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Existence and stability analysis of discrete-time
fuzzy BAM neural networks with delays and
impulses

Chao Wang and Yongkun Li

Abstract—In this paper, the discrete-time fuzzy BAM neural
network with delays and impulses is studied. Sufficient conditions are
obtained for the existence and global stability of a unique equilibrium
of this class of fuzzy BAM neural networks with Lipschitzian acti-
vation functions without assuming their boundedness, monotonicity
or differentiability and subjected to impulsive state displacements
at fixed instants of time. Some numerical examples are given to
demonstrate the effectiveness of the obtained results.

Keywords—Discrete-time fuzzy BAM neural networks; Impulses;
Global exponential stability; Global asymptotical stability; Equilib-
rium point.

I. INTRODUCTION

RTIFICIAL neural networks, a new method for various
A information processing, is now widely used in the fields
of pattern recognition, image processing, association, optimal
computation, and others. Such applications heavily depend on
the dynamical behaviors of the networks such as stability, con-
vergence, oscillatory properties, and so on. Neural networks
and their various generalizations have attracted the attention
of the scientific community due to their promising potential
for tasks of classification, associative memory, and parallel
computation and their ability to solve difficult optimization
problems. Such applications rely on the existence of equilib-
rium points and qualitative properties of the neural networks.
Recently, a class of two-layer heteroassociative networks
called bidirectional associative memory (BAM) networks [1-
5] with or without axonal signal transmission delays has been
proposed and used in many fields such as pattern recognition
and automatic control. Kosko [1-3], Li [6], [7], Cao [8],
studied the stability of BAM neural network with or without
delays.

However, besides delay effect, impulsive effect likewise
exists in neural networks [9]. For instance, in implementation
of electronic networks, the state of the networks is subject
to instantaneous perturbations and experiences abrupt change
at certain instants, which may be caused by switching phe-
nomenon, frequency change or other sudden noise, that is,
does exhibit impulsive effects. Therefore, it is necessary to
consider both impulsive effect and delay effect on neural
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networks, see [9-16] and the references therein. Though the
BAM non-impulsive systems have been well studied in theory
and in practice (for example see [17-19] and references cited
therein), the theory of impulsive differential equations is not
only being recognized to be richer than the corresponding
theory of differential equations, but also represents a more
natural framework for mathematical modeling of many real-
world phenomena, such as population dynamic and neural
networks. In [20], Li provided some sufficient conditions
for the existence and the global exponential stability of a
BAM networks with Lipschitzian activation functions without
assuming their boundedness, monotonicity and subjected to
impulsive state displacements at fixed instants of time. The
global asymptotic stability of delay bidirectional associative
memory neural networks with impulses are established by con-
structing suitable Lyapunov functional in [21]. More recently,
Lou and Cui [22] studied the global asymptotic stability of
delay BAM neural networks with impulses.

On the other hand, in mathematical modeling of real world
problems, we encounter some inconveniences besides impulses
and delays, namely, the complexity and the uncertainty or
vagueness. Vagueness is opposite to exactness and we argue
that it cannot be avoided in the human way of regarding the
world. Any attempt to explain an extensive detailed description
necessarily leads to using vague concepts since precise de-
scription contains abundant number of details. To understand
it, we must group them together-and this can hardly be done
precisely. A non-substitutable role is here played by natural
language. For the sake of taking vagueness into consideration,
fuzzy theory is viewed as a more suitable setting. Based on tra-
ditional CNNs, Yang and Yang [23] first introduced the fuzzy
cellular neural networks (FCNNs), which integrates fuzzy
logic into the structure of traditional CNNs and maintains local
connectedness among cells. Unlike previous CNNs, FCNN
is a very useful paradigm for image processing problems,
which has fuzzy logic between its template input and/or output
besides the sum of product operation. Studies have shown
that the FCNN is very useful paradigm for image processing
problems and some results on stability have been derived for
the FCNN, see [24-27].

As pointed out in [28-31], some implementations of the
continuous-time neural networks, it is essential to formulate
a BAM fuzzy discrete-time system that is an analogue of
the continuous-time system without fuzzy logic. Therefore,
it is both theoretical and practical importance to study the
dynamics of fuzzy BAM discrete-time neural networks. To the
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best of our knowledge, few authors have considered discrete-
time fuzzy cellular neural networks (DTFCNN) with variable
delays and impulses [32]. Motivated by the above discussion,
in this paper, by applying the similar mathematical analysis
techniques in [20], we investigate the following discrete-time
BAM fuzzy neural networks with impulses:

A.’Ei (TL) = — ale(n) + Z biju]' + Z aijfj (yj (n))
Jj=1 j=1

+ N i fiwi(n = 7i3))

j=1
S S
+ \V eiifilyi(n = 7)) + N\ Tijuy
j=1 Jj=1

S
+\/HijUj+Ci,n#nk7i:1’2’.”77«’

j=1
Azi(ng) =Ik(wi(ng)), n = ny,
iil,Q,...,T,k€Z+, (D)

Ayj(n) = —bjy;(n) + > mywi + Y djigi(zi(n))
=1 =1

+ /\ ajigi(wi(n — 0ji))

i=1
T T
+\ Bjigi(wi(n — o) + \ Tyivs
i=1 =1

+\/Hjﬂﬂrdj,n#nk,jzlﬂ,...,s,
=1
Ayj(ng) =Jx(yj(ni)), n = ng,
j=12...,8, keZ".

For integers a and b with @ < b, NJa,b] denotes the
discrete interval given by Nla,b] = {a,a + 1,...,b —
1,b}. C(Nla,b],R) denotes the set of all functions ¢
Nla,b] — R. In system (1), z;(n),y;(n) are the states of
the ith neuron from the neural field F'x and the jth neuron
from the neural field Fy at time m, respectively; f;,g;
denote the activation functions of the ¢th neuron from the
neural field F'x and the jth neuron from the neural field
Fy, respectively; 7;;,0,; are the transmission delays which
are non-negative constants satisfying 7;; € N[0, +00), 0j; €
NJ[0,400), b;j,mj; are elements of feed-forward template,
ai;,d;; are elements of feed-back template, c;j;, v;; are ele-
ments of fuzzy feedback MIN template, e;;, 3;; are elements
of fuzzy feedback MAX template, T;; and H;; are elements
of fuzzy feed-forward MIN template and fuzzy feed-forward
MAX template, respectively; \/ and /\ denote the fuzzy
AND and fuzzy OR operation, respectively; ¢;,v; and d;, u;
denote external inputs and biases of the ¢th neuron from the
neural field F'x and the jth neuron from the neural field
Fy, respectively; Ax;(n) = z;(n + 1) — z;(n), Ay;(n) =
yi(n +1) = y;(n), ai, b € (0,1); Azi(ng) = zi(nk +1) —
zi(nk), Ayj(ni) = yj(n + 1) — y;(ne), {ru} is a sequence
real numbers such that 0 < ny < no < --- < My — o0 as
I — oo
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The system (1) is supplemented with the initial values given
by

.Z’z(f) :Sﬁi(f)7€ GN[_O”OLJZ ma.

Y () = ¢;(€),€ € N[-7,0],7 =

{ojit},
{7z},

IR

max
1<i<r,1<j<s

where p; € C(N[—0,0],R),9; € C(N[—1,0],R).

Throughout this paper, we assume that:

(H1) a;, b; € (0,1), aij, dji, cij, €ij, iy Bji, i, dy are
constants, 7;;, 0;; € N[0,4+00),i=1,2,...,r, j =
1,2,...,s.
fi, 90 € C(R,R) and there exists positive number
L; , LY such that

(Hz)

fi(@) — f)| < L|z —y]
and
lgi(x) — gi(y)| < L]z —y|

forallt=1,2,...,r, 7=1,2,...,s.

II. PRELIMINARIES

In this section, we shall first recall some definitions, basic
lemmas which are useful in our proofs.

Definition 1. The equilibrium point z* = (z3,..., 25,95, ...,
y) T of system (1) is said to be globally exponentially stable,
if there exist constants \ > 0 and § > 0 such that

* 6 * *
lem) = 2°1l < s (le = "l + 11 — 1),

where z(n) = (x1(n),...,z.(n),y1(n),...,ys(n))T is any
solution of system (1) with initial value ¢(§) = (p1(£),. ..,
(p"'(g)vwl(g)a e 7w8(€>)T and

lo—stl= _sw {3 et -al}

§EN[-0,0] L7

s-vl= s {3 e -},

I =yl= e ;I ) - ;|
Lemma 1. ([23]). Let v = (z1,29,...,2,)T and = =

(2, @, ..., 2,)T be two states of system (1), then we have

N iifit@i) = N\ ciidil@))| <D lassllfi(ws) = fi(w)
j=1 =1 3=l

and

\/ Biifi(ay) =\ Biadi(a))| <3 18illfi () — fi()).
j=1 j=1 j=1
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III. EXISTENCE AND UNIQUENESS OF EQUILIBRIA

In this section, we will derive sufficient conditions for the
existence of equilibria on the coefficients and the activation
functions in (1). An equilibrium solution of (1) is a constant
vector (x5, 25, ..., 25, y5,vs, ..., yF) € R™™* which satisfies
the system

S S
aix; = > aifi(y;) + A ciifi(yy)

j=1 j=1

+ V eijfj(y;-‘) + Qi,i = 172,. ey Ty

L=t ()
bjy; = Z ngl( 7+ /\ ajigi(x})

i=1
i=1

where o; = Z biju; + /\

Zmﬂvﬂr /\ jivi + V

1 2 , T when the 1mpu151ve jumps I (- ) Ji(+) as assumed
to satlsfy Ip(zf) = 0, Jk(y;) = 0,7 = 1,2,...,r,j =
1,2,...,s, k € ZT, where ZT denotes the set of all positive
integers. In what follows, we use the following norm of R”*%:

uJ+\/ U + e, b0 =

j=
jivi +dj, 7 =1,2,...,8,1 =

r+s

ol = > Jarf, for
=1

Theorem 1. Suppose that (Hs)

T c Rr-ks.

z = (217223 <. '7ZT'+S)

S

ai > L¢3 (gl + lagil + 1Bl) i = 12,1,

j=1

.
bj > L1 “(laij| + il + lei]), 5= 1,2, s.

i=1
Then there exists a unique solution of the system (2).

Proof: Tt follows from (Hj) that

Lz
i, (5] 2l + ol +leu) <1
and
9 S
127 (az Zl(|dji| + lagi| + |ﬂjz‘|)) <1
=
Define 6 as

f r
0 = max{ mjafg (bj ;(Iaiﬂ + |eij| + |€ij)>»
max ( Z_: |djil + |evjil + |5ji)> }
r:u’?’ bjy; :U;.(7Z.: 172,...

Let a;x ,rg=12...,s
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in (2), then we get

s v¥ s v¥
ui = Y aijf; <J> + A ciif; (;)
1 =1

=1
i A u;

U; = Z d]zQz( ) + /\ aini()
43 i=1 a;
+Vﬁﬂgz< >+9],J—12

To finish the proof, it suffices to show that (3) has a unique
solution. Consider a mapping ® : R"™* — R" "¢ defined by

3)

D(ug,. .., ., Us)

Seusl)« foss(3)

Up, V1, - -

\/ Blez(
i\:/l 69291 (%) + 93

We show that ® : R™™* — R is a global contraction
on R"*¢ endowed with the norm || - ||. In fact, for u =

(uilw"»ui?“vﬁv"'vvis)Ta u = (ul,...,ur,vl,...,vS)T €
R"*%, one has
[ () — @(u)]|
= ||@(m, ui’hﬂa"'avis) _q)(u1>-"7u7‘avl7-":vs)”
v (O
S b))
J
i=1"j5=1
N v N (]
s ®) Ao
j=1 j=1
s 7 s Vs
1Y QJfﬂ(bj ) ; %ff(bjﬂi
Jj=1 7j=1
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S

<X [ S laslt]
i=1 bt j=1
i(5)-5(3)

+> leij]

=1

+> e fa(?) fy<zj>H
j=1 J J

’Uj — ’Uj
bj

equilibrium (z7, 23, ...
~,y5)T € RSBy (4), we have I (z}) = 0, Ji(v}) =

S

)
[u w3 (e + eimLf] <s.
Jj=1 i=1

Then it is also a equilibrium solution of system (1) and it is
globally asymptotically stable.

Proof: According to Theorem 1, system (2) has a unique
T YTy Yo,

+y [ZWL? Wi — Ui 0,i = 1,2,...,r,j = 1,2,...,s,k € ZT. Hence
= Lim @i (%, 2% y8, ..., y5)T € R™* is also the unique equilib-
r _ rium point of (1). Let (z1(n),...,z(n),y1(n),...,ys(n))T

Ui Uq . .
+Z s g,() - gl<>‘ be an arbitrary solution of (1) and take u;(n) = z;(n) —
i=1 @i @i zf,n > —o,n;(n) = y;j(n) —y;, n > —7, then it follows

+>185il
=1

(&) ()]

T S R
T — v
<3S sl + leis| + lesg ) LT | = 0 .
i=1 j=1 i)
G U; — U;
+ 30 (djil + lagil + 185i) LY la_ -
j=1i=1 v
Lf r s
< (52 Slasl+ lel +les) | S o5 -
VAR . ,7
=1 Jj=1
Lg S T
s (5500 + sl 19500 ) | 3 s =
SIST a; < X
j=1 i=1
S T
< e<z|vj_vj|+2|m—m|>
j=1 i=1
< b||w — ul|.

By our hypothesis § < 1 which implies that ® : R™+* — R"+*
is a contraction on R"**. Hence by the contraction mapping
principle, there exists a unique fixed point of the map @ :
R+ — R™*¢ which is a solution of system (3) from which
the existence of a unique solution of (2) will follow. The proof
is complete. ]

IV. STABILITY OF EQUILIBRIA OF FUZZY BAM NEURAL
NETWORKS WITH IMPULSES

In this section, we derive sufficient conditions for the
stability of equilibria of (1).

Theorem 2. Assume that (Hy) — (H3) hold. Futhermore,
suppose that the impulsive operator It (z;(n)) and Ji(y;(n))

satisfy
{Ik(xi(m

—Yire(zi(ng) —x*),i=1,2,...,r, k € ZT,
_W(yj(nk) - y;)aj = 1727' s 5 ke Z+7
4

L,y € RS is the unique

) =

Jj(y; (k) =

where (x5,x5, ..., 25,97, u5,. ..

solution of the system (2), and
(Hy) for ke ZT,

r

> [u ol 3 (ol + wﬁ)Lf} <

i=1 j=1
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By0<ai,bj<1,i=1,2,...

from (1) that

S

Api(n) = = agpi(n) + Y aig(f5(y;(n)) = fi(y))

j=1

+ ( N e fily(n=7i5)) = N\ Cz‘jfj(?ﬁ))
j=1 j=1

+ < V eifily(n—75)) = \/ eijfj(y}-‘)>,
j=1 j=1

n#Eng, i=1,2,...,7

Api(ng) =I(pi(ne)) = —virpi(ne),
n=ng i=12,...,r, ke€Z",

. (%)
Anj(n) = —bm;(n) + Y dji(gi(wi(n) — gi(x7))
i=1

+ (/\l ajigi(wi(n — 0j:)) — i/r\lajigi(x:))

+ (Vs =03 = V e,
=1 =1
n#nk’j:1727""87
Anj(ng) =Jx(n;(nk)) = —T5an; (nr),
n=ng, j=12,...,5, k€ Z".

.7, j=1,2,...,s, we obtain

il + D] < (1= ai)lps(m)| + Y lais||£5(y; (n) = f(y;)]

j=1
+ N cifilyi(n— 7)) = )\ i f5(w})
j=1 Jj=1
+ \/ eijfj(yj(n — Tij)) - \/ ezyf](y;k)
j=1 Jj=1
< (1= ay)lpa(n)| + > lai; L |y;(n) — v}
j=1

S
+ 3 lei [ LYy (n = i) — ;|
j=1

S
+> e L ly;(n = 735) — y;

Jj=1
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= (L= ap)lpa(m)| + Y _ lai | L] n;(n)]

Jj=1

+ (leijl + leig)) L Inj (n = 735)]-

Jj=1

Thus,

Alpi(n)] < —ailma(n)| + > lag | LY n;(n)]

j=1

+> (il + leig) L Ins(n — 7)1
j=1
n>0n#ng i=1,2...,7

And similarly, we have

Alnj ()] < =bjln; ()] + 3 Jdge| L i (n)|
1=1
+3 " (agal + 185D L ma(n — 54),
=1
n>0n#ng, j=12,...,s.

Define Lyapunov function V' (n) as follows:

r

Vi) = 3 |l + 3 (sl + e

x_L;‘(l_ii: (01) |

#32 |Iml + Xl + 15,

< 5 ) |

l:nfoji

It is easy to check that V(n) > 0 for n > 0 and V(0)
is positive and finite. Calculating the defference of V' along
solutions of system (5), we obtain

IN

AV (n)
> Al + Y es + les) 2 (o)

~n =) +§ i)

+ 3ol 19D 22 o) = b = 50|

r

> | - st + Sl + sl + less D] o

i=1 =1

30 | = ]+ 3 + il + 135D o)
j=1 i=1

S| =t ol + sl + 165422 o)

i=1 j=1
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|

3 [— by 5 (] + lesg| + lesg DL | Ins (),
j=1 i=1
by (Hs), we have

S
ai > LY (Idj| + legil + 185il), i = 1,2,
j=1

I
by > LIS (lag| + leis| + leigl), 5 = 1,2, s,
=1

it follows that
AV (n) <0, forn > 0, n # ng.
Also, from (5) and (H,), we get

Alpi(np)| = (11 =ikl = Dpa(ne),
i=1,2,...,m, k€ ZT,
Aln;(ne)l = (11 =75kl = Dln; ()|,
J=1,2... s kezt

and
AV(nk)
> [Ammkn 3 (ess |+ less D] (s )|

gt = 7)) +Z A0

+Z(|aji| + 1853 ) LY (Is (e )| — |pi(ne — 053)|)
> [(ll =il = Dl

=1

IN

3 (e + less I |m<nk>}

Jj=1

> [(ll =5l = Dl ()|

3 (ol + @A)Lfmi(nw}

= 3 [0 = 10+ Sl + 185022 )

+ 3 [0 51 = 1+ S + e s )
< 0.]:1 -
Hence, we have
AV (n) <0, forn > 0.

It follows that the origin of (5) is global asympo-
totically stable, which implies that equilibrium solution
(@3, ... x5yt ..., y5) € R of system (1) is globally
asymptotically stable. The proof is complete. |
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Theorem 3. Assume that (Hy) — (Hs) hold. Furthermore,
suppose that the impulsive operators Ij(x;(n)) and Jy(y;(n)
satisfy
In(zi(ne)) = —var(zi(ne) — 7), ai < vir <2 — ay,
i=1,2,....r, ke Zt,
Ji(yj(ne)) = —7ix(y;(ne) — y3), by < Wk < 2 = by,
j=1,2,....8 ke Zt.
(6)

Then system (1) has a unique equilibrium point (z73, ..., z},
vt y)T € RS, which is globally exponentially stable
in the sense that there exit constant A > 0 and 6 > 0 such
that

”

P OEFAES ORI

i=1

s

i=1°%

S
sup |ai(s) — x|+ Y sup y;(s) = ujl|-
€[—0o,0] =1 s€[—7,0]

Proof: According to Theorem 1, system (2) has a
unique solution (z%,...,z%95,...,y5)T € R™s. By (6),
we have [(z}) = 0, Ji(y;) = 0,7 = 1,2,...,r,j =
1,2,...,s k € Z*. Hence, (z%,...,2%,y5,...,y5)T ¢ R"F*
is also the unique equilibrium point of system (1). Let
(x1(n),...,2.(n),y1(n),...,ys(n))T be an arbitrary solution
of (1), then it follows from (1) and 0 < a;, b; < 1,47 =
1,2,...,7,j=1,2,...,s that

|zi(n+1) - zf|

< (L= a)lzi(n) — @[+ Y lay|L]]y;(n) — y;]

j=1
S
+ (el + leis VL y; (n = 7i) = v,
j=1
n>0n#ngi=12...,7 @)

lyj(n+1) — yj|

< (L=bj)lyj(n) —yj| + Z |dji| L] |zi(n) — ]|

=1
T

+> (logil + 18il) L |zi(n — 03) — 7],
i1

n>0n#ngj=12...,s. ®)

From (Hs3), there exist constants p;, & > 0 such that

j=1

bi& — LI pillai] + leij| + leis)) > 0, 5=1,2,...,5.
i=1
Now, we consider the functions <7 (-), %;(-) defined by
lJrO'ji
Ai(0;) = pi—pi(1=a)0; =L > &(|djal sl +85:)6; 7,

j=1

B5(61) = &8 (1-b)¢=L3 3 pillagl e [+lew DG

i=1
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respectively, where 0;, (; € [1,400),i =
1,2,...,s. It is clear that

1,2,...,r,j =

(1) = aipi — LI Y &(|djil + il + 185:1) > 0,

Jj=1

B;(1) = b;&; — LI pillais| + [eij] + lei]) > 0.
i=1

Since <7 (-), 4;(-) are continuous on [1,+c0) and <% (6;) —
—o0, %;(¢;) — —oo as 0; — 400, (; — o0, there exist
07, ¢; € (1,400) such that <7 (07) = 0, %;(¢;) = 0 and
,Q{Z(el) > 0, @](CJ) > 0 for 6; € (1,97)7 (:j S (1,@7),
respectively.

By choosing A = min{67,65, ..
obtain A > 1 and

i (N) = pi — A1 — a;)p;
—L2 Y& (Idjil + lag| + 85 )AL

=1
>0,i=12...,r

':9:74174-27”'74:}’ we

Bi(A) = & — M1 —bj)§;

—LI " pillais] + leis| + e DA
S0 19 s
Now define
wi(n) = A"z;(n) — i, n € N[—o,+00),i=1,2,...,r,
{nj(n) = A"y;(n) —yjl, n € N[-7,+00), 1 =1,2,...,s.

Using (7),(8),(9), we derive that

wiln+1) < A1 —a;)pi(n) + ‘21 AT aij|L§c77j(n)
=

S
+ Zl AT (Jegg| =+ les ) LI (n = 737),
i=

nj(n+1) < A1 = bj)n;(n) + Zl A3 dji | LY i ()

+> AFaii(

1=

i + |85 ) L pi(n — 0i),

(10)
where n > 0,n # ng, k € ZV,i = 1,2,...,r,j =
1,2,...,s. Also,

Api(ng) = (A1 = yikl = Dpi(nk), n € N[=0,+00),

i=1,2,....1,
Anj(ng) = (M1 =75k — Dnj(ng), n € N[~7,+00),
i=1,2,...,s.

Define the Lyapunov function by

r

Vin) =) [pi”i(n) +PiZ’\1+T”(|Cij| + leil)

i=1

s £ o)

r

2> [‘Sﬂ”ﬂ‘(") +& D AT
j=1

i=1

aji| +18;il)
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n—1

< X w0

l:nfaji

and we note that V(n) > 0, for n > 0 and V(0) is positive

Vol:5,No:7, 2011

Also, from a; < v, <2 —a;, by < 75 <2 - by, we get
Ai = pi(1 = A1 — ikl
LY e

an

dji| + |agi| + |Bjil)

and finite. Calculating the difference of V' along solutions of =

system (10), we obtain
AV( )

Z {pzuz n+1) — pipi(n)

+p¢ZA1+m leijl + leig ) LE (0 (n) — nj(n

j=1

+ Z |:£j7]j(7l +1) = &n;(n)

Z AT

Z |:Pz(/\(1 az) — 1)Mi(n) + pi Z AL

i=1 j=1

IN

S

+pi > AT (o] + lei ) L (n — 7ij)

=1
+i ANV (e | + leis )L mj(n)
j=1
—pi YN (Jeig| + leis VL (n — 7ij)
j 1
Z { —1)n;(n)
+& Z A dji | L i ()
i=1
+65 > AT (|agi| + 185 ) L pi(n — 05:)
=1
+&5 > AT (il + 1833 LY ()
i=1
=& > AN (Jagi| + 185il) LY pi(n — 04)
i=1
=Y {)\(1 —a)pi+ Y &(1djil + layil
i=1 =1

Bl )AL — Pz} pi(n)

+Z {/\(1 b;)&; + sz |asj| + [eij]

j=1

ey DAoL fj]nj(n)

- Z (N pi(n) — Z B;(Mn;(n)

0, for n > 0, n # ny.

IN
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Tz’j))}

(ol + 18541) L2 s (m) — pra(m — aﬁ,))}

2 pill = A1 = a;)]
—LY Y GAT
j=1
i=1,2,...,m

dji| + lagi| + [Bjil) > 0,

;= &1 =M1 —75%])
~LEST pA T (Jag | + feig| + ley])

> &1 = A(1 = by)]

s
—LE ST oA (Jags | + leig] + les]) > 0,

=1
1=1,2,... s.
ai;|LIn;(n)
Then
AV(nk)
=> [Piﬂi(nk +1) = pipi(n)
=1
o SN (Jeig| + e )L (s (i) — s (i — nm]

j 1

Z [@m(nk 1) - &)

+§ AHU”(

1=

il + 1853 L2 (a(r) — pra( — aﬂ»}

<3 L = 3] = o)
o 3N (e + ez-jl)Lfm(nk)}
j=1
S [&jwl ] = Uy ()
& SN (Jagi] + wﬂ)Lm(nw}
=1
<y [pmu il = 1)+ S A (] + [l
i=1 j=1
+|ﬂﬂ|>Lf} pilng) + [wl - )
=1
+ ZP AT (lass| + leis| + les;]) L }77] n)
=1
= = Mipi(ng) = Y Tymy(ng)
i=1 =1
< 0.
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By (ll), we have V. SOME NUMERICAL EXAMPLES
r 5 Example 1. In system (1), let f1(z) = fa(z) = q1(z) =
D pii(n) + D &mi(n) < V(n) < V(0) g2(x) = @, LY = LT = 1,05:,7; € (0,400),i = 1,2, j =
i= = 1,2; a1 = 0.9,as = 0.91,b; = 0.83,by = 0.82,¢; =
and combining with (9), we obtain —0.91, c2 = 0.13, d1 = —0.64, d2 = 0.23,
r ai; a2\ 0.14 0.15 Ci1 C12\ 0.11 0.12
> lzi(n) — 2 |+Z|y3(n a1 azs)  \0.16 0.11) "\ ey 2o/ — \0.130.14)°
=1
1 r <611 612) _ <012 009> (d11 d12> _ <012 013>
- TZ {pim(o) - z}| —|—piZ)\1+7‘U(|Cij| + leijl) €21 €2 0.11 0.12) " \da1 da2 0.15 0.16 ) °
=t B =t <a11 a12) B <0.16 0.13) (ﬁn m) B (0.14 0.13>
fo( Z s (D) —yj|>} Q21 Q92 0.14 0.15) > \ Bo1 Bao 0.12 0.13

l=—74; (mll TTL12> _ (011 0.13 T11 T12 o 11

1 S y r o mo1 Moo - 0.12 0.15)° T21 T22 - 01)’

w2 [’%iyj(m — ¥ 1+ & 2 AT (il + 1Bal)
=1 i—1 Hyy Hip\ (11 ur) _ (1
-1 H21 HQQ “\01)” (5] A\l

g . _ p*

XLi( > lwilD) x')} <v1) B <1> <611 b12) B (0.12 0.09)
- 1 9 - 9

e v bor baa) — \0.13 0.14
1 o
= Z {pzlwz(O) —a; IJrZEJAl+ (ol + 1854l Yk = 14 012sin(1 + k?),925 = 1+ 0.11sink? Jix =
1+ 0.12cosk?, 525 = 1+ 0.13cos(1 + k2), Ix(z1(nk)) =
L9 - —yk(@1(ne) — 4.0956), Ip(z2(nk)) = —yer(w2(ne) —
(2 bl 41812), Je(yr (1)) = —707 (3 (ne) ~.5204), T (o i) =
I==0ji —or (y2(ng) — 4.7564). Obviously, (H1),(Hs) is satisfied.
1< . : . From above, it is easy for us to calculate that
Ty 2 [fjlij) —y D0 A ey + les]) i
j=1 i=1
1 ar =0.9> L9 (il + ezl + |B5]) = 0.83,
<t (X - 51)] =
l=—7;j 2
r s by =083 > LI > (lag| + |eij| + les]) = 0.77
K . 1 1) 1] J )
< {1 + D AT (o] + ﬂjil)LfUﬁ} i1
i=1 j=1 2
x sup |z;i(l) —x; —0. g y y 1) = 0.
Sup D) — ] az = 0.91 > L2;<|dﬂ| + lagal +181) = 0.83,
K S T
S [ oA el + e D 2
A j=1 i=1 by = 0.82 > L Z(|aij| + |ciz| + |esj]) = 0.73,
x sup y;(1) -y =
le[—r,0] 2 2
kS [ — . 1 — yir| + asi| + 1B Lf}<1.33<2:r,
< (X sw o) —x|+Z . -1 Z[' [+ 2ol + 16D
A i—1 L€[~0,0] le[—r,0 g J
N 2 2
where (P, &) Z [|1_yjk|+2(|cij|+|eij|)Lﬂ <119<2=s.
o — 1<7,<7‘ 1<]< j=1 i=1
1S7j§n7-1711rl§j§5{pi7 &Y Hence, (Hs),(H4) are also satisfied, then according to

Theorem 2, system (1) has a unique equilibrium point
(4.0956,4.1812,4.5204,4.7564) which is globally asymptot-
il + |5ji)Liji}, ically stable.

= 1 Al
¢ = max { max { + z; (
J:

. Example 2. In system (1), let fi(x) = fo(z) = g1(x) =
max {1 +Z>\1+T”(|Cij| + |eij|)L£Tij}}. 92(z) = a, L] = L; = 1,04,7i5 € (0,+00),i = 1,2, j =
1<j<s im1 L2a = 04,00 = 05 b = 03,by = 05,1 =

From above and Definition 1, we conclude that the equilibrium —1.34, ¢2 = —0.53, dy = —1.63, da = —0.75,

point (z3,...,z5y5,...,y5)T € R™S of system (1) is ai; a2\ _ (0.05 0.03 c11 ci2) _ (0.01 0.03
globally exponentially stable. The proof is complete. ] as aszy ) \0.02 0.04 c21 C22)  \0.03 0.02
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€11 €12 _ 0.03 0.01 d11 d12 _ 0.01 0.03
€91 €22 - 0.02 0.01 ’ d21 d22 - 0.02 0.01 ’
11 (19 o 0‘04 0.02 11 /612 o 0.01 0.03
21 (V99 - 0.01 0.01 )"’ 21 ﬁgg - 0.02 0.04)°
myp mi2) _ (0.11 0.12 T T2 (11
mo1 122 o 0.13 0.12 )’ T21 T22 o 01/’
Huy Hip\ _ (11 ur) _ (1
H21 H22 o 01 ’ u9 o 1)’
v\ 1 b11 blg o 0.13 0.11
Vo o 1/’ b21 b22 o 0.12 0.11 )’
Aip = 0.43¢77 o = 0.53¢F , 717 = 0.32¢ 7757,
ok = 0.53¢ 7, I (w1(n)) = —yax (w1 (ng) — 2.9295),
I (xz2(ng)) = —var(x2(ng) — 1.7678),

Je(y1(nk)) = =1k (y1 (ng) — 2.5691),

Ji(y2(ng)) = =7 (y2(ng) — 1.3526).

Obviously, (Hy), (Hz) is satisfied. From above, it is easy for
us to calculate that

2
a1 =04>L{ » (|dji| +|aji| + |B5]) = 0.11,
j=1
2
by =0.5> LIy " (lai;| + |eij| + lei;|) = 0.14,
i=1

2
az = 03> L§ > (|djs| + |azi| +[85]) = 0.15,

—

<

2
b2 =0.5> L£ Z(|aw| + ‘Cij| + |eij‘) = 0.14,

=1

1

a1 =0.4<0.43 <0.43ex? <2—a; =1.6,
as = 0.5 < 0.53 < 0.53e* < 2 —ay = 1.5,

b= 0.3 < 0.32 < 0.32e777 <2 — b = 1.7,
by = 0.5 < 0.53 < 0.53e™7 < 2 — by = 1.5.

Hence, all the conditions in Theorem 3 are satisfied, then
according to Theorem 3, system (1) has a unique equilibrium
point (2.9295,1.7678,2.5691, 1,3526) which is globally ex-
ponentially stable.
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