegulator, transformation of park, PWM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15122428 Analysis of the Communication Methods of an iCIM 3000 System within the Frame of Research Purpose
Authors: Radovan Holubek, Daynier Rolando Delgado Sobrino, Roman Ruzarovsky
Abstract:
Current trends in manufacturing are characterized by production broadening, innovation cycle shortening, and the products having a new shape, material and functions. The production strategy focused on time needed change from the traditional functional production structure to flexible manufacturing cells and lines. Production by automated manufacturing system (AMS) is one of the most important manufacturing philosophies in the last years. The main goals of the project we are involved in lies on building a laboratory in which will be located a flexible manufacturing system consisting of at least two production machines with NC control (milling machines, lathe). These machines will be linked to a transport system and they will be served by industrial robots. Within this flexible manufacturing system a station for the quality control consisting of a camera system and rack warehouse will be also located. The design, analysis and improvement of this manufacturing system, specially with a special focus on the communication among devices constitute the main aims of this paper. The key determining factors for the manufacturing system design are: the product, the production volume, the used machines, the disposable manpower, the disposable infrastructure and the legislative frame for the specific cases.Keywords: Paperless manufacturing, flexible manufacturing, robotized manufacturing, material flow, iCIM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18042427 Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects
Authors: Defne Akay, Bekir S. Kandemir
Abstract:
In this paper, we investigate the low-lying energy levels of the two-dimensional parabolic graphene quantum dots (GQDs) in the presence of topological defects with long range Coulomb impurity and subjected to an external uniform magnetic field. The low-lying energy levels of the system are obtained within the framework of the perturbation theory. We theoretically demonstrate that a valley splitting can be controlled by geometrical parameters of the graphene quantum dots and/or by tuning a uniform magnetic field, as well as topological defects. It is found that, for parabolic graphene dots, the valley splitting occurs due to the introduction of spatial confinement. The corresponding splitting is enhanced by the introduction of a uniform magnetic field and it increases by increasing the angle of the cone in subcritical regime.Keywords: Coulomb impurity, graphene cones, graphene quantum dots, topological defects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20992426 Least Square-SVM Detector for Wireless BPSK in Multi-Environmental Noise
Authors: J. P. Dubois, Omar M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a statistical learning tool developed to a more complex concept of structural risk minimization (SRM). In this paper, SVM is applied to signal detection in communication systems in the presence of channel noise in various environments in the form of Rayleigh fading, additive white Gaussian background noise (AWGN), and interference noise generalized as additive color Gaussian noise (ACGN). The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these advanced stochastic noise models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to conventional binary signaling optimal model-based detector driven by binary phase shift keying (BPSK) modulation. We show that the SVM performance is superior to that of conventional matched filter-, innovation filter-, and Wiener filter-driven detectors, even in the presence of random Doppler carrier deviation, especially for low SNR (signal-to-noise ratio) ranges. For large SNR, the performance of the SVM was similar to that of the classical detectors. However, the convergence between SVM and maximum likelihood detection occurred at a higher SNR as the noise environment became more hostile.Keywords: Colour noise, Doppler shift, innovation filter, least square-support vector machine, matched filter, Rayleigh fading, Wiener filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18132425 Extended Study on Removing Gaussian Noise in Mechanical Engineering Drawing Images using Median Filters
Authors: Low Khong Teck, Hasan S. M. Al-Khaffaf, Abdullah Zawawi Talib, Tan Kian Lam
Abstract:
In this paper, an extended study is performed on the effect of different factors on the quality of vector data based on a previous study. In the noise factor, one kind of noise that appears in document images namely Gaussian noise is studied while the previous study involved only salt-and-pepper noise. High and low levels of noise are studied. For the noise cleaning methods, algorithms that were not covered in the previous study are used namely Median filters and its variants. For the vectorization factor, one of the best available commercial raster to vector software namely VPstudio is used to convert raster images into vector format. The performance of line detection will be judged based on objective performance evaluation method. The output of the performance evaluation is then analyzed statistically to highlight the factors that affect vector quality.Keywords: Performance Evaluation, Vectorization, Median Filter, Gaussian Noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17032424 Efficient Block Matching Algorithm for Motion Estimation
Authors: Zong Chen
Abstract:
Motion estimation is a key problem in video processing and computer vision. Optical flow motion estimation can achieve high estimation accuracy when motion vector is small. Three-step search algorithm can handle large motion vector but not very accurate. A joint algorithm was proposed in this paper to achieve high estimation accuracy disregarding whether the motion vector is small or large, and keep the computation cost much lower than full search.Keywords: Motion estimation, Block Matching, Optical flow, Three step search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21662423 Monotonicity of Dependence Concepts from Independent Random Vector into Dependent Random Vector
Authors: Guangpu Chen
Abstract:
When the failure function is monotone, some monotonic reliability methods are used to gratefully simplify and facilitate the reliability computations. However, these methods often work in a transformed iso-probabilistic space. To this end, a monotonic simulator or transformation is needed in order that the transformed failure function is still monotone. This note proves at first that the output distribution of failure function is invariant under the transformation. And then it presents some conditions under which the transformed function is still monotone in the newly obtained space. These concern the copulas and the dependence concepts. In many engineering applications, the Gaussian copulas are often used to approximate the real word copulas while the available information on the random variables is limited to the set of marginal distributions and the covariances. So this note catches an importance on the conditional monotonicity of the often used transformation from an independent random vector into a dependent random vector with Gaussian copulas.
Keywords: Monotonic, Rosenblatt, Nataf transformation, dependence concepts, completely positive matrices, Gaussiancopulas
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12112422 LED Lighting Interviews and Assessment in Forest Machines
Authors: Rauno Pääkkönen, Fabriziomaria Gobba, Leena Korpinen
Abstract:
The objective of the study is to assess the implementation of LED lighting into forest machine work in the dark. In addition, the paper includes a wide variety of important and relevant safety and health parameters. In modern, computerized work in the cab of forest machines, artificial illumination is a demanding task when performing duties, such as the visual inspections of wood and computer calculations. We interviewed entrepreneurs and gathered the following as the most pertinent themes: (1) safety, (2) practical problems, and (3) work with LED lighting. The most important comments were in regards to the practical problems of LED lighting. We found indications of technical problems in implementing LED lighting, like snow and dirt on the surfaces of lamps that dim the emission of light. Moreover, service work in the dark forest is dangerous and increases the risks of on-site accidents. We also concluded that the amount of blue light to the eyes should be assessed, especially, when the drivers are working in a semi-dark cab.Keywords: Forest machines, health, LED, safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21302421 Joint Adaptive Block Matching Search (JABMS) Algorithm
Authors: V.K.Ananthashayana, Pushpa.M.K
Abstract:
In this paper a new Joint Adaptive Block Matching Search (JABMS) algorithm is proposed to generate motion vector and search a best match macro block by classifying the motion vector movement based on prediction error. Diamond Search (DS) algorithm generates high estimation accuracy when motion vector is small and Adaptive Rood Pattern Search (ARPS) algorithm can handle large motion vector but is not very accurate. The proposed JABMS algorithm which is capable of considering both small and large motions gives improved estimation accuracy and the computational cost is reduced by 15.2 times compared with Exhaustive Search (ES) algorithm and is 1.3 times less compared with Diamond search algorithm.Keywords: Adaptive rood pattern search, Block matching, Diamond search, Joint Adaptive search, Motion estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16922420 Characterization of InGaAsP/InP Quantum Well Lasers
Authors: K. Melouk, M. Dellakrachai
Abstract:
Analytical formula for the optical gain based on a simple parabolic-band by introducing theoretical expressions for the quantized energy is presented. The model used in this treatment take into account the effects of intraband relaxation. It is shown, as a result, that the gain for the TE mode is larger than that for TM mode and the presence of acceptor impurity increase the peak gain.Keywords: Laser, quantum well, semiconductor, InGaAsP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21482419 High Impedance Fault Detection using LVQ Neural Networks
Authors: Abhishek Bansal, G. N. Pillai
Abstract:
This paper presents a new method to detect high impedance faults in radial distribution systems. Magnitudes of third and fifth harmonic components of voltages and currents are used as a feature vector for fault discrimination. The proposed methodology uses a learning vector quantization (LVQ) neural network as a classifier for identifying high impedance arc-type faults. The network learns from the data obtained from simulation of a simple radial system under different fault and system conditions. Compared to a feed-forward neural network, a properly tuned LVQ network gives quicker response.Keywords: Fault identification, distribution networks, high impedance arc-faults, feature vector, LVQ networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22142418 A New Stability Analysis and Stabilization of Discrete-Time Switched Linear Systems Using Vector Norms Approach
Authors: Marwen Kermani, Anis Sakly, Faouzi M'sahli
Abstract:
In this paper, we aim to investigate a new stability analysis for discrete-time switched linear systems based on the comparison, the overvaluing principle, the application of Borne-Gentina criterion and the Kotelyanski conditions. This stability conditions issued from vector norms correspond to a vector Lyapunov function. In fact, the switched system to be controlled will be represented in the Companion form. A comparison system relative to a regular vector norm is used in order to get the simple arrow form of the state matrix that yields to a suitable use of Borne-Gentina criterion for the establishment of sufficient conditions for global asymptotic stability. This proposed approach could be a constructive solution to the state and static output feedback stabilization problems.
Keywords: Discrete-time switched linear systems, Global asymptotic stability, Vector norms, Borne-Gentina criterion, Arrow form state matrix, Arbitrary switching, State feedback controller, Static output feedback controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16392417 InAlGaN Quaternary Multi-Quantum Wells UVLaser Diode Performance and Characterization
Authors: S. M. Thahab, H. Abu Hassan, Z. Hassan
Abstract:
The InAlGaN alloy has only recently began receiving serious attention into its growth and application. High quality InGaN films have led to the development of light emitting diodes (LEDs) and blue laser diodes (LDs). The quaternary InAlGaN however, represents a more versatile material since the bandgap and lattice constant can be independently varied. We report an ultraviolet (UV) quaternary InAlGaN multi-quantum wells (MQWs) LD study by using the simulation program of Integrated System Engineering (ISE TCAD). Advanced physical models of semiconductor properties were used in order to obtain an optimized structure. The device performance which is affected by piezoelectric and thermal effects was studied via drift-diffusion model for carrier transport, optical gain and loss. The optical performance of the UV LD with different numbers of quantum wells was numerically investigated. The main peak of the emission wavelength for double quantum wells (DQWs) was shifted from 358 to 355.8 nm when the forward current was increased. Preliminary simulated results indicated that better output performance and lower threshold current could be obtained when the quantum number is four, with output power of 130 mW and threshold current of 140 mA.Keywords: Nitride semiconductors, InAlGaN quaternary, UVLD, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19362416 Recent Advances in Pulse Width Modulation Techniques and Multilevel Inverters
Authors: Satish Kumar Peddapelli
Abstract:
This paper presents advances in pulse width modulation techniques which refers to a method of carrying information on train of pulses and the information be encoded in the width of pulses. Pulse Width Modulation is used to control the inverter output voltage. This is done by exercising the control within the inverter itself by adjusting the ON and OFF periods of inverter. By fixing the DC input voltage we get AC output voltage. In variable speed AC motors the AC output voltage from a constant DC voltage is obtained by using inverter. Recent developments in power electronics and semiconductor technology have lead improvements in power electronic systems. Hence, different circuit configurations namely multilevel inverters have became popular and considerable interest by researcher are given on them. A fast space-vector pulse width modulation (SVPWM) method for five-level inverter is also discussed. In this method, the space vector diagram of the five-level inverter is decomposed into six space vector diagrams of three-level inverters. In turn, each of these six space vector diagrams of three-level inverter is decomposed into six space vector diagrams of two-level inverters. After decomposition, all the remaining necessary procedures for the three-level SVPWM are done like conventional two-level inverter. The proposed method reduces the algorithm complexity and the execution time. It can be applied to the multilevel inverters above the five-level also. The experimental setup for three-level diode-clamped inverter is developed using TMS320LF2407 DSP controller and the experimental results are analyzed.
Keywords: Five-level inverter, Space vector pulse wide modulation, diode clamped inverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77702415 Operating Equipment Effectiveness with a Reliability Indicator
Authors: Carl D. Hays III
Abstract:
The purpose of this theory paper is to add a reliability indicator to Operating Equipment Effectiveness (OpEE) which is used to evaluate the productivity of machines and equipment with wheels and tracks. OpEE is a derivative of Overall Equipment Effectiveness (OEE) which has been widely used for many decades in factories that manufacture products. OEE has three variables, Availability Rate, Work Rate, and Quality Rate. When OpEE was converted from OEE, the Quality Rate variable was replaced with Travel Rate. Travel Rate is essentially utilization which is a common performance indicator in machines and equipment. OpEE was designed for machines operated in remote locations such as forests, roads, fields, and farms. This theory paper intends to add the Quality Rate variable back to OpEE by including a reliability indicator in the dashboard view. This paper will suggest that the OEE quality variable can be used with a reliability metric and combined with the OpEE score. With this dashboard view of both performance metrics and reliability, fleet managers will have a more complete understanding of equipment productivity and reliability. This view will provide both leading and lagging indicators of performance in machines and equipment. The lagging indicators will indicate the trends and the leading indicators will provide an overall performance score to manage.
Keywords: Operating Equipment Effectiveness, Operating Equipment Effectiveness, IoT, Contamination Monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5082414 Students’ Perception of Vector Representation in the Context of Electric Force and the Role of Simulation in Developing an Understanding
Authors: S. Shubha, B. N. Meera
Abstract:
Physics Education Research (PER) results have shown that students do not achieve the expected level of competency in understanding the concepts of different domains of Physics learning when taught by the traditional teaching methods, the concepts of Electricity and Magnetism (E&M) being one among them. Simulation being one of the valuable instructional tools renders an opportunity to visualize varied experiences with such concepts. Considering the electric force concept which requires extensive use of vector representations, we report here the outcome of the research results pertaining to the student understanding of this concept and the role of simulation in using vector representation. The simulation platform provides a positive impact on the use of vector representation. The first stage of this study involves eliciting and analyzing student responses to questions that probe their understanding of the concept of electrostatic force and this is followed by four stages of student interviews as they use the interactive simulations of electric force in one dimension. Student responses to the questions are recorded in real time using electronic pad. A validation test interview is conducted to evaluate students' understanding of the electric force concept after using interactive simulation. Results indicate lack of procedural knowledge of the vector representation. The study emphasizes the need for the choice of appropriate simulation and mode of induction for learning.
Keywords: Electric Force, Interactive, Representation, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22332413 Properties of the CsPbBr3 Quantum Dots Treated by O3 Plasma for Integration in the Perovskite Solar Cell
Authors: Sh. Sousani, Z. Shadrokh, M. Hofbauerová, J. Kollár, M. Jergel, V. Nádaždy, M. Omastová, E. Majková
Abstract:
In this paper, we discuss the preparation and impact of post-treatment procedures, including purification, passivation, and ligand exchange, on the formation and stability of halide perovskite quantum dots (PQDs). CsPbBr3 quantum dots were synthesized via the conventional hot-injection method using cesium oleate, PbBr2, and oleylamine (OAm) & oleic acid (OA) and didodecyldimethylammonium bromide (DDAB) as ligands. Characterization by scanning transmission electron microscopy (STEM) confirms the QDs' cubic shape and monodispersity with an average size of 10-14 nm. The photoluminescent (PL) properties of perovskite quantum dots/CH3NH3PbI3 perovskite (PQDs/MAPI) bilayers with OAm&OA and DDAB ligands spin coated on Indium Tin Oxide (ITO) substrate were explored. The impact of ligand type and oxygen plasma treatment on linear optical behaviour and PQDs/MAPI interface formation in ITO/PQDs/MAPI perovskite structures was examined. The obtained results have direct implications for selection of suitable ligands and processes for photovoltaic applications and enhancing their stability.
Keywords: Perovskite quantum dots, ligand exchange, photoluminescence, O3 plasma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1042412 Combination of Different Classifiers for Cardiac Arrhythmia Recognition
Authors: M. R. Homaeinezhad, E. Tavakkoli, M. Habibi, S. A. Atyabi, A. Ghaffari
Abstract:
This paper describes a new supervised fusion (hybrid) electrocardiogram (ECG) classification solution consisting of a new QRS complex geometrical feature extraction as well as a new version of the learning vector quantization (LVQ) classification algorithm aimed for overcoming the stability-plasticity dilemma. Toward this objective, after detection and delineation of the major events of ECG signal via an appropriate algorithm, each QRS region and also its corresponding discrete wavelet transform (DWT) are supposed as virtual images and each of them is divided into eight polar sectors. Then, the curve length of each excerpted segment is calculated and is used as the element of the feature space. To increase the robustness of the proposed classification algorithm versus noise, artifacts and arrhythmic outliers, a fusion structure consisting of five different classifiers namely as Support Vector Machine (SVM), Modified Learning Vector Quantization (MLVQ) and three Multi Layer Perceptron-Back Propagation (MLP–BP) neural networks with different topologies were designed and implemented. The new proposed algorithm was applied to all 48 MIT–BIH Arrhythmia Database records (within–record analysis) and the discrimination power of the classifier in isolation of different beat types of each record was assessed and as the result, the average accuracy value Acc=98.51% was obtained. Also, the proposed method was applied to 6 number of arrhythmias (Normal, LBBB, RBBB, PVC, APB, PB) belonging to 20 different records of the aforementioned database (between– record analysis) and the average value of Acc=95.6% was achieved. To evaluate performance quality of the new proposed hybrid learning machine, the obtained results were compared with similar peer– reviewed studies in this area.Keywords: Feature Extraction, Curve Length Method, SupportVector Machine, Learning Vector Quantization, Multi Layer Perceptron, Fusion (Hybrid) Classification, Arrhythmia Classification, Supervised Learning Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22272411 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity
Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Mujeeb Ur Rehman, Saifur Rahman Sabuj
Abstract:
This paper examines relationships between solar activity and earthquakes, it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity, and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to effect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth
.Keywords: K-Nearest Neighbour, Support Vector Regression, Random Forest Regression, Long Short-Term Memory Network, earthquakes, solar activity, sunspot number, solar wind, solar flares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022410 Aqueous Ranitidine Elimination in Photolytic Processes
Authors: Javier Rivas, Olga Gimeno, Maria Carbajo, Teresa Borralho
Abstract:
The elimination of ranitidine (a pharmaceutical compound) has been carried out in the presence of UV-C radiation. After some preliminary experiments, it has been experienced the no influence of the gas nature (air or oxygen) bubbled in photolytic experiments. From simple photolysis experiments the quantum yield of this compound has been determined. Two photolytic approximation has been used, the linear source emission in parallel planes and the point source emission in spherical planes. The quantum yield obtained was in the proximity of 0.05 mol Einstein-1 regardless of the method used. Addition of free radical promoters (hydrogen peroxide) increases the ranitidine removal rate while the use of photocatalysts (TiO2) negatively affects the process.Keywords: Quantum yield, photolysis, ranitidine, watertreatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16962409 Gravitational Frequency Shifts for Photons and Particles
Authors: Jing-Gang Xie
Abstract:
The research, in this case, considers the integration of the Quantum Field Theory and the General Relativity Theory. As two successful models in explaining behaviors of particles, they are incompatible since they work at different masses and scales of energy, with the evidence that regards the description of black holes and universe formation. It is so considering previous efforts in merging the two theories, including the likes of the String Theory, Quantum Gravity models, and others. In a bid to prove an actionable experiment, the paper’s approach starts with the derivations of the existing theories at present. It goes on to test the derivations by applying the same initial assumptions, coupled with several deviations. The resulting equations get similar results to those of classical Newton model, quantum mechanics, and general relativity as long as conditions are normal. However, outcomes are different when conditions are extreme, specifically with no breakdowns even for less than Schwarzschild radius, or at Planck length cases. Even so, it proves the possibilities of integrating the two theories.
Keywords: General relativity theory, particles, photons, quantum gravity model, gravitational frequency shift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22282408 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes
Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani
Abstract:
Development of a method to estimate gene functions is an important task in bioinformatics. One of the approaches for the annotation is the identification of the metabolic pathway that genes are involved in. Since gene expression data reflect various intracellular phenomena, those data are considered to be related with genes’ functions. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.
Keywords: Metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23362407 Optimized Vector Quantization for Bayer Color Filter Array
Authors: M. Lakshmi, J. Senthil Kumar
Abstract:
Digital cameras to reduce cost, use an image sensor to capture color images. Color Filter Array (CFA) in digital cameras permits only one of the three primary (red-green-blue) colors to be sensed in a pixel and interpolates the two missing components through a method named demosaicking. Captured data is interpolated into a full color image and compressed in applications. Color interpolation before compression leads to data redundancy. This paper proposes a new Vector Quantization (VQ) technique to construct a VQ codebook with Differential Evolution (DE) Algorithm. The new technique is compared to conventional Linde- Buzo-Gray (LBG) method.Keywords: Color Filter Array (CFA), Biorthogonal Wavelet, Vector Quantization (VQ), Differential Evolution (DE).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19062406 Investigation of the Effects of Sampling Frequency on the THD of 3-Phase Inverters Using Space Vector Modulation
Authors: Khattab Ibrahim Al Qaisi, Nicholas Bowring
Abstract:
This paper presents the simulation results of the effects of sampling frequency on the total harmonic distortion (THD) of three-phase inverters using the space vector pulse width modulation (SVPWM) and space vector control (SVC) algorithms. The relationship between the variables was studied using curve fitting techniques, and it has been shown that, for 50 Hz inverters, there is an exponential relation between the sampling frequency and THD up to around 8500 Hz, beyond which the performance of the model becomes irregular, and there is an negative exponential relation between the sampling frequency and the marginal improvement to the THD. It has also been found that the performance of SVPWM is better than that of SVC with the same sampling frequency in most frequency range, including the range where the performance of the former is irregular.
Keywords: SVPWM, THD, DC-AC Inverter, Sampling Frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29762405 Winding Numbers of Paths of Analytic Functions Zeros in Finite Quantum Systems
Authors: Muna Tabuni
Abstract:
The paper contains an investigation of winding numbers of paths of zeros of analytic theta functions. We have considered briefly an analytic representation of finite quantum systems ZN. The analytic functions on a torus have exactly N zeros. The brief introduction to the zeros of analytic functions and there time evolution is given. We have discussed the periodic finite quantum systems. We have introduced the winding numbers in general. We consider the winding numbers of the zeros of analytic theta functions.
Keywords: Winding numbers, period, paths of zeros.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715