
 

 

  
Abstract—An additive fuzzy system comprising m  rules with 

n  inputs and p  outputs in each rule has at least ( )122 ++ pnm  
parameters needing to be tuned. The system consists of a large 
number of if-then fuzzy rules and takes a long time to tune its 
parameters especially in the case of a large amount of training data 
samples. In this paper, a new learning strategy is investigated to cope 
with this obstacle. Parameters that tend toward constant values at the 
learning process are initially fixed and they are not tuned till the end 
of the learning time. Experiments based on applications of the 
additive fuzzy system in function approximation demonstrate that the 
proposed approach reduces the learning time and hence improves 
convergence speed considerably. 
 

Keywords—Additive fuzzy system, improving convergence, 
parameter learning process, unsupervised learning.  

I. THE ADDITIVE FUZZY SYSTEM AND İTS PARAMETERS 
HE additive fuzzy system or the so-called Standard 
Additive Model (SAM) is a particular type of fuzzy 

systems proposed by Kosko [1, 3, 5, 6].  

A fuzzy system F : pRnR → stores m  if-then rules and 
can uniformly approximate continuous and bounded 
measurable functions in the compact domain [2]. This 
approximation theorem allows any choice of if-part fuzzy sets 

nRjA ⊂ . It also allows any choice of the then-part fuzzy 

sets pRjB ⊂  because the system uses only the centroid jc  

and volume jV  of jB  to compute the output ( )xF  from the 

vector input nRx ∈ . 
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Fig. 1 (a) A parallel structure of SAM. Each input fires each fuzzy 
rule to some degree to compute F(x) (b) Fuzzy rules define patches in 

the input-output space 
 

The fuzzy system F : pRnR →  covers the graph of an 
approximand f  with m  fuzzy rule patches of the form 

pRnRjBjA ×⊂×  or “If jAX =  then jBY = ”. If-part set 

nRjA ⊂  has joint set function ja : [ ]1,0→nR  that 

factors: )n(xn
j)...a(xja(x)ja 1

1= . Then-part fuzzy set 
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pRjB ⊂  has set function jb : [ ]10,pR →  and volume (or 

area in this case 1=p ) jV  and centroid jc . The convex 

weights: 

( )
( )

( )∑
=

= m

k kVxkajw

jVxjajw
xjp

1

        (2) 

give the SAM output ( )xF  as a convex sum of then-part set 
centroids. 
 

Fig. 1 shows the parallel structure of the additive systems 
and its state-space graph cover. The graph cover leads to an 
exponential rule explosion. [11, 12] proposed using metrical 
joint unfactorable fuzzy sets based on metric and matrix 
knowledge to partly overcome this drawback. A fuzzy system 

needs on the order of 1++ pnk  rules to approximate a 

function f : pRnR →  in a compact domain. Optimal rules 
cover extrema and can help allocate a spare-rule budget in 
high dimensions [4]. Learning tends to move the rule patches 
toward the extrema or “bumps” and fill in with rule patches 
between bumps. Supervised learning tunes the parameters of 
the if-part set functions and also tunes the then-part volumes 
and centroids. 

The choice of fuzzy set functions [7] affects how well fuzzy 
systems approximate functions. The most common fuzzy sets 
are triangles, trapezoids and Gaussian bell curves. The sinc set 

function ( )
x

xsin  that gave the best and fastest function 

approximation in most cases [10] is chosen for experiments in 
this research. The jth sinc set function (Fig. 2) centered at jm  

and width 0>jd  is defined as 
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Fig. 2 Sinc set function in 1-D case (a) with centre m = 0 and width d 
= 0.4 and in 2-D case (b) with centres m1 = m2 = 0 and widths d1 = 

0.8 and d2 = 0.4 
 
In each if-then fuzzy rule, there are the following 

parameters: the weight of the rule ( jw ), the volume ( jV ) and 

centroid ( jc ) of the then-part, and the parameters of if-part 

set function. Depending on the shape of fuzzy sets chosen, the 
number of parameters of the if-part set functions is different. 
For instance, the triangle set function has three parameters 
(left, centre and right), the trapezoid set function has four 
parameters (left, left-centre, right-centre, right) or the general 
bell curves have two parameters (mean and variance). A sinc 
function (Equation 3.) has two parameters: centre jm  and 

width jd . So, an additive fuzzy system storing m  if-then 

rules with n  inputs and p  outputs has at least of the order of 

( )122 ++ pnm  parameters needing to be tuned during a 
supervised learning process.  

II. SUPERVISED LEARNING OF FUZZY RULES 
Fuzzy rule parameters are tuned by the supervised learning 

process [3, 8, 9]. The supervised gradient descent can tune all 
the parameters in the SAM model. We seek to minimize the 
squared error 

( ) ( ) ( )
1 2

2
f x F xE x ⎡ ⎤−⎣ ⎦=         (4) 

of the function approximation. The vector function f : 

pRnR →  has components ( ) ( ) ( )( )Txpfxfxf ,...,1=  and so 

does the vector function F . Let k
jξ  denote the kth parameter 

in the set function ja . Then the chain rule gives the gradient 

of the error function with respect to k
jξ , with respect to the 

then-part set centroid ( )Tp
j...,c,i

jcjc = , and with respect to the 

then-part set volume jV . 
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A gradient descent learning law for a SAM parameter ξ  
has the form: 

ξ

E
tμξ(t))ξ(t

∂

∂
−=+1          (5) 

where tμ  is the learning rate at iteration t . 
Details of learning laws for parameters of an additive fuzzy 

systems are as the following equations where 

( ) ( ) ( )xFxf
F

E
xε −=

∂

∂
−=  

 Rule weights: 

[ ]
jw

(x)jp
F(x)jcε(x)tμ(t)jw)(tjw −+=+1           (6) 

 
 Centroids of then-parts: 

(x)jε(x)ptμ(t)jc)(tjc +=+ 1              (7) 

 
 Volumes of then-parts: 

[ ]
jV

(x)jp
F(x)jcε(x)tμ(t)jV)(tjV −+=+1            (8) 

 
Where the sinc set function is used, learning laws for its 

parameters are: 
 Centres of if-parts: 
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 Widths of if-parts: 
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It is easy to realize that a large computational demand needs 
to be overcome during supervised learning process of fuzzy 
systems. Therefore, a new scheme rather than conventional 
approaches for this time-consuming task needs to be 
investigated. 

III. NEW SUPERVISED LEARNING STRATEGY 
The new supervised learning strategy is built via the 

following series of expressions. 

∑ =
Δ=Δ

k

i ier 1, ξ             (11) 

where k is the number of parameters of the rth rule and iξΔ  is 
the change of the ith parameter of the rth rule at the eth epoch. 
So, er ,Δ  is the sum of changes of parameters of the rth rule at 

the eth epoch. One epoch of learning means all training data 
samples are passed through the system once to tune its 
parameters. 

∑ =
Δ=Δ

E

e err 1 ,         (12) 

where rΔ  is the sum of parameters’ changes of the rth rule 

after E  epochs. 

∑ =
Δ=Δ

m

r r1
            (13) 

where m  is the number of rules in the system and Δ  is the 
sum of parameters’ changes of all rules after E  epochs. 

From Equations (11), (12) and (13), we arrive at: 

∑ ∑ ∑= = =
Δ=Δ

m

r

E

e

k

i i1 1 1
ξ       (14) 

To define an appropriate threshold to determine whether the 
rule is updated much slower that the remainder, we defined 

the average m
Δ  

Establishing the expression m
Δ  approximately implies that 

there will be half of the system rules having changes after E 
epochs more than this threshold, and the remaining half has 
the changes below this threshold. 

If the rth rule has the sum of changes of its parameters after 
E epochs satisfying the following inequality, that rule will be 
initially fixed and not be further trained until late in the 
learning time. 

m
E

e err
Δ

≤Δ=Δ ∑ =
η

1 ,         (10) 

where η  is a constant. 
The constant η  plays an important role in determining the 

percentage of rules will be fixed whenever checking is carried 
out after each E-epoch. For instance, 20.η =  means there will 
be approximately 10% (equal to 0.2*50%) of rules of the 
current system will be fixed after each E-epoch.  

IV. EXPERIMENTAL EVALUATIONS 
In order to evaluate the proposed learning strategy, we 

apply the additive fuzzy system for function approximation. 
The experiments are performed on the variety of function 
types: 1-D (Dimension), 2-D and 3-D with the sinc set 
function and the results are assessed in terms of the mean 
squared error (MSE) of the function approximation and the 
convergence time for a fixed learning rate. Below are three 
sample test functions used as approximands. The variables x, 
y, z are all investigated in [-1, 1]. 
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In the 1-D case, 731 points of the function are sampled to 

give the training set while this number for the 2-D case is 
2715 samples and for the 3-D case is 8120 samples. The 
samples are collected by spreading points uniformly in the 
input space with the number much more than wanted and then 
randomly selecting with the probability equal to wanted 
number/spread number. 

The learning rates were small (Table I, II, III) because each 
learning law is highly nonlinear. Otherwise learning might not 
have converged [12]. These rates were set up at the same 
value for both types of experiments: conventional and new 
strategies in order to appraise performances. The learning 

rates used range from 610−=μ  to 410− . 
 

TABLE I 
SIMULATION WITH  f(x) – 1-D CASE SP MEANS SUPERVISED LEARNING 

Number of rules 201 
Training samples 731 
MSE before SP 2.867 
MSE expected 0.100 
Learning rate 10-4 
Approaches Normal New 
Epoch number  300 
Constant η   0.25 
Epochs performed 1670 2159 

Training time  18 min. 
51 sec. 

13 min. 
16 sec. 

 
Different initializations led to convergence to different local 

minima of the squared error surface. There is no formal way 
to find the initial conditions that lead to the global minimum 
[10, 12]. Centers of if-parts jm  are uniformly spread in the 

determined interval along the x-axis. Centroids of then-part 

jc  are picked as the values of the sampled approximand f  at 

jm : ( )jmfjc = . Remaining parameters of fuzzy rules are 

initialized randomly including: weight of rules, and volume of 
then-parts. 

To evaluate the performances of conventional (normal) and 

new approaches, we used the same systems, same training 
samples, same learning rate and set the same expected MSE 
value and then measured separately the training time. 

Computer configuration for experiments: Pentium(R) 4 
1.80 GHz, 760 MB of RAM. 
 

TABLE II  
SIMULATION WITH g(x, y) – 2-D CASE 

Number of rules 441 
Training samples 2715 
MSE before SP 15.621 
MSE expected 0.500 
Learning rate 10-5 
Approaches Normal New 
Epoch number  400 
Constant η   0.4 
Epochs performed 3019 4166 

Training time  33 min. 
02 sec. 

20 min. 
15 sec. 

 
TABLE III  

SIMULATION WITH h(x, y, z) – 3-D CASE 
Number of rules 729 
Training samples 8120 
MSE before SP 22.548 
MSE expected 1.000 
Learning rate 10-6 
Approaches Normal New 
Epoch number  500 
Constant η   0.5 
Performed epochs 6482 8377 

Training time  56 min. 
26 sec. 

31 min. 
48 sec. 

 
 

The number of rules as well as the number of training 
samples in case of the higher-D SAM is much more than those 
of the lower-D SAM consistent with the curse of high 
dimensions in fuzzy function approximation - exponential rule 
explosion. This results directly from the factorability of in-part fuzzy 
sets in fuzzy if-then rules [12]. 

By reducing approximately 12.5% (1-D case), 20% (2-D 
case) and 25% (3-D case) number of fuzzy rules after each 
300 (1-D case), 400 (2-D case) and 500 (3-D case) epochs, the 
number of epochs performed in the new learning scheme is 
more than that of conventional approach. This leads to the 
decrease of training time whereas the MSE expected is the 
same value for both approaches. The learning time is 
decreased around 30% (1-D case), 39% (2-D case) and 44% 
(3-D case). The new scheme is more effective in case of high 
dimension, partly due to the more percentage of fuzzy rules 
fixed based on the higher value of the constant η  ( η  = 0.5 in 
3-D case compared with η  = 0.4 in 2-D case and η  = 0.25 in 
1-D case). 
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V. CONCLUSION 
The new learning scheme has partly overcome the time-

consuming and tedious tasks of parameter tuning of fuzzy 
systems applied in function approximation. Using these 
arbitrary functions, we found improvements of the order of 
35% in convergence speed, and implying increases in the 
accuracy of fuzzy applications where the optimisation time is 
limited. The new strategy can be applied not only in function 
approximation but also in fields such as pattern recognition, 
signal processing, time series prediction, etc. where SAM as 
well as other types of fuzzy systems have been explored 
effectively in recent decades.  
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