
 

 

  

Abstract—This paper investigates the application of the 

determinate fuzzy preference programming method for a more 

nuanced and comprehensive evaluation of stealth aircraft. 

Traditional methods often struggle to incorporate subjective factors 

and uncertainties inherent in complex systems like stealth aircraft. 

Determinate fuzzy preference programming addresses this 

limitation by leveraging the strengths of determinate fuzzy sets. The 

proposed novel multiple criteria decision-making algorithm 

integrates these concepts to consider aspects and criteria influencing 

aircraft performance. This approach aims to provide a more holistic 

assessment by enabling decision-makers to observe positive and 

negative outranking flows simultaneously. By demonstrating the 

validity and effectiveness of this approach through a practical 

example of selecting a stealth aircraft, this paper aims to establish 

the determinate fuzzy preference programming method as a valuable 

tool for informed decision-making in this critical domain. 

 

Keywords—Determinate fuzzy set, stealth aircraft selection, 

distance function, decision making, uncertainty, preference 

programming. MCDM.  

I. INTRODUCTION 

he evaluation of stealth aircraft performance is a complex 

task fraught with uncertainty. Traditional methods often 

struggle to effectively incorporate subjective factors and 

account for inherent vagueness in criteria assessment. This 

paper proposes a novel approach that leverages the strengths 

of determinate fuzzy preference programming (DFPP) to 

revolutionize the stealth aircraft selection process. 

While fuzzy set theory offers a framework for dealing with 

uncertainty, it lacks the ability to explicitly handle both 

membership and non-membership degrees simultaneously. 

This limitation can hinder the precise representation of 

decision-makers' preferences and uncertainties in complex 

evaluations [1-2].  

Fuzzy set theory has been further extended to encompass 

various types of sets, including intuitionistic fuzzy sets, 

picture fuzzy sets, hesitant fuzzy sets, uncertainty sets, neutral 

sets, and neutrosophic sets. These extensions find 

applications in various fields, including economics, 

engineering, and management [3-9]. 

Traditional machine learning methods, while powerful, 

often rely heavily on object-specific data. This can limit their 

ability to capture the nuances of complex decision-making 

processes, especially when subjective factors and expert 

knowledge are crucial. In contrast, preference programming 

offers a distinct advantage by focusing on pairwise 

comparisons between alternatives. This approach allows 
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decision-makers to express their preferences directly, 

facilitating the generation of complete rankings and a more 

comprehensive evaluation.  

Traditionally, evaluating complex systems like stealth 

aircraft relies heavily on multiple criteria, often leading to 

challenges in incorporating subjective factors and 

uncertainties. The Multiple Criteria Decision-Making 

(MCDM) landscape offers a rich array of methodologies for 

selecting optimal alternatives from a set of possibilities  

[1-58]. The MCDM methods like the Analytical Hierarchy 

Process (AHP) [10], ELECTRE [11], PARIS [36], 

PROMETHEE [12] and TOPSIS [13-14] have proven 

valuable in various decision-making scenarios. 

Departing from standard fuzzy set theory [1-2], this paper 

investigates the application of the determinate fuzzy 

preference programming method, aiming to revolutionize the 

evaluation process for stealth aircraft. By leveraging the 

strengths of both fuzzy logic and determinate fuzzy sets, a 

novel MCDM algorithm specifically tailored for this complex 

domain is proposed. 

Determinate fuzzy sets, extensions of fuzzy sets, are 

powerful tools for dealing with vagueness and uncertainty. 

Their essential characteristic is that they assign to each 

element a membership (truth) degree and a non-membership 

(falsity) degree, in addition to a membership degree in a fuzzy 

set. Similar to a membership degree in a fuzzy set, a 

determinate fuzzy value (DFV) is used to explain the relation 

between an element and the corresponding determinate fuzzy 

set.  Building on DFVs, concepts and methods such as 

aggregation techniques, operational laws for DFVs, and 

distance measures are developed [25-26]. 

DFPP bridges the gap by combining the advantages of 

fuzzy logic and determinate fuzzy sets. These sets offer a 

more nuanced representation of uncertainty by assigning both 

membership and non-membership degrees to each element. 

This allows for a more precise capture of decision-makers' 

judgments in the face of ambiguity. 

Preference Programming approach focuses on pairwise 

comparisons between alternatives, enabling decision-makers 

to express their preferences directly. This avoids the 

limitations inherent in data-driven methods and allows for a 

richer understanding of the relative performance of each 

aircraft option. Integrating determinate fuzzy logic into the 

preference programming framework strengthens the ability to 

handle uncertainties in decision-making. This allows for a 

more realistic and comprehensive evaluation process. 
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The core of preference programming lies in internal 

evaluation. Each alternative is assessed against all others 

based on defined criteria through pairwise comparisons. This 

analysis involves examining positive and negative outranking 

flows, ultimately leading to a net outranking flow that reflects 

the overall preference for each option. To further refine the 

evaluation, the comparison values obtained after pairwise 

comparisons are weighted according to the criteria weights. 

This methodology finds applications in recommendation 

systems, where the task involves eliciting user preferences. 

By analyzing pairwise comparisons between options, 

preference programming helps discern patterns in user 

selections and identify preferred choices. This approach 

stands in contrast to classical machine learning methods, 

which solely rely on object-specific data. Preference 

programming's ability to capture the relative preferences 

between alternatives makes it well-suited for 

recommendation systems, where the goal is to provide 

personalized suggestions based on user preferences. 

The introduction of determinate fuzzy logic into the 

preference programming framework creates a powerful 

synergy to address uncertainties in decision making process. 

This study proposes a novel MCDM algorithm that integrates 

these concepts to create a more nuanced and comprehensive 

evaluation system for stealth aircraft. This approach aims to 

provide a more holistic and realistic assessment of the aspects 

that influence stealth aircraft performance.   

The following sections explore the theoretical 

underpinnings of the determinate fuzzy preference 

programming method, detail the proposed algorithm, and 

demonstrate its application through a practical example. This 

exploration aims to establish this novel approach as a 

valuable tool for informed decision-making in the critical 

domain of stealth aircraft evaluation.  

This paper addresses a critical gap in the literature by 

proposing a novel MCDM algorithm based on DFPP 

specifically tailored for stealth aircraft selection. This 

approach offers several advantages: 

Enhanced Uncertainty Handling: The explicit 

consideration of both membership and non-membership 

degrees allows for a more nuanced representation of 

uncertainties inherent in stealth aircraft evaluation criteria. 

Subjectivity Integration: The use of pairwise comparisons 

facilitates the incorporation of subjective expert opinions and 

preferences into the decision-making process. 

Comprehensive Evaluation: By leveraging DFPP, this 

approach provides a more holistic and realistic assessment of 

the factors that influence the overall performance of stealth 

aircraft alternatives. 

The following sections will delve deeper into the 

theoretical foundations of DFPP, detail the proposed 

algorithm's steps, and illustrate its application through a 

practical example. This exploration aims to establish DFPP 

as a valuable tool for enhancing informed decision-making 

when selecting the most suitable stealth aircraft option. 

The remainder of this paper is structured as follows. 

Section 2 provides a brief overview of determinate fuzzy sets 

and their integration with the preference programming 

method for MCDM under uncertainty. This section explains 

how this approach enables the ranking of stealth aircraft 

alternatives. Section 3 demonstrates the validity and 

effectiveness of the proposed approach through a numerical 

example of selecting a stealth aircraft. Finally, Section 4 

concludes the study by summarizing the key findings of the 

determinate fuzzy preference programming method. 

II. METHODOLOGY  

A. Determinate Fuzzy Set Preliminaries 

 

Definition. [25-26] Let 0X   be a domain of discourse. A 

determinate fuzzy set A in the domain X is defined as  

  

( ) ( ){ , }, |  A AA x x v x x X =                                          (1) 

 

where  (x) : 0,1A X → ,  and  (x)=1- (x) : 0,1A Av X →  

are two maps in X that satisfy the condition 

( ) ( )  1 |A Ax v x x X + = . The numbers (x)A , and ( )Av x  

are the degree of truth (membership), and falsity (non-

membership) functions of element x to A, respectively. 

Determinate fuzzy value (DFV) is defined as follows: 

),( a aa v= , where ,a av x X  . 

 

Definition 2. Let ),( a aa v= , and ),( b bb v=  be the DFVs, 

then some operational laws and aggregation operators for 

DFVs: 

 

,min( , ) max( , )a b a ba b v v  =                                             (2) 

 

,max( , ) min( , )a b a ba b v v  =                                            (3) 

 

, )( a b a b a ba vb v   + − =                                              (4) 

 

, )( a b a b a ba b      = + −                                               (5) 

 

( )1 (1 ) , , 0a aa v   = − −                                                (6) 

 

( ),1 (1 ) , 0a aa v   = − −                                                 (7) 

 

( )1 1 1
1 (1 ),

n nn

j j j jj j
a v= = =

 = − −                                     (8) 

 

( )1 1 1
,1 (1 )

n nn

j j j jj j
a v= = =

 = − −                                    (9) 

 

, )( a a

Ca  =                                                                     (10) 

 

Definition 3. Let ),( a aa v=  belong to X, then a function  

: [ 1,1]S X → −  is called a score function, if 

 

( ) a aS a v= −                                                                      (11) 

 

Definition 4. Let ),( a aa v=  belong to X, then a function  

: [0,1]H X →  is called an accuracy function, if 
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( ) a aH a v= +                                                                      (12) 

 

where ( )H a is the degree of accuracy of DFN a . The 

larger the value of ( )H a is, the higher the degree of accuracy 

of the DFN a . 

 

Definition 5. Let ),( a aa v= , and ),( b bb v=  be the DFVs, 

If ( ) ( )S a S b , then a b ; If ( ) ( )S a S b= , then S(A), then 

 

(1) if ( ) ( )H a H b= , then a b= ; 

(2) ( ) ( )H a H b , then a b . 

 

B. Determinate Fuzzy Preference Programming 

 

Let the alternatives be 1 2( , ,..., )mA A A A= , and the 

attributes be 1 2( , ,..., )nC C C C= . Let the weights of the 

attributes be 1 2( , ,..., )n   = , where 0 1j  ,

1
1

n

jj


=
= . Let 

ija , 1, 2,..,i m= , 1,2,...,j n= , be the 

attribute value of the alternative iA  with attribute jC , the 

[ ] [ , ]ij mxn ij ij mxnA a v= =    is a DFNs matrix, where ij  and 

ijv  are membership (truth) degree, and non-membership 

(falsity) degree. The following is the calculation procedure of 

preference programming method: 

 

Step 1. Standardize the decision information. That is, 

normalizing [ ]ij mxnA a=  into [ ]ij mxnB b= . If the decision 

attribute is a cost factor, the decision information should be 

changed by its complementary set, , )( ii jj j ib  = , while if it 

is an efficient factor, it should not be changed. 

 

Step 2. Construct a preference function ( , )j i rP e e  of 

alternative ie  relative to re  under the attribute jC  by 

 

( )
1

1
( , ) | |

n p p

j i r i rj
P e e e e

=
= −                                                  (13) 

 

The Minkowski geometric distance can be interpreted as a 

multiple of the power mean of the component wise 

differences between ie  and re . In the geometric distance, 

when 1p = , and 2p = , the distance function corresponds to 

the Manhattan distance ( 1L  Norm) and the Euclidean distance 

( 2L  Norm), respectively. Also, in the limiting case of p 

reaching infinity p =  , the Chebyshev distance ( L  Norm) 

is obtained. 

 

1 , 1

1
( , ) | |

n

L j i r i rj
P e e e e

n =

 
= − 

 
                                                  (14) 

 

2

1

2
2

, 1

1
( , ) | |

n

L j i r i rj
P e e e e

n =

 
= − 

 
                                           (15) 

( ),

1

1
( , ) lim | | max | |

n p p

L j i r i r i rjP i
P e e e e e e

 =→
= − = −           (16) 

 

Step 3. Define the priority index ( , )i re e of the scheme 
ie  

relative to 
re  by 

 

1

1

1

( , )
( , ) ( , )

n

j j i r nj

i r j j i rn j

jj

P e e
e e P e e


 



=

=

=

= =





                  (17) 

 

Step 4. Calculate the inflow ( )ie+ , outflow ( )ie− and net 

flow  ( )ie  of the object, as following 

  

1

1
( ) ( ( , )

1

n

i j i rr
e P e e

n
 +

=
=

−
                                               (18) 

 

1

1
( ) ( ( , )

1

n

i j r ir
e P e e

n
 −

=
=

−
                                            (19) 

 

( ) ( ) ( )i i ie e e  + −= −                                                     (20) 

 

Step 5. Rank the alternatives according to the net flow value 

( )ie of the objects. The higher net flow value is ranked as 

the best. 

III. APPLICATION  

This section outlines the application of the proposed 

determinate fuzzy methodology for selecting the best stealth 

aircraft from multiple providers, considering potentially 

conflicting criteria. The procedural steps of the proposed 

method are presented as follows: 

 

Step 1. Define the Problem and Gather Information 

 

Three experts with experience in stealth aircraft evaluation 

participate in the process. Based on their expertise, seven 

criteria and five alternative stealth aircraft are identified for 

evaluation. Details of the seven evaluation criteria are 

provided in Table 1 [16-17]. 

 

Step 2. Evaluate Criteria and Alternatives using Determinate 

Fuzzy Numbers (DFNs) 

 

Experts utilize Determinate Fuzzy Numbers (DFNs) to 

evaluate the alternative aircraft. Consider an illustrative 

example: Five alternative stealth aircraft are denoted as 

1 2 5( , ,..., )A A A A= . Seven attributes are identified as 

1 2 7( , ,..., )C C C C= . The decision information for each 

alternative under each attribute is expressed using DFNs, 

denoted as ija  for alternative iA  under attribute jC   

( 1, 2,..,i m= , number of alternatives, and 1,2,...,j n= , 

number of attributes). 
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Step 3. Assign Weights to the Attributes 

 

The importance of each evaluation criterion is established 

by assigning weights. Details of the assigned weights for the 

seven criteria are provided in Table 2. The weight of each 

attribute is given by 

 

[0.25,0.20,0.15,0.15,0.10,0.10,0.05]j =  

 

Step 4. Apply the Determinate Fuzzy Preference 

Programming Method 

 

The determinate fuzzy preference programming method is 

used to analyze the decision information and calculate 

preference scores for each alternative based on the defined 

criteria and weights. This step involves specific calculations 

using the DFNs, weights, and preference programming 

techniques. 

 

Step 5. Identify the Best Alternative 

 

The alternative with the highest overall preference score, 

as determined in Step 4, is selected as the best choice. 

 

Step 6. Evaluate Results 

 

A sensitivity analysis is conducted to assess the robustness 

of the chosen aircraft. This involves analyzing the results with 

ten different sets of criteria weights and potentially validating 

the selection through expert judgment or additional data. 

 
Table 1. The description of attributes 

 
Attributes Description 

Stealth Capability (C1) 

Minimizing radar cross-

section (RCS) and infrared 

signature for low 

observability. 

Performance Capability (C2) 

Speed, range, payload 

capacity, and maneuverability 

while maintaining low 

observability. 

Survivability (C3) 

Ability to operate effectively 

in contested environments and 

withstand threats. 

Avionics and Sensors (C4) 

Advanced avionics suite for 

target acquisition, tracking, 

and situational awareness. 

Interoperability (C5) 

Seamless integration with 

other aircraft and military 

assets. 

Operational Capability (C6) 

Ability to perform tasks like 

air superiority, ground attack, 

or reconnaissance with various 

weapons. 

Cost and Maintenance 

Affordability (C7) 

Balancing performance with 

cost-effectiveness and 

considering logistics and 

maintenance. 

 

In the decision-making problem, criteria C1-C6 are 

efficient (beneficial), while criterion C7 is considered a cost 

factor. 

 

Table 2. The description of assigned attribute weights 

 
Attributes Description 

Stealth Capability (C1)  
0.25 - High priority, but 

balanced with other factors. 

Performance Capability (C2) 

0.20 - Essential for mission 

effectiveness while 

maintaining stealth. 

Survivability (C3) 
0.15 - Important for pilot 

safety and mission completion. 

Avionics and Sensors (C4) 

0.15 - Critical for situational 

awareness and mission 

success. 

Interoperability (C5) 

0.10 - Important for joint 

operations, but not as crucial as 

core capabilities. 

Operational Capability (C6) 

0.10 - Depends on specific 

mission needs. Weight could 

be adjusted based on the 

primary mission (air 

superiority, ground attack, 

etc.). 

Cost and Maintenance 

Affordability (C7) 

0.05 - Important for long-term 

sustainment, but lower weight 

reflects a focus on core 

mission capabilities. 

 

The goal is to select the best option from the five available 

stealth aircraft alternatives, considering the seven evaluation 

criteria. Expert evaluations for each aircraft under each 

criterion are shown in the following decision matrices (D1, 

D2, D3) (Tables 3-5). 

 
Table 3. Decision Values from Expert D1 

 
D1 C1 C2 C3 C4 
A1 <0.75,0.25> <0.65,0.35> <0.60,0.40> <0.90,0.10> 

A2 <0.85,0.15> <0.55,0.45> <0.70,0.30> <0.60,0.40> 

A3 <0.95,0.05> <0.95,0.05> <0.80,0.20> <0.75,0.25> 
A4 <0.70,0.30> <0.75,0.25> <0.60,0.40> <0.65,0.35> 

A5 <0.65,0.35> <0.65,0.35> <0.70,0.30> <0.50,0.50> 

 
D1 C5 C6 C7 
A1 <0.65,0.35> <0.55,0.45> <0.65,0.35> 

A2 <0.80,0.20> <0.75,0.25> <0.70,0.30> 
A3 <0.75,0.25> <0.65,0.35> <0.50,0.50> 

A4 <0.70,0.30> <0.70,0.30> <0.65,0.35> 

A5 <0.60,0.40> <0.65,0.35> <0.75,0.25> 

 
Table 4. Decision Values from Expert D2 

 
D2 C1 C2 C3 C4 
A1 <0.65,0.35> <0.75,0.25> <0.90,0.10> <0.60,0.40> 

A2 <0.55,0.45> <0.85,0.15> <0.60,0.40> <0.70,0.30> 
A3 <0.95,0.05> <0.95,0.05> <0.75,0.25> <0.80,0.20> 

A4 <0.75,0.25> <0.70,0.30> <0.65,0.35> <0.60,0.40> 

A5 <0.65,0.35> <0.65,0.35> <0.50,0.50> <0.70,0.30> 

 
D2 C5 C6 C7 
A1 <0.65,0.35> <0.65,0.35> <0.55,0.45> 

A2 <0.70,0.30> <0.80,0.20> <0.75,0.25> 
A3 <0.50,0.50> <0.75,0.25> <0.65,0.35> 

A4 <0.65,0.35> <0.70,0.30> <0.70,0.30> 

A5 <0.75,0.25> <0.60,0.40> <0.65,0.35> 

 

 

 

 

World Academy of Science, Engineering and Technology
International Journal of Aerospace and Mechanical Engineering

 Vol:18, No:5, 2024 

182International Scholarly and Scientific Research & Innovation 18(5) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 A
er

os
pa

ce
 a

nd
 M

ec
ha

ni
ca

l E
ng

in
ee

ri
ng

 V
ol

:1
8,

 N
o:

5,
 2

02
4 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

64
2.

pd
f



 

 

Table 5. Decision Values from Expert D3 

 
D3 C1 C2 C3 C4 
A1 <0.65,0.35> <0.75,0.25> <0.90,0.10> <0.60,0.40> 

A2 <0.75,0.25> <0.65,0.35> <0.60,0.40> <0.70,0.30> 
A3 <0.85,0.15> <0.55,0.45> <0.85,0.15> <0.85,0.15> 

A4 <0.60,0.40> <0.75,0.25> <0.70,0.30> <0.55,0.45> 

A5 <0.55,0.45> <0.65,0.35> <0.60,0.40> <0.80,0.20> 

 
D3 C5 C6 C7 
A1 <0.75,0.25> <0.85,0.15> <0.95,0.05> 

A2 <0.80,0.20> <0.65,0.35> <0.70,0.30> 
A3 <0.75,0.25> <0.75,0.25> <0.80,0.20> 

A4 <0.60,0.40> <0.80,0.20> <0.55,0.45> 

A5 <0.80,0.20> <0.60,0.40> <0.65,0.35> 

 

Normalized decision matrices (N1,N2,N3) are shown in 

Tables 6-8. The complement operation defined in equation 

(10) is applied to the cost criterion (Cost and Maintenance 

Affordability, C7). 

 
Table 6. Decision Values from Expert D1 

 
N1 C1 C2 C3 C4 
A1 <0.75,0.25> <0.65,0.35> <0.60,0.40> <0.90,0.10> 

A2 <0.85,0.15> <0.55,0.45> <0.70,0.30> <0.60,0.40> 
A3 <0.95,0.05> <0.95,0.05> <0.80,0.20> <0.75,0.25> 

A4 <0.70,0.30> <0.75,0.25> <0.60,0.40> <0.65,0.35> 

A5 <0.65,0.35> <0.65,0.35> <0.70,0.30> <0.50,0.50> 

 
N1 C5 C6 C7 
A1 <0.65,0.35> <0.55,0.45> <0.35,0.65> 

A2 <0.80,0.20> <0.75,0.25> <0.30,0.70> 
A3 <0.75,0.25> <0.65,0.35> <0.50,0.50> 

A4 <0.70,0.30> <0.70,0.30> <0.35,0.65> 

A5 <0.60,0.40> <0.65,0.35> <0.25,0.75> 

 
Table 7. Decision Values from Expert D2 

 
N2 C1 C2 C3 C4 
A1 <0.65,0.35> <0.75,0.25> <0.90,0.10> <0.60,0.40> 

A2 <0.55,0.45> <0.85,0.15> <0.60,0.40> <0.70,0.30> 
A3 <0.95,0.05> <0.95,0.05> <0.75,0.25> <0.80,0.20> 

A4 <0.75,0.25> <0.70,0.30> <0.65,0.35> <0.60,0.40> 

A5 <0.65,0.35> <0.65,0.35> <0.50,0.50> <0.70,0.30> 

 
N2 C5 C6 C7 
A1 <0.65,0.35> <0.65,0.35> <0.45,0.55> 
A2 <0.70,0.30> <0.80,0.20> <0.25,0.75> 

A3 <0.50,0.50> <0.75,0.25> <0.35,0.65> 

A4 <0.65,0.35> <0.70,0.30> <0.30,0.70> 
A5 <0.75,0.25> <0.60,0.40> <0.35,0.65> 

 
Table 8. Decision Values from Expert D3 

 
N3 C1 C2 C3 C4 
A1 <0.65,0.35> <0.75,0.25> <0.90,0.10> <0.60,0.40> 
A2 <0.75,0.25> <0.65,0.35> <0.60,0.40> <0.70,0.30> 

A3 <0.85,0.15> <0.55,0.45> <0.85,0.15> <0.85,0.15> 

A4 <0.60,0.40> <0.75,0.25> <0.70,0.30> <0.55,0.45> 
A5 <0.55,0.45> <0.65,0.35> <0.60,0.40> <0.80,0.20> 

 
N3 C5 C6 C7 
A1 <0.75,0.25> <0.85,0.15> <0.05,0.95> 
A2 <0.80,0.20> <0.65,0.35> <0.30,0.70> 

A3 <0.75,0.25> <0.75,0.25> <0.20,0.80> 

A4 <0.60,0.40> <0.80,0.20> <0.45,0.55> 
A5 <0.80,0.20> <0.60,0.40> <0.35,0.65> 

 

 

The normalized matrices are aggregated by the operation 

defined in equation (6), assuming the weights of experts are 

equal. The resulting determinate fuzzy aggregated matrix G 

is shown in Table 9. 

 
Table 9. Determinate fuzzy aggregated matrix 

 
G C1 C2 C3 C4 
A1 <0.69,0.31> <0.72,0.28> <0.84,0.16> <0.75,0.25> 

A2 <0.74,0.26> <0.71,0.29> <0.64,0.36> <0.67,0.33> 

A3 <0.93,0.07> <0.90,0.10> <0.80,0.20> <0.80,0.20> 
A4 <0.69,0.31> <0.73,0.27> <0.65,0.35> <0.60,0.40> 

A5 <0.62,0.38> <0.65,0.35> <0.61,0.39> <0.69,0.31> 

 
G C5 C6 C7 
A1 <0.69,0.31> <0.71,0.29> <0.80,0.20> 

A2 <0.77,0.23> <0.74,0.26> <0.72,0.28> 
A3 <0.69,0.31> <0.72,0.28> <0.67,0.33> 

A4 <0.65,0.35> <0.74,0.26> <0.64,0.36> 

A5 <0.73,0.27> <0.62,0.38> <0.69,0.31> 

 

Five stealth aircraft alternatives were pairwise compared 

using the Norm L1 norm (Table 10), L2 norm (Table 11), and 

L∞ norm (Table 12), all defined in equations (14-16), with 

respect to seven conflicting criteria. Then, the pairwise 

comparison values were weighted (equation (17)) by the 

importance weight vector: 

 

[0.25,0.20,0.15,0.15,0.10,0.10,0.05]j =  

 
Table 10. L1 norm pairwise comparison values 

 
 A1 A2 A3 A4 A5 

A1 - 0,0200 0,0323 0,0180 0,0255 

A2 0,0200 - 0,0407 0,0134 0,0197 
A3 0,0323 0,0407 - 0,0430 0,0542 

A4 0,0180 0,0134 0,0430 - 0,0218 

A5 0,0255 0,0197 0,0542 0,0218 - 

 
Table 11. L2 norm pairwise comparison values 

 
 A1 A2 A3 A4 A5 

A1 - 0,0026 0,0063 0,0029 0,0036 
A2 0,0026 - 0,0066 0,0009 0,0019 

A3 0,0063 0,0066 - 0,0084 0,0128 

A4 0,0029 0,0009 0,0084 - 0,0018 
A5 0,0036 0,0019 0,0128 0,0018 - 

 

Table 12. L∞ norm pairwise comparison values 

 
 A1 A2 A3 A4 A5 

A1 - 0,0614 0,1204 0,0567 0,0698 

A2 0,0614 - 0,0922 0,0271 0,0620 

A3 0,1204 0,0922 - 0,1193 0,1542 

A4 0,0567 0,0271 0,1193 - 0,0349 
A5 0,0698 0,0620 0,1542 0,0349 - 

 

Examining pairwise comparison Tables 10-12 reveals a 

symmetric structure, indicating consistent comparisons 

between alternatives. Since inflow values (wins) and outflow 

values (losses) for each alternative are equal, the net flow is 

zero. This symmetric property and equal inflow/outflow 

values strengthen the reliability of the ranking derived based 

on the inflow values (shown in Table 13). This ranking 

approach leverages the consistent preference structure within 

the comparisons. 
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Table 13. Ranking orders iR  of stealth aircraft from pairwise 

comparisons based on L1 norm, L2 norm, and L∞ norm 

 
 L1 

norm 

Rank 

iR  

L2 

norm 

Rank 

iR  

L∞ 

norm 

Rank 

iR  

A1 0,0958 4 0,0154 3 0,3083 3 

A2 0,0938 5 0,0120 5 0,2428 4 
A3 0,1703 1 0,0341 1 0,4861 1 

A4 0,0961 3 0,0140 4 0,2380 5 

A5 0,1212 2 0,0201 2 0,3210 2 

 

Table 14. Ranking orders iR of stealth aircraft alternatives 

 
Norms Ranking orders of alternatives 

1LR  3 5 4 1 2A A A A A  

2LR  3 5 1 4 2A A A A A  

LR


 3 5 1 2 4A A A A A  

 

A. Analysis of Ranking Orders, Norms, and Methodology 

for Stealth Aircraft Selection 

Tables 13 and 14 present the ranking orders of five stealth 

aircraft (A1-A5) obtained through pairwise comparisons 

using three distance metrics (L1 norm, L2 norm, and L∞ 

norm) within the MCDM (Multiple Criteria Decision 

Making) framework. Analysis of the results, ranks, norms, 

and the applied methodology are presented as follows: 

Rank Consistency: While there are some variations, there's 

a degree of consistency in the top two and bottom two ranked 

aircraft across all three norms. Aircraft A3 consistently ranks 

first, and aircraft A2 and A4 consistently rank either fourth or 

fifth. 

Norm Influence: The L1 norm ranking deviates more from 

the L2 and L∞ norm rankings for aircraft A1 and A5. This 

suggests that the L1 norm might be more sensitive to small 

pairwise differences in specific criteria compared to L2 and 

L∞ norms. 

A3's Dominance: Across all norms, A3 maintains the top 

rank. This indicates that A3 performs consistently well 

relative to other alternatives across the considered criteria. 

 

Norms and their impact on ranking orders of stealth aircraft 

alternatives are presented as follows: 

 

L1 Norm (Manhattan Distance): Emphasizes the sum of 

absolute differences between criteria scores. It's less sensitive 

to outliers in individual criteria compared to L2 and L∞ 

norms. 

L2 Norm (Euclidean Distance): Captures the overall 

magnitude of difference between criteria scores. It's more 

sensitive to larger differences in individual criteria compared 

to L1. 

L∞ Norm (Chebyshev Distance): Focuses on the largest 

difference across all criteria. It's highly sensitive to outliers 

and emphasizes the most significant difference between 

alternatives. 

The choice of norm can influence the ranking, as observed 

in the variations between L1 and the other two norms. 

Selecting a norm depends on the context and desired 

emphasis: 

 

L1 might be suitable if you want to prioritize overall 

balanced performance across criteria. 

L2 can be appropriate if you want to capture the overall 

magnitude of differences, considering larger differences 

might be more critical. 

L∞ might be useful if you want to identify and prioritize 

the most significant difference between alternatives in any 

single criterion. 

The preference programming pairwise comparison method 

is a valuable tool in MCDM for structuring decision-making 

by comparing alternatives in a two-by-two manner based on 

specific criteria. This method allows experts or decision-

makers to express their preferences directly. 

The validity of the pairwise comparison methodology was 

assessed by employing alternative aggregation techniques: 

the determinate weighted average (DWA) defined in equation 

(8) and determinate weighted geometric (DWG) defined in 

equation (9) operators. These operators, unlike pairwise 

comparisons, aggregate the entire decision matrix at once 

while incorporating weights for different criteria. The 

resulting ranking orders are presented in Tables 15 and 16. 

 

Table 15. Ranking orders iR  of stealth aircraft alternatives from 

the determinate weighted average (DWA) operator 

 
DWA 

operator 
i  iv  ( ) i iS i v= −  Rank 

iR  

A1 0,7240 0,2760 0,4479 2 

A2 0,7009 0,2991 0,4017 3 
A3 0,8451 0,1549 0,6901 1 

A4 0,6726 0,3274 0,3453 4 

A5 0,6369 0,3631 0,2738 5 

 

Table 16. Ranking orders iR  of stealth aircraft alternatives from 

the determinate weighted geometric (DWG) operator 

 
DWG 

operator 
i  iv  ( ) i iS i v= −  Rank 

iR  

A1 0,6976 0,3024 0,3953 2 
A2 0,6780 0,3220 0,3560 3 

A3 0,7965 0,2035 0,5930 1 

A4 0,6585 0,3415 0,3170 4 
A5 0,6229 0,3771 0,2458 5 

 

Table 17. Ranking orders iR  of stealth aircraft alternatives 

 
Operator Ranking orders of alternatives 

DWAR  3 1 2 4 5A A A A A  

DWGR  3 1 2 4 5A A A A A  

 

As a validation of the proposed pairwise comparison 

method, it's noteworthy that aircraft A3 maintains a strong 

position across the DWA and DWG operators.  Furthermore, 

both operators consistently rank the stealth aircraft 

alternatives in the same order (Table 17). 

The analysis of ranking orders, norms, and the pairwise 

comparison methodology provides valuable insights into the 

stealth aircraft selection problem. While A3 maintains a 

strong position across the used norms, the choice of norm can 

influence the ranking depending on the desired emphasis in 

the decision-making process. Combining the results from 

different norms with additional MCDM methods can provide 
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a more comprehensive understanding of the trade-offs 

involved in selecting the best stealth aircraft alternative. 

B. Analysis of Sensitivity Analysis Scenarios in MCDM 

Pairwise Comparisons 

This analysis examines the impact of weight variations on 

ranking orders for selecting the best stealth aircraft alternative 

using the MCDM pairwise comparison methodology. Three 

scenarios were investigated with different weight settings for 

the seven criteria: 

Scenario 1 (S1): Increased weight on most important 

criterion ( [0.30,0.20,0.15,0.10,0.10,0.10,0.05]j = ). The 

ranking orders of stealth aircraft alternatives are presented as 

shown in Table 18.  

 

Table 18. Scenario 1 (S1): Ranking orders iR of stealth aircraft 

alternatives 
 

Norms S1: Ranking orders of alternatives 

1LR  3 5 1 2 4A A A A A  

2LR  3 5 4 1 2A A A A A  

LR


 3 5 4 1 2A A A A A  

 

Scenario 2 (S2): Decreased weight on most important 

criterion ( [0.20,0.25,0.15,0.15,0.10,0.10,0.05]j = ). The 

ranking orders of stealth aircraft alternatives are presented as 

shown in Table 19.  

 

Table 19. Scenario 2 (S2): Ranking orders iR of stealth aircraft 

alternatives 
 

Norms S2: Ranking orders of alternatives 

1LR  3 5 1 4 2A A A A A  

2LR  3 5 4 1 2A A A A A  

LR


 3 5 1 4 2A A A A A  

 

Scenario 3 (S3): Equal weights  

( 1/ 7 1/ 7 1/ 7 1 ]/[ , , , , ,/ 7 1 7 1/ 7 / 7,1j = ). The ranking 

orders of stealth aircraft alternatives are presented as shown 

in Table 20.  

 

Table 20. Scenario 3 (S3): Ranking orders iR of stealth aircraft 

alternatives 
 

Norms S3: Ranking orders of alternatives 

1LR  3 5 1 2 4A A A A A  

2LR  3 5 1 2 4A A A A A  

LR


 3 1 5 4 2A A A A A  

 

The sensitivity analysis results for ranking orders under 

L1, L2, and L∞ distance norms are presented as follows: 

A3's Dominance: In all scenarios and across all norms, 

aircraft A3 maintains a top-ranked position. This suggests A3 

consistently performs well relative to other alternatives across 

most criteria. 

Impact of Weighting: Changing the weights on the most 

important criterion (Scenario 1 vs. Scenario 2) affects the 

ranking order for some alternatives (except A3) under all 

norms. This highlights the sensitivity of rankings to the 

importance assigned to different criteria. 

Norm-Specific Effects: L1 and L2 norms show similar 

ranking patterns within scenarios, while L∞ can exhibit more 

variation (e.g., A2 vs. A5 in Scenario 3). This is likely 

because L∞ emphasizes the most significant difference in any 

single criterion, potentially leading to different rankings 

compared to L1 and L2 which focus more on overall 

differences. 

Equal Weights (Scenario 3): The sensitivity analysis 

reveals that A3 maintains a top position in most scenarios 

across L1, L2, and L∞ norms. 

The sensitivity analysis demonstrates that the ranking 

order of stealth aircraft alternatives can be influenced by the 

weights assigned to criteria. A3 exhibits consistent strength 

across all scenarios and norms, suggesting its overall well-

rounded performance. 

The choice of distance norm (L1, L2, L∞) can also 

influence the ranking order depending on the emphasis it 

places on different aspects of the pairwise comparisons. 

This analysis provides valuable insights into how weight 

variations and distance metric selection can influence the 

ranking of stealth aircraft alternatives using pairwise 

comparisons. By understanding these factors, decision-

makers can make more informed choices when selecting the 

best option based on their specific criteria and priorities. 

IV. CONCLUSION 

This paper investigated the application of determinate 

fuzzy preference programming through pairwise 

comparisons for selecting the optimal stealth aircraft 

alternative within a multiple criteria decision making 

(MCDM) framework. The analysis employed three distance 

metrics (L1, L2, L∞ norms) to capture different aspects of 

pairwise comparisons between alternatives based on multiple 

criteria. 

The choice of distance metric influenced the ranking order 

of other alternatives. The analysis revealed a consistent 

dominance of aircraft A3 across all scenarios with L1, L2, 

and L∞ norms, suggesting its overall well-rounded 

performance relative to other alternatives.  

Sensitivity analysis with weight variations demonstrated 

the influence of decision-maker priorities on the ranking 

order. Validation with DWA and DWG operators further 

supported the overall findings obtained from pairwise 

comparisons. 

The findings emphasize the importance of considering the 

following factors when selecting the best stealth aircraft: 

Distance Metric Selection: The chosen distance metric (L1, 

L2, L∞) can influence the ranking order depending on the 

desired emphasis (overall difference, magnitude, or largest 

single difference). 

Weight Distribution: Assigning appropriate weights to 

different criteria based on decision-maker priorities can 

significantly impact the ranking order. 

Balanced Performance vs. Specific Strengths: Balancing 

performance across all criteria versus prioritizing a specific 

strength in a single criterion is a crucial decision point.  

Future Research Directions: One potential extension of 

determinate fuzzy preference programming (DFPP) could be 
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to incorporate neutral sets and uncertainty sets. This would 

allow for a more robust application of DFPP to complex 

engineering problems in MCDM (Multiple Criteria Decision 

Making) within decision science and technology. 
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