Search results for: Parallel sorting algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2058

Search results for: Parallel sorting algorithms

1758 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study

Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng

Abstract:

MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.

Keywords: MicroRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
1757 The Negative Effect of Traditional Loops Style on the Performance of Algorithms

Authors: Mahmoud Moh'd Mhashi

Abstract:

A new algorithm called Character-Comparison to Character-Access (CCCA) is developed to test the effect of both: 1) converting character-comparison and number-comparison into character-access and 2) the starting point of checking on the performance of the checking operation in string searching. An experiment is performed using both English text and DNA text with different sizes. The results are compared with five algorithms, namely, Naive, BM, Inf_Suf_Pref, Raita, and Cycle. With the CCCA algorithm, the results suggest that the evaluation criteria of the average number of total comparisons are improved up to 35%. Furthermore, the results suggest that the clock time required by the other algorithms is improved in range from 22.13% to 42.33% by the new CCCA algorithm.

Keywords: Pattern matching, string searching, charactercomparison, character-access, text type, and checking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1270
1756 Stability Analysis of Single Inverter Fed Two Induction Motors in Parallel

Authors: R. Gunabalan, V. Subbiah

Abstract:

This paper discusses the novel graphical approach for stability analysis of multi induction motor drive controlled by a single inverter. Stability issue arises in parallel connected induction motors under unbalanced load conditions. The two powerful globally accepted modeling and simulation software packages such as MATLAB and LabVIEW are selected to perform the stability analysis. The stability investigation is performed for different load conditions and difference in stator and rotor resistances among the two motors. It is very simple and effective than the techniques presented to obtain the stability of the parallel connected induction motor drive under unbalanced load conditions. Approximate transfer functions are considered to model the induction motors, load dynamics, speed controllers and inverter. Simulink library tools are utilized to model the entire drive scheme in MATLAB. Stability study is discussed in LabVIEW using control design and simulation toolkits. Simulation results are illustrated for various running conditions to demonstrate the effectiveness of the transfer function method.

Keywords: Induction motor, Modeling, Stability analysis, Transfer function model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2687
1755 Parallel Image Compression and Analysis with Wavelets

Authors: M. Kutila, J. Viitanen

Abstract:

This paper presents image compression with wavelet based method. The wavelet transformation divides image to low- and high pass filtered parts. The traditional JPEG compression technique requires lower computation power with feasible losses, when only compression is needed. However, there is obvious need for wavelet based methods in certain circumstances. The methods are intended to the applications in which the image analyzing is done parallel with compression. Furthermore, high frequency bands can be used to detect changes or edges. Wavelets enable hierarchical analysis for low pass filtered sub-images. The first analysis can be done for a small image, and only if any interesting is found, the whole image is processed or reconstructed.

Keywords: image compression, jpeg, wavelet, vlc

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
1754 Numerical Simulation of Conjugated Heat Transfer Characteristics of Laminar Air Flows in Parallel-Plate Dimpled Channels

Authors: Hossein Shokouhmand , Mohammad A. Esmaeili, Koohyar Vahidkhah

Abstract:

This paper presents a numerical study on surface heat transfer characteristics of laminar air flows in parallel-plate dimpled channels. The two-dimensional numerical model is provided by commercial code FLUENT and the results are obtained for channels with symmetrically opposing hemi-cylindrical cavities onto both walls for Reynolds number ranging from 1000 to 2500. The influence of variations in relative depth of dimples (the ratio of cavity depth to the cavity curvature diameter), the number of them and the thermophysical properties of channel walls on heat transfer enhancement is studied. The results are evident for existence of an optimum value for the relative depth of dimples in which the largest wall heat flux and average Nusselt number can be achieved. In addition, the results of conjugation simulation indicate that the overall influence of the ratio of wall thermal conductivity to the one of the fluid on heat transfer rate is not much significant and can be ignored.

Keywords: cavity, conjugation, heat transfer, laminar air flow, Numerical, parallel-plate channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
1753 Hexagonal Honeycomb Sandwich Plate Optimization Using Gravitational Search Algorithm

Authors: A. Boudjemai, A. Zafrane, R. Hocine

Abstract:

Honeycomb sandwich panels are increasingly used in the construction of space vehicles because of their outstanding strength, stiffness and light weight properties. However, the use of honeycomb sandwich plates comes with difficulties in the design process as a result of the large number of design variables involved, including composite material design, shape and geometry. Hence, this work deals with the presentation of an optimal design of hexagonal honeycomb sandwich structures subjected to space environment. The optimization process is performed using a set of algorithms including the gravitational search algorithm (GSA). Numerical results are obtained and presented for a set of algorithms. The results obtained by the GSA algorithm are much better compared to other algorithms used in this study.

Keywords: Optimization, Gravitational search algorithm, Genetic algorithm, Honeycomb plate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3291
1752 Genetic Combined with a Simplex Algorithm as an Efficient Method for the Detection of a Depressed Ellipsoidal Flaw using the Boundary Element Method

Authors: Clio G. Vossou, Ioannis N. Koukoulis, Christopher G. Provatidis

Abstract:

The present work encounters the solution of the defect identification problem with the use of an evolutionary algorithm combined with a simplex method. In more details, a Matlab implementation of Genetic Algorithms is combined with a Simplex method in order to lead to the successful identification of the defect. The influence of the location and the orientation of the depressed ellipsoidal flaw was investigated as well as the use of different amount of static data in the cost function. The results were evaluated according to the ability of the simplex method to locate the global optimum in each test case. In this way, a clear impression regarding the performance of the novel combination of the optimization algorithms, and the influence of the geometrical parameters of the flaw in defect identification problems was obtained.

Keywords: Defect identification, genetic algorithms, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
1751 Stochastic Learning Algorithms for Modeling Human Category Learning

Authors: Toshihiko Matsuka, James E. Corter

Abstract:

Most neural network (NN) models of human category learning use a gradient-based learning method, which assumes that locally-optimal changes are made to model parameters on each learning trial. This method tends to under predict variability in individual-level cognitive processes. In addition many recent models of human category learning have been criticized for not being able to replicate rapid changes in categorization accuracy and attention processes observed in empirical studies. In this paper we introduce stochastic learning algorithms for NN models of human category learning and show that use of the algorithms can result in (a) rapid changes in accuracy and attention allocation, and (b) different learning trajectories and more realistic variability at the individual-level.

Keywords: category learning, cognitive modeling, radial basis function, stochastic optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
1750 Parallel Hybrid Honeypot and IDS Architecture to Detect Network Attacks

Authors: Hafiz Gulfam Ahmad, Chuangdong Li, Zeeshan Ahmad

Abstract:

In this paper, we have proposed a parallel IDS and honeypot based approach to detect and analyze the unknown and known attack taxonomy for improving the IDS performance and protecting the network from intruders. The main theme of our approach is to record and analyze the intruder activities by using both the low and high interaction honeypots. Our architecture aims to achieve the required goals by combing signature based IDS, honeypots and generate the new signatures. The paper describes the basic component, design and implementation of this approach and also demonstrates the effectiveness of this approach to reduce the probability of network attacks.

Keywords: Network security, Intrusion detection, Honeypot, Snort, Nmap.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2529
1749 Comparison of Back-Projection with Non-Uniform Fast Fourier Transform for Real-Time Photoacoustic Tomography

Authors: Moung Young Lee, Chul Gyu Song

Abstract:

Photoacoustic imaging is the imaging technology that combines the optical imaging and ultrasound. This provides the high contrast and resolution due to optical imaging and ultrasound imaging, respectively. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer and digital acquisition (DAQ) board. There are two types of algorithm for reconstructing the photoacoustic signal. One is back-projection algorithm, the other is FFT algorithm. Especially, we used the non-uniform FFT algorithm. To evaluate the performance of our system and algorithms, we monitored two wires that stands at interval of 2.89 mm and 0.87 mm. Then, we compared the images reconstructed by algorithms. Finally, we monitored the two hairs crossed and compared between these algorithms.

Keywords: Back-projection, image comparison, non-uniform FFT, photoacoustic tomography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
1748 Synthesis of Digital Circuits with Genetic Algorithms: A Fractional-Order Approach

Authors: Cecília Reis, J. A. Tenreiro Machado, J. Boaventura Cunha

Abstract:

This paper analyses the performance of a genetic algorithm using a new concept, namely a fractional-order dynamic fitness function, for the synthesis of combinational logic circuits. The experiments reveal superior results in terms of speed and convergence to achieve a solution.

Keywords: Circuit design, fractional-order systems, genetic algorithms, logic circuits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
1747 The Effect of Slow Variation of Base Flow Profile on the Stability of Slightly Curved Mixing Layers

Authors: Irina Eglite, Andrei A. Kolyshkin

Abstract:

The effect of small non-parallelism of the base flow on the stability of slightly curved mixing layers is analyzed in the present paper. Assuming that the instability wavelength is much smaller than the length scale of the variation of the base flow we derive an amplitude evolution equation using the method of multiple scales. The proposed asymptotic model provides connection between parallel flow approximations and takes into account slow longitudinal variation of the base flow.

Keywords: shallow water, parallel flow assumption, weaklynonlinear analysis, method of multiple scales

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
1746 Choosing Search Algorithms in Bayesian Optimization Algorithm

Authors: Hao Wu, Jonathan L. Shapiro

Abstract:

The Bayesian Optimization Algorithm (BOA) is an algorithm based on the estimation of distributions. It uses techniques from modeling data by Bayesian networks to estimating the joint distribution of promising solutions. To obtain the structure of Bayesian network, different search algorithms can be used. The key point that BOA addresses is whether the constructed Bayesian network could generate new and useful solutions (strings), which could lead the algorithm in the right direction to solve the problem. Undoubtedly, this ability is a crucial factor of the efficiency of BOA. Varied search algorithms can be used in BOA, but their performances are different. For choosing better ones, certain suitable method to present their ability difference is needed. In this paper, a greedy search algorithm and a stochastic search algorithm are used in BOA to solve certain optimization problem. A method using Kullback-Leibler (KL) Divergence to reflect their difference is described.

Keywords: Bayesian optimization algorithm, greedy search, KL divergence, stochastic search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
1745 Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study

Authors: Faisal Aburub, Wael Hadi

Abstract:

Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.

Keywords: Classification, data mining, evaluation measures, groundwater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595
1744 Pruning Algorithm for the Minimum Rule Reduct Generation

Authors: Şahin Emrah Amrahov, Fatih Aybar, Serhat Doğan

Abstract:

In this paper we consider the rule reduct generation problem. Rule Reduct Generation (RG) and Modified Rule Generation (MRG) algorithms, that are used to solve this problem, are well-known. Alternative to these algorithms, we develop Pruning Rule Generation (PRG) algorithm. We compare the PRG algorithm with RG and MRG.

Keywords: Rough sets, Decision rules, Rule induction, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
1743 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems

Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan

Abstract:

Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.

Keywords: Data mining, hybrid storage system, recurrent neural network, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
1742 Motion Estimator Architecture with Optimized Number of Processing Elements for High Efficiency Video Coding

Authors: Seongsoo Lee

Abstract:

Motion estimation occupies the heaviest computation in HEVC (high efficiency video coding). Many fast algorithms such as TZS (test zone search) have been proposed to reduce the computation. Still the huge computation of the motion estimation is a critical issue in the implementation of HEVC video codec. In this paper, motion estimator architecture with optimized number of PEs (processing element) is presented by exploiting early termination. It also reduces hardware size by exploiting parallel processing. The presented motion estimator architecture has 8 PEs, and it can efficiently perform TZS with very high utilization of PEs.

Keywords: Motion estimation, test zone search, high efficiency video coding, processing element, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
1741 Two Wheels Balancing Robot with Line Following Capability

Authors: Nor Maniha Abdul Ghani, Faradila Naim, Tan Piow Yon

Abstract:

This project focuses on the development of a line follower algorithm for a Two Wheels Balancing Robot. In this project, ATMEGA32 is chosen as the brain board controller to react towards the data received from Balance Processor Chip on the balance board to monitor the changes of the environment through two infra-red distance sensor to solve the inclination angle problem. Hence, the system will immediately restore to the set point (balance position) through the implementation of internal PID algorithms at the balance board. Application of infra-red light sensors with the PID control is vital, in order to develop a smooth line follower robot. As a result of combination between line follower program and internal self balancing algorithms, we are able to develop a dynamically stabilized balancing robot with line follower function.

Keywords: infra-red sensor, PID algorithms, line followerBalancing robot

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7524
1740 A Hybrid Nature Inspired Algorithm for Generating Optimal Query Plan

Authors: R. Gomathi, D. Sharmila

Abstract:

The emergence of the Semantic Web technology increases day by day due to the rapid growth of multiple web pages. Many standard formats are available to store the semantic web data. The most popular format is the Resource Description Framework (RDF). Querying large RDF graphs becomes a tedious procedure with a vast increase in the amount of data. The problem of query optimization becomes an issue in querying large RDF graphs. Choosing the best query plan reduces the amount of query execution time. To address this problem, nature inspired algorithms can be used as an alternative to the traditional query optimization techniques. In this research, the optimal query plan is generated by the proposed SAPSO algorithm which is a hybrid of Simulated Annealing (SA) and Particle Swarm Optimization (PSO) algorithms. The proposed SAPSO algorithm has the ability to find the local optimistic result and it avoids the problem of local minimum. Experiments were performed on different datasets by changing the number of predicates and the amount of data. The proposed algorithm gives improved results compared to existing algorithms in terms of query execution time.

Keywords: Semantic web, RDF, Query optimization, Nature inspired algorithms, PSO, SA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239
1739 Analytical Approach of the In-Pipe Robot on Branched Pipe Navigation and Its Solution

Authors: Yoon Koo Kang, Jung wan Park, Hyun Seok Yang

Abstract:

This paper determines most common model of in-pipe robots to derive its degree of freedom in order to compare with the necessary degree of freedom required for a system to move inside pipelines freely in order to derive analytical reason for losing control of in-pipe robots at branched pipe. DOF of most common mechanism in in-pipe robots can be calculated by considering the robot as a parallel manipulator. A new design based on previously researched in-pipe robot PAROYS has been suggested, and its possibility to overcome branched section has been simulated.

Keywords: Branched pipe, Degree of freedom, In-pipe robot, Parallel manipulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2219
1738 A Hybridization of Constructive Beam Search with Local Search for Far From Most Strings Problem

Authors: Sayyed R Mousavi

Abstract:

The Far From Most Strings Problem (FFMSP) is to obtain a string which is far from as many as possible of a given set of strings. All the input and the output strings are of the same length, and two strings are said to be far if their hamming distance is greater than or equal to a given positive integer. FFMSP belongs to the class of sequences consensus problems which have applications in molecular biology. The problem is NP-hard; it does not admit a constant-ratio approximation either, unless P = NP. Therefore, in addition to exact and approximate algorithms, (meta)heuristic algorithms have been proposed for the problem in recent years. On the other hand, in the recent years, hybrid algorithms have been proposed and successfully used for many hard problems in a variety of domains. In this paper, a new metaheuristic algorithm, called Constructive Beam and Local Search (CBLS), is investigated for the problem, which is a hybridization of constructive beam search and local search algorithms. More specifically, the proposed algorithm consists of two phases, the first phase is to obtain several candidate solutions via the constructive beam search and the second phase is to apply local search to the candidate solutions obtained by the first phase. The best solution found is returned as the final solution to the problem. The proposed algorithm is also similar to memetic algorithms in the sense that both use local search to further improve individual solutions. The CBLS algorithm is compared with the most recent published algorithm for the problem, GRASP, with significantly positive results; the improvement is by order of magnitudes in most cases.

Keywords: Bioinformatics, Far From Most Strings Problem, Hybrid metaheuristics, Matheuristics, Sequences consensus problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
1737 Slime Mould Optimization Algorithms for Optimal Distributed Generation Integration in Distribution Electrical Network

Authors: F. Fissou Amigue, S. Ndjakomo Essiane, S. Pérabi Ngoffé, G. Abessolo Ondoa, G. Mengata Mengounou, T. P. Nna Nna

Abstract:

This document proposes a method for determining the optimal point of integration of distributed generation (DG) in distribution grid. Slime mould optimization is applied to determine best node in case of one and two injection point. Problem has been modeled as an optimization problem where the objective is to minimize joule loses and main constraint is to regulate voltage in each point. The proposed method has been implemented in MATLAB and applied in IEEE network 33 and 69 nodes. Comparing results obtained with other algorithms showed that slime mould optimization algorithms (SMOA) have the best reduction of power losses and good amelioration of voltage profile.

Keywords: Optimization, distributed generation, integration, slime mould algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 644
1736 Implementation Issues of Industrial PID Controller and Their Remedies

Authors: C. B. Vishwakarma

Abstract:

We elaborated the parallel and series Proportional, Integral and Derivative (PID) controllers, which are being used in industries. Various issues, which are very often faced by control engineers while designing the PID controllers for industrial systems are described. The effect of measurement noise on the actuator due to derivative term of a PID controller has been explained in detail. Similarly, proportional kick, derivative kick, saturation tendency of the actuator and reverse phenomena of an industrial process have been summarized. Moreover, we meticulously explained the remedies of the all issues of the parallel industrial PID controller.

Keywords: Band-width limited derivative control, derivative kick, proportional kick, reverse acting controller, series PID controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119
1735 Simulated Annealing and Genetic Algorithm in Telecommunications Network Planning

Authors: Aleksandar Tsenov

Abstract:

The main goal of this work is to propose a way for combined use of two nontraditional algorithms by solving topological problems on telecommunications concentrator networks. The algorithms suggested are the Simulated Annealing algorithm and the Genetic Algorithm. The Algorithm of Simulated Annealing unifies the well known local search algorithms. In addition - Simulated Annealing allows acceptation of moves in the search space witch lead to decisions with higher cost in order to attempt to overcome any local minima obtained. The Genetic Algorithm is a heuristic approach witch is being used in wide areas of optimization works. In the last years this approach is also widely implemented in Telecommunications Networks Planning. In order to solve less or more complex planning problem it is important to find the most appropriate parameters for initializing the function of the algorithm.

Keywords: Concentrator network, genetic algorithm, simulated annealing, UCPL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
1734 A New Routing Algorithm: MIRAD

Authors: Amir Gholami Pastaki, Ali Reza Sahab, Seyed Mehdi Sadeghi

Abstract:

LSP routing is among the prominent issues in MPLS networks traffic engineering. The objective of this routing is to increase number of the accepted requests while guaranteeing the quality of service (QoS). Requested bandwidth is the most important QoS criterion that is considered in literatures, and a various number of heuristic algorithms have been presented with that regards. Many of these algorithms prevent flows through bottlenecks of the network in order to perform load balancing, which impedes optimum operation of the network. Here, a modern routing algorithm is proposed as MIRAD: having a little information of the network topology, links residual bandwidth, and any knowledge of the prospective requests it provides every request with a maximum bandwidth as well as minimum end-to-end delay via uniform load distribution across the network. Simulation results of the proposed algorithm show a better efficiency in comparison with similar algorithms.

Keywords: new generation networks, QoS, traffic engineering, MPLS, QoS based routing, LSP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
1733 Programming Aid Tool for Detecting Common Mistakes of Novice Programmers in OpenMP Code

Authors: Jae Young Park, Seung Wook Lee, Jong Tae Kim

Abstract:

OpenMP is an API for parallel programming model of shared memory multiprocessors. Novice OpenMP programmers often produce the code that compiler cannot find human errors. It was investigated how compiler coped with the common mistakes that can occur in OpenMP code. The latest version(4.4.3) of GCC is used for this research. It was found that GCC compiled the codes without any errors or warnings. In this paper the programming aid tool is presented for OpenMP programs. It can check 12 common mistakes that novice programmer can commit during the programming of OpenMP. It was demonstrated that the programming aid tool can detect the various common mistakes that GCC failed to detect.

Keywords: Parallel programming, OpenMP, programming aid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
1732 MIMO Performances in Tunnel Environment: Interpretation from the Channel Characteristics

Authors: C. Sanchis-Borras, J. M. Molina-Garcia-Pardo, P. Degauque, M. Lienard

Abstract:

The objective of this contribution is to study the performances in terms of bit error rate, of space-time code algorithms applied to MIMO communication in tunnels. Indeed, the channel characteristics in a tunnel are quite different than those of urban or indoor environment, due to the guiding effect of the tunnel. Therefore, MIMO channel matrices have been measured in a straight tunnel, in a frequency band around 3GHz. Correlation between array elements and properties of the MIMO matrices are first studied as a function of the distance between the transmitter and the receiver. Then, owing to a software tool simulating the link, predicted values of bit error rate are given for VLAST, OSTBC and QSTBC algorithms applied to a MIMO configuration with 2 or 4 array elements. Results are interpreted from the analysis of the channel properties.

Keywords: MIMO, propagation channel, space-time algorithms, tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887
1731 A Fully Parallel Reverse Converter

Authors: Mehdi Hosseinzadeh, Amir Sabbagh Molahosseini, Keivan Navi

Abstract:

The residue number system (RNS) is popular in high performance computation applications because of its carry-free nature. The challenges of RNS systems design lie in the moduli set selection and in the reverse conversion from residue representation to weighted representation. In this paper, we proposed a fully parallel reverse conversion algorithm for the moduli set {rn - 2, rn - 1, rn}, based on simple mathematical relationships. Also an efficient hardware realization of this algorithm is presented. Our proposed converter is very faster and results to hardware savings, compared to the other reverse converters.

Keywords: Reverse converter, residue to weighted converter, residue number system, multiple-valued logic, computer arithmetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
1730 Effective Sonar Target Classification via Parallel Structure of Minimal Resource Allocation Network

Authors: W.S. Lim, M.V.C. Rao

Abstract:

In this paper, the processing of sonar signals has been carried out using Minimal Resource Allocation Network (MRAN) and a Probabilistic Neural Network (PNN) in differentiation of commonly encountered features in indoor environments. The stability-plasticity behaviors of both networks have been investigated. The experimental result shows that MRAN possesses lower network complexity but experiences higher plasticity than PNN. An enhanced version called parallel MRAN (pMRAN) is proposed to solve this problem and is proven to be stable in prediction and also outperformed the original MRAN.

Keywords: Ultrasonic sensing, target classification, minimalresource allocation network (MRAN), probabilistic neural network(PNN), stability-plasticity dilemma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
1729 Affine Combination of Splitting Type Integrators, Implemented with Parallel Computing Methods

Authors: Adrian Alvarez, Diego Rial

Abstract:

In this work we present a family of new convergent type methods splitting high order no negative steps feature that allows your application to irreversible problems. Performing affine combinations consist of results obtained with Trotter Lie integrators of different steps. Some examples where applied symplectic compared with methods, in particular a pair of differential equations semilinear. The number of basic integrations required is comparable with integrators symplectic, but this technique allows the ability to do the math in parallel thus reducing the times of which exemplify exhibiting some implementations with simple schemes for its modularity and scalability process.

Keywords: Lie Trotter integrators, Irreversible Problems, Splitting Methods without negative steps, MPI, HPC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1334