Search results for: Neuro Fuzzy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 968

Search results for: Neuro Fuzzy

668 Acceptance Single Sampling Plan with Fuzzy Parameter with The Using of Poisson Distribution

Authors: Ezzatallah Baloui Jamkhaneh, Bahram Sadeghpour-Gildeh, Gholamhossein Yari

Abstract:

This purpose of this paper is to present the acceptance single sampling plan when the fraction of nonconforming items is a fuzzy number and being modeled based on the fuzzy Poisson distribution. We have shown that the operating characteristic (oc) curves of the plan is like a band having a high and low bounds whose width depends on the ambiguity proportion parameter in the lot when that sample size and acceptance numbers is fixed. Finally we completed discuss opinion by a numerical example. And then we compared the oc bands of using of binomial with the oc bands of using of Poisson distribution.

Keywords: Statistical quality control, acceptance single sampling, fuzzy number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
667 Evaluating Service Quality of Online Auction by Fuzzy MCDM

Authors: Wei-Hsuan Lee, Chien-Hua Wang, Chin-Tzong Pang

Abstract:

This paper applies fuzzy set theory to evaluate the service quality of online auction. Service quality is a composition of various criteria. Among them many intangible attributes are difficult to measure. This characteristic introduces the obstacles for respondent in replying to the survey. So as to overcome this problem, we invite fuzzy set theory into the measurement of performance. By using AHP in obtaining criteria and TOPSIS in ranking, we found the most concerned dimension of service quality is Transaction Safety Mechanism and the least is Charge Item. Regarding to the most concerned attributes are information security, accuracy and information.

Keywords: AHP, Fuzzy set theory, TOPSIS, Online auction, Servicequality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
666 Unsupervised Image Segmentation Based on Fuzzy Connectedness with Sale Space Theory

Authors: Yuanjie Zheng, Jie Yang, Yue Zhou

Abstract:

In this paper, we propose an approach of unsupervised segmentation with fuzzy connectedness. Valid seeds are first specified by an unsupervised method based on scale space theory. A region is then extracted for each seed with a relative object extraction method of fuzzy connectedness. Afterwards, regions are merged according to the values between them of an introduced measure. Some theorems and propositions are also provided to show the reasonableness of the measure for doing mergence. Experiment results on a synthetic image, a color image and a large amount of MR images of our method are reported.

Keywords: Image segmentation, unsupervised imagesegmentation, fuzzy connectedness, scale space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341
665 TS Fuzzy Controller to Stochastic Systems

Authors: Joabe Silva, Ginalber Serra

Abstract:

This paper proposes the analysis and design of robust fuzzy control to Stochastic Parametrics Uncertaint Linear systems. This system type to be controlled is partitioned into several linear sub-models, in terms of transfer function, forming a convex polytope, similar to LPV (Linear Parameters Varying) system. Once defined the linear sub-models of the plant, these are organized into fuzzy Takagi- Sugeno (TS) structure. From the Parallel Distributed Compensation (PDC) strategy, a mathematical formulation is defined in the frequency domain, based on the gain and phase margins specifications, to obtain robust PI sub-controllers in accordance to the Takagi- Sugeno fuzzy model of the plant. The main results of the paper are based on the robust stability conditions with the proposal of one Axiom and two Theorems.

Keywords: Fuzzy Systems; Robust Stability, Stochastic Control, Stochastic Process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
664 Finding Fuzzy Association Rules Using FWFP-Growth with Linguistic Supports and Confidences

Authors: Chien-Hua Wang, Chin-Tzong Pang

Abstract:

In data mining, the association rules are used to search for the relations of items of the transactions database. Following the data is collected and stored, it can find rules of value through association rules, and assist manager to proceed marketing strategy and plan market framework. In this paper, we attempt fuzzy partition methods and decide membership function of quantitative values of each transaction item. Also, by managers we can reflect the importance of items as linguistic terms, which are transformed as fuzzy sets of weights. Next, fuzzy weighted frequent pattern growth (FWFP-Growth) is used to complete the process of data mining. The method above is expected to improve Apriori algorithm for its better efficiency of the whole association rules. An example is given to clearly illustrate the proposed approach.

Keywords: Association Rule, Fuzzy Partition Methods, FWFP-Growth, Apiroir algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
663 Conventional and Fuzzy Logic Controllers at Generator Location for Low Frequency Oscillation Damping

Authors: K. Prasertwong, N. Mithulananthan

Abstract:

This paper investigates and compares performance of various conventional and fuzzy logic based controllers at generator locations for oscillation damping. Performance of combination of conventional and fuzzy logic based controllers also studied by comparing overshoot on the active power deviation response for a small disturbance and damping ratio of the critical mode. Fuzzy logic based controllers can not be modeled in the state space form to get the eigenvalues and corresponding damping ratios of various modes of generators and controllers. Hence, a new method based on tracing envelop of time domain waveform is also presented and used in the paper for comparing performance of controllers. The paper also shows that if the fuzzy based controllers designed separately combining them could not lead to a better performance.

Keywords: Automatic voltage regulator, damping ratio, fuzzylogic controller, power system stabilizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
662 Rule-Based Fuzzy Logic Controller with Adaptable Reference

Authors: Sheroz Khan, I. Adam, A. H. M. Zahirul Alam, Mohd Rafiqul Islam, Othman O. Khalifa

Abstract:

This paper attempts to model and design a simple fuzzy logic controller with Variable Reference. The Variable Reference (VR) is featured as an adaptability element which is obtained from two known variables – desired system-input and actual system-output. A simple fuzzy rule-based technique is simulated to show how the actual system-input is gradually tuned in to a value that closely matches the desired input. The designed controller is implemented and verified on a simple heater which is controlled by PIC Microcontroller harnessed by a code developed in embedded C. The output response of the PIC-controlled heater is analyzed and compared to the performances by conventional fuzzy logic controllers. The novelty of this work lies in the fact that it gives better performance by using less number of rules compared to conventional fuzzy logic controllers.

Keywords: Fuzzy logic controller, Variable reference, Adaptability, Rule-based.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
661 Approximate Bounded Knowledge Extraction Using Type-I Fuzzy Logic

Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil

Abstract:

Using neural network we try to model the unknown function f for given input-output data pairs. The connection strength of each neuron is updated through learning. Repeated simulations of crisp neural network produce different values of weight factors that are directly affected by the change of different parameters. We propose the idea that for each neuron in the network, we can obtain quasi-fuzzy weight sets (QFWS) using repeated simulation of the crisp neural network. Such type of fuzzy weight functions may be applied where we have multivariate crisp input that needs to be adjusted after iterative learning, like claim amount distribution analysis. As real data is subjected to noise and uncertainty, therefore, QFWS may be helpful in the simplification of such complex problems. Secondly, these QFWS provide good initial solution for training of fuzzy neural networks with reduced computational complexity.

Keywords: Crisp neural networks, fuzzy systems, extraction of logical rules, quasi-fuzzy numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
660 A New Intelligent Strategy to Integrated Control of AFS/DYC Based on Fuzzy Logic

Authors: R. Karbalaei, A. Ghaffari, R. Kazemi, S. H. Tabatabaei

Abstract:

An integrated vehicle dynamics control system is developed in this paper by a combination of active front steering (AFS) and direct yaw-moment control (DYC) based on fuzzy logic control. The control system has a hierarchical structure consisting of two layers. A fuzzy logic controller is used in the upper layer (yaw rate controller) to keep the yaw rate in its desired value. The yaw rate error and its rate of change are applied to the upper controlling layer as inputs, where the direct yaw moment control signal and the steering angle correction of the front wheels are the outputs. In the lower layer (fuzzy integrator), a fuzzy logic controller is designed based on the working region of the lateral tire forces. Depending on the directions of the lateral forces at the front wheels, a switching function is activated to adjust the scaling factor of the fuzzy logic controller. Using a nonlinear seven degrees of freedom vehicle model, the simulation results illustrate considerable improvements which are achieved in vehicle handling through the integrated AFS/DYC control system in comparison with the individual AFS or DYC controllers.

Keywords: Intelligent strategy, integrated control, fuzzy logic, AFS/DYC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2314
659 A Fuzzy Decision Making Approach for Supplier Selection in Healthcare Industry

Authors: Zeynep Sener, Mehtap Dursun

Abstract:

Supplier evaluation and selection is one of the most important components of an effective supply chain management system. Due to the expanding competition in healthcare, selecting the right medical device suppliers offers great potential for increasing quality while decreasing costs. This paper proposes a fuzzy decision making approach for medical supplier selection. A real-world medical device supplier selection problem is presented to illustrate the application of the proposed decision methodology.

Keywords: Fuzzy decision making, fuzzy multiple objective programming, medical supply chain, supplier selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2672
658 Improving Convergence of Parameter Tuning Process of the Additive Fuzzy System by New Learning Strategy

Authors: Thi Nguyen, Lee Gordon-Brown, Jim Peterson, Peter Wheeler

Abstract:

An additive fuzzy system comprising m rules with n inputs and p outputs in each rule has at least t m(2n + 2 p + 1) parameters needing to be tuned. The system consists of a large number of if-then fuzzy rules and takes a long time to tune its parameters especially in the case of a large amount of training data samples. In this paper, a new learning strategy is investigated to cope with this obstacle. Parameters that tend toward constant values at the learning process are initially fixed and they are not tuned till the end of the learning time. Experiments based on applications of the additive fuzzy system in function approximation demonstrate that the proposed approach reduces the learning time and hence improves convergence speed considerably.

Keywords: Additive fuzzy system, improving convergence, parameter learning process, unsupervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
657 On Solving Single-Period Inventory Model under Hybrid Uncertainty

Authors: Madhukar Nagare, Pankaj Dutta

Abstract:

Inventory decisional environment of short life-cycle products is full of uncertainties arising from randomness and fuzziness of input parameters like customer demand requiring modeling under hybrid uncertainty. Prior inventory models incorporating fuzzy demand have unfortunately ignored stochastic variation of demand. This paper determines an unambiguous optimal order quantity from a set of n fuzzy observations in a newsvendor inventory setting in presence of fuzzy random variable demand capturing both fuzzy perception and randomness of customer demand. The stress of this paper is in providing solution procedure that attains optimality in two steps with demand information availability in linguistic phrases leading to fuzziness along with stochastic variation. The first step of solution procedure identifies and prefers one best fuzzy opinion out of all expert opinions and the second step determines optimal order quantity from the selected event that maximizes profit. The model and solution procedure is illustrated with a numerical example.

Keywords: Fuzzy expected value, Fuzzy random demand, Hybrid uncertainty, Optimal order quantity, Single-period inventory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
656 The Orlicz Space of the Entire Sequence Fuzzy Numbers Defined by Infinite Matrices

Authors: N.Subramanian, C.Murugesan

Abstract:

This paper is devoted to the study of the general properties of Orlicz space of entire sequence of fuzzy numbers by using infinite matrices.

Keywords: Fuzzy numbers, infinite matrix, Orlicz space, entiresequence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206
655 Existence and Stability Analysis of Discrete-time Fuzzy BAM Neural Networks with Delays and Impulses

Authors: Chao Wang, Yongkun Li

Abstract:

In this paper, the discrete-time fuzzy BAM neural network with delays and impulses is studied. Sufficient conditions are obtained for the existence and global stability of a unique equilibrium of this class of fuzzy BAM neural networks with Lipschitzian activation functions without assuming their boundedness, monotonicity or differentiability and subjected to impulsive state displacements at fixed instants of time. Some numerical examples are given to demonstrate the effectiveness of the obtained results.

Keywords: Discrete-time fuzzy BAM neural networks, ımpulses, global exponential stability, global asymptotical stability, equilibrium point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
654 Gain Tuning Fuzzy Controller for an Optical Disk Drive

Authors: Shiuh-Jer Huang, Ming-Tien Su

Abstract:

Since the driving speed and control accuracy of commercial optical disk are increasing significantly, it needs an efficient controller to monitor the track seeking and following operations of the servo system for achieving the desired data extracting response. The nonlinear behaviors of the actuator and servo system of the optical disk drive will influence the laser spot positioning. Here, the model-free fuzzy control scheme is employed to design the track seeking servo controller for a d.c. motor driving optical disk drive system. In addition, the sliding model control strategy is introduced into the fuzzy control structure to construct a 1-D adaptive fuzzy rule intelligent controller for simplifying the implementation problem and improving the control performance. The experimental results show that the steady state error of the track seeking by using this fuzzy controller can maintain within the track width (1.6 μm ). It can be used in the track seeking and track following servo control operations.

Keywords: Fuzzy control, gain tuning and optical disk drive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
653 Analysis of Periodic Solution of Delay Fuzzy BAM Neural Networks

Authors: Qianhong Zhang, Lihui Yang, Daixi Liao

Abstract:

In this paper, by employing a new Lyapunov functional and an elementary inequality analysis technique, some sufficient conditions are derived to ensure the existence and uniqueness of periodic oscillatory solution for fuzzy bi-directional memory (BAM) neural networks with time-varying delays, and all other solutions of the fuzzy BAM neural networks converge the uniqueness periodic solution. These criteria are presented in terms of system parameters and have important leading significance in the design and applications of neural networks. Moreover an example is given to illustrate the effectiveness and feasible of results obtained.

Keywords: Fuzzy BAM neural networks, Periodic solution, Global exponential stability, Time-varying delays

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
652 A Novel Fuzzy Logic Based Controller to Adjust the Brightness of the Television Screen with Respect to Surrounding Light

Authors: A. V. Sai Balasubramanian, N. Ravi Shankar, S. Subbaraman, R. Rengaraj

Abstract:

One of the major cause of eye strain and other problems caused while watching television is the relative illumination between the screen and its surrounding. This can be overcome by adjusting the brightness of the screen with respect to the surrounding light. A controller based on fuzzy logic is proposed in this paper. The fuzzy controller takes in the intensity of light surrounding the screen and the present brightness of the screen as input. The output of the fuzzy controller is the grid voltage corresponding to the required brightness. This voltage is given to CRT and brightness is controller dynamically. For the given test system data, different de-fuzzifier methods have been implemented and the results are compared. In order to validate the effectiveness of the proposed approach, a fuzzy controller has been designed by obtaining a test data from a real time system. The simulations are performed in MATLAB and are verified with standard system data. The proposed approach can be implemented for real time applications.

Keywords: Fuzzy controller, Grid voltage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2785
651 Fuzzy Sliding Mode Speed Controller for a Vector Controlled Induction Motor

Authors: S. Massoum, A. Bentaallah, A. Massoum, F. Benaimeche, P. Wira, A. Meroufel

Abstract:

This paper presents a speed fuzzy sliding mode controller for a vector controlled induction machine (IM) fed by a voltage source inverter (PWM). The sliding mode based fuzzy control method is developed to achieve fast response, a best disturbance rejection and to maintain a good decoupling. The problem with sliding mode control is that there is high frequency switching around the sliding mode surface. The FSMC is the combination of the robustness of Sliding Mode Control (SMC) and the smoothness of Fuzzy Logic (FL). To reduce the torque fluctuations (chattering), the sign function used in the conventional SMC is substituted with a fuzzy logic algorithm. The proposed algorithm was simulated by Matlab/Simulink software and simulation results show that the performance of the control scheme is robust and the chattering problem is solved.

Keywords: IM, FOC, FLC, SMC, and FSMC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2814
650 Fuzzy Boundary Layer Solution to Nonlinear Hydraulic Position Control Problem

Authors: Mustafa Resa Becan

Abstract:

Sliding mode control with a fuzzy boundary layer is presented to hydraulic position control problem in this paper. A nonlinear hydraulic servomechanism which has an asymmetric cylinder is modeled and simulated first, then the proposed control scheme is applied to this model versus the conventional sliding mode control. Simulation results proved that the chattering free position control is achieved by tuning the fuzzy scaling factors properly.

Keywords: Hydraulic servomechanism, position control, sliding mode control, chattering, fuzzy boundary layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
649 Filteristic Soft Lattice Implication Algebras

Authors: Yi Liu, Yang Xu

Abstract:

Applying the idea of soft set theory to lattice implication algebras, the novel concept of (implicative) filteristic soft lattice implication algebras which related to (implicative) filter(for short, (IF-)F-soft lattice implication algebras) are introduced. Basic properties of (IF-)F-soft lattice implication algebras are derived. Two kinds of fuzzy filters (i.e.(2, 2 _qk)((2, 2 _ qk))-fuzzy (implicative) filter) of L are introduced, which are generalizations of fuzzy (implicative) filters. Some characterizations for a soft set to be a (IF-)F-soft lattice implication algebra are provided. Analogously, this idea can be used in other types of filteristic lattice implication algebras (such as fantastic (positive implicative) filteristic soft lattice implication algebras).

Keywords: Soft set, (implicative) filteristic lattice implication algebras, fuzzy (implicative) filters, ((2, 2 _qk)) (2, 2 _ qk)-fuzzy(implicative) filters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
648 Comparison between Optimized Passive Vehicle Suspension System and Semi Active Fuzzy Logic Controlled Suspension System Regarding Ride and Handling

Authors: Mehrdad N. Khajavi, Vahid Abdollahi

Abstract:

The purpose of suspension system in automobiles is to improve the ride comfort and road handling. In this research the ride and handling performance of a specific automobile with passive suspension system is compared to a proposed fuzzy logic semi active suspension system designed for that automobile. The bodysuspension- wheel system is modeled as a two degree of freedom quarter car model. MATLAB/SIMULINK [1] was used for simulation and controller design. The fuzzy logic controller is based on two inputs namely suspension velocity and body velocity. The output of the fuzzy controller is the damping coefficient of the variable damper. The result shows improvement over passive suspension method.

Keywords: Suspension System, Ride Comfort, Fuzzy Logic Controller, Passive and Semi Active System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3589
647 Fuzzy Clustering Analysis in Real Estate Companies in China

Authors: Jianfeng Li, Feng Jin, Xiaoyu Yang

Abstract:

This paper applies fuzzy clustering algorithm in classifying real estate companies in China according to some general financial indexes, such as income per share, share accumulation fund, net profit margins, weighted net assets yield and shareholders' equity. By constructing and normalizing initial partition matrix, getting fuzzy similar matrix with Minkowski metric and gaining the transitive closure, the dynamic fuzzy clustering analysis for real estate companies is shown clearly that different clustered result change gradually with the threshold reducing, and then, it-s shown there is the similar relationship with the prices of those companies in stock market. In this way, it-s great valuable in contrasting the real estate companies- financial condition in order to grasp some good chances of investment, and so on.

Keywords: Fuzzy clustering algorithm, data mining, real estate company, financial analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
646 A Novel Method for Behavior Modeling in Uncertain Information Systems

Authors: Ali Haroonabadi, Mohammad Teshnehlab

Abstract:

None of the processing models in the software development has explained the software systems performance evaluation and modeling; likewise, there exist uncertainty in the information systems because of the natural essence of requirements, and this may cause other challenges in the processing of software development. By definition an extended version of UML (Fuzzy- UML), the functional requirements of the software defined uncertainly would be supported. In this study, the behavioral description of uncertain information systems by the aid of fuzzy-state diagram is crucial; moreover, the introduction of behavioral diagrams role in F-UML is investigated in software performance modeling process. To get the aim, a fuzzy sub-profile is used.

Keywords: Fuzzy System, Software Development Model, Software Performance Evaluation, UML

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497
645 Selecting Stealth Aircraft Using Determinate Fuzzy Preference Programming in Multiple Criteria Decision Making

Authors: C. Ardil

Abstract:

This paper investigates the application of the determinate fuzzy preference programming method for a more nuanced and comprehensive evaluation of stealth aircraft. Traditional methods often struggle to incorporate subjective factors and uncertainties inherent in complex systems like stealth aircraft. Determinate fuzzy preference programming addresses this limitation by leveraging the strengths of determinate fuzzy sets. The proposed novel multiple criteria decision-making algorithm integrates these concepts to consider aspects and criteria influencing aircraft performance. This approach aims to provide a more holistic assessment by enabling decision-makers to observe positive and negative outranking flows simultaneously. By demonstrating the validity and effectiveness of this approach through a practical example of selecting a stealth aircraft, this paper aims to establish the determinate fuzzy preference programming method as a valuable tool for informed decision-making in this critical domain.

Keywords: Determinate fuzzy set, stealth aircraft selection, distance function, decision making, uncertainty, preference programming. MCDM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145
644 Military Combat Aircraft Selection Using Trapezoidal Fuzzy Numbers with the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

Authors: C. Ardil

Abstract:

This article presents a new approach to uncertainty, vagueness, and imprecision analysis for ranking alternatives with fuzzy data for decision making using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). In the proposed approach, fuzzy decision information related to the aircraft selection problem is taken into account in ranking the alternatives and selecting the best one. The basic procedural step is to transform the fuzzy decision matrices into matrices of alternatives evaluated according to all decision criteria. A numerical example illustrates the proposed approach for the military combat aircraft selection problem.

Keywords: trapezoidal fuzzy numbers, multiple criteria decision making analysis, decision making, aircraft selection, MCDMA, fuzzy TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 472
643 On Tarski’s Type Theorems for L-Fuzzy Isotone and L-Fuzzy Relatively Isotone Maps on L-Complete Propelattices

Authors: František Včelař, Zuzana Pátíková

Abstract:

Recently a new type of very general relational structures, the so called (L-)complete propelattices, was introduced. These significantly generalize complete lattices and completely lattice L-ordered sets, because they do not assume the technically very strong property of transitivity. For these structures also the main part of the original Tarski’s fixed point theorem holds for (L-fuzzy) isotone maps, i.e., the part which concerns the existence of fixed points and the structure of their set. In this paper, fundamental properties of (L-)complete propelattices are recalled and the so called L-fuzzy relatively isotone maps are introduced. For these maps it is proved that they also have fixed points in L-complete propelattices, even if their set does not have to be of an awaited analogous structure of a complete propelattice.

Keywords: Fixed point, L-complete propelattice, L-fuzzy (relatively) isotone map, residuated lattice, transitivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1110
642 Fuzzy Rules Generation and Extraction from Support Vector Machine Based on Kernel Function Firing Signals

Authors: Prasan Pitiranggon, Nunthika Benjathepanun, Somsri Banditvilai, Veera Boonjing

Abstract:

Our study proposes an alternative method in building Fuzzy Rule-Based System (FRB) from Support Vector Machine (SVM). The first set of fuzzy IF-THEN rules is obtained through an equivalence of the SVM decision network and the zero-ordered Sugeno FRB type of the Adaptive Network Fuzzy Inference System (ANFIS). The second set of rules is generated by combining the first set based on strength of firing signals of support vectors using Gaussian kernel. The final set of rules is then obtained from the second set through input scatter partitioning. A distinctive advantage of our method is the guarantee that the number of final fuzzy IFTHEN rules is not more than the number of support vectors in the trained SVM. The final FRB system obtained is capable of performing classification with results comparable to its SVM counterpart, but it has an advantage over the black-boxed SVM in that it may reveal human comprehensible patterns.

Keywords: Fuzzy Rule Base, Rule Extraction, Rule Generation, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
641 Motion Recognition Based On Fuzzy WP Feature Extraction Approach

Authors: Keun-Chang Kwak

Abstract:

This paper is concerned with motion recognition based fuzzy WP(Wavelet Packet) feature extraction approach from Vicon physical data sets. For this purpose, we use an efficient fuzzy mutual-information-based WP transform for feature extraction. This method estimates the required mutual information using a novel approach based on fuzzy membership function. The physical action data set includes 10 normal and 10 aggressive physical actions that measure the human activity. The data have been collected from 10 subjects using the Vicon 3D tracker. The experiments consist of running, seating, and walking as physical activity motion among various activities. The experimental results revealed that the presented feature extraction approach showed good recognition performance.

Keywords: Motion recognition, fuzzy wavelet packet, Vicon physical data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
640 Research on Transformer Condition-based Maintenance System using the Method of Fuzzy Comprehensive Evaluation

Authors: Po-Chun Lin, Jyh-Cherng Gu

Abstract:

This study adopted previous fault patterns, results of detection analysis, historical records and data, and experts- experiences to establish fuzzy principles and estimate the failure probability index of components of a power transformer. Considering that actual parameters and limiting conditions of parameters may differ, this study used the standard data of IEC, IEEE, and CIGRE as condition parameters. According to the characteristics of each condition parameter, relative degradation was introduced to reflect the degree of influence of the factors on the transformer condition. The method of fuzzy mathematics was adopted to determine the subordinate function of the transformer condition. The calculation used the Matlab Fuzzy Tool Box to select the condition parameters of coil winding, iron core, bushing, OLTC, insulating oil and other auxiliary components and factors (e.g., load records, performance history, and maintenance records) of the transformer to establish the fuzzy principles. Examples were presented to support the rationality and effectiveness of the evaluation method of power transformer performance conditions, as based on fuzzy comprehensive evaluation.

Keywords: Fuzzy, relative degradation degree, condition-basedmaintenance, power transformer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2470
639 A New Method of Combined Classifier Design Based on Fuzzy Neural Network

Authors: Kexin Jia, Youxin Lu

Abstract:

To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a novel method of designing combined classifier based on fuzzy neural network (FNN) is presented in this paper. The method employs fuzzy neural network classifiers and interclass distance (ICD) to improve recognition reliability. Experimental results show that the proposed combined classifier has high recognition rate with large variation range of SNR (success rates are over 99.9% when SNR is not lower than 5dB).

Keywords: Modulation classification, combined classifier, fuzzy neural network, interclass distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224