Search results for: Matlab/Simulink
377 An Investigative Study into Observer based Non-Invasive Fault Detection and Diagnosis in Induction Motors
Authors: Padmakumar S., Vivek Agarwal, Kallol Roy
Abstract:
A new observer based fault detection and diagnosis scheme for predicting induction motors- faults is proposed in this paper. Prediction of incipient faults, using different variants of Kalman filter and their relative performance are evaluated. Only soft faults are considered for this work. The data generation, filter convergence issues, hypothesis testing and residue estimates are addressed. Simulink model is used for data generation and various types of faults are considered. A comparative assessment of the estimates of different observers associated with these faults is included.Keywords: Extended Kalman Filter, Fault detection and diagnosis, Induction motor model, Unscented Kalman Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883376 LQG Flight Control of VTAV for Enhanced Situational Awareness
Authors: Igor Astrov, Mikhail Pikkov, Rein Paluoja
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a linear-quadratic-Gaussian (LQG) flight control procedure for an unmanned helicopter model with vectored thrust configuration. This LQG control for chosen model of VTAV has been verified by simulation of take-off and landing maneuvers using software package Simulink and demonstrated good performance for fast flight stabilization of model, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.
Keywords: Linear-Quadratic-Gaussian (LQG) controller, situational awareness, vectored thrust aerial vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833375 Comparison of Field-Oriented Control and Direct Torque Control for Permanent Magnet Synchronous Motor (PMSM)
Authors: M. S. Merzoug, F. Naceri
Abstract:
This paper presents a comparative study on two most popular control strategies for Permanent Magnet Synchronous Motor (PMSM) drives: field-oriented control (FOC) and direct torque control (DTC). The comparison is based on various criteria including basic control characteristics, dynamic performance, and implementation complexity. The study is done by simulation using the Simulink Power System Blockset that allows a complete representation of the power section (inverter and PMSM) and the control system. The simulation and evaluation of both control strategies are performed using actual parameters of Permanent Magnet Synchronous Motor fed by an IGBT PWM inverter.Keywords: PMSM, FOC, DTC, hysteresis, PWM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7080374 Neural Network Motion Control of VTAV by NARMA-L2 Controller for Enhanced Situational Awareness
Authors: Igor Astrov, Natalya Berezovski
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a neural network motion control procedure to address the dynamics variation and performance requirement difference of flight trajectory for a VTAV. This control strategy with using of NARMAL2 neurocontroller for chosen model of VTAV has been verified by simulation of take-off and forward maneuvers using software package Simulink and demonstrated good performance for fast stabilization of motors, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.Keywords: NARMA-L2 neurocontroller, situational awareness, vectored thrust aerial vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032373 A Study of Wind Speed Characteristic in PI Controller based DFIG Wind Turbine
Authors: T. Unchim, A. Oonsivilai
Abstract:
The Wind Turbine Modeling in Wind Energy Conversion System (WECS) using Doubly-Fed Induction Generator (DFIG) PI Controller based design is presented. To study about the variable wind speed. The PI controller performs responding to the dynamic performance. The objective is to study the characteristic of wind turbine and finding the optimum wind speed suitable for wind turbine performance. This system will allow the specification setting (2.5MW). The output active power also corresponding same the input is given. And the reactive power produced by the wind turbine is regulated at 0 Mvar. Variable wind speed is optimum for drive train performance at 12.5 m/s (at maximum power coefficient point) from the simulation of DFIG by Simulink is described.
Keywords: DFIG, wind speed, PI controller, the output power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3328372 Inverse Matrix in the Theory of Dynamic Systems
Authors: R. Masarova, M. Juhas, B. Juhasova, Z. Sutova
Abstract:
In dynamic system theory a mathematical model is often used to describe their properties. In order to find a transfer matrix of a dynamic system we need to calculate an inverse matrix. The paper contains the fusion of the classical theory and the procedures used in the theory of automated control for calculating the inverse matrix. The final part of the paper models the given problem by the Matlab.Keywords: Dynamic system, transfer matrix, inverse matrix, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2416371 Motion Control of an Autonomous Surface Vessel for Enhanced Situational Awareness
Authors: Igor Astrov, Mikhail Pikkov, Rein Paluoja
Abstract:
This paper focuses on the critical components of the situational awareness (SA), the controls of position and orientation of an autonomous surface vessel (ASV). Moving of vessel into desired area in particular sea is a challenging but important task for ASVs to achieve high level of autonomy under adverse conditions. With the SA strategy, the approach motion by neural control of an initial stage of an ASV trajectory using neural network predictive controller and the circular motion by control of yaw moment in the final stage of trajectory were proposed. This control system has been demonstrated and evaluated by simulation of maritime maneuvers using software package Simulink. From the simulation results it can be seen that the fast SA of similar ASVs with economy in energy can be asserted during the maritime missions in search-and-rescue operations.
Keywords: Autonomous surface vessels, neurocontrollers, situational awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977370 Optimal Sizing of SSSC Controllers to Minimize Transmission Loss and a Novel Model of SSSC to Study Transient Response
Authors: A. M. El-Zonkoly
Abstract:
In this paper, based on steady-state models of Flexible AC Transmission System (FACTS) devices, the sizing of static synchronous series compensator (SSSC) controllers in transmission network is formed as an optimization problem. The objective of this problem is to reduce the transmission losses in the network. The optimization problem is solved using particle swarm optimization (PSO) technique. The Newton-Raphson load flow algorithm is modified to consider the insertion of the SSSC devices in the network. A numerical example, illustrating the effectiveness of the proposed algorithm, is introduced. In addition, a novel model of a 3- phase voltage source converter (VSC) that is suitable for series connected FACTS a controller is introduced. The model is verified by simulation using Power System Blockset (PSB) and Simulink software.Keywords: FACTS, Modeling, PSO, SSSC, Transmission lossreduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277369 Monitoring of Spectrum Usage and Signal Identification Using Cognitive Radio
Authors: O. S. Omorogiuwa, E. J. Omozusi
Abstract:
The monitoring of spectrum usage and signal identification, using cognitive radio, is done to identify frequencies that are vacant for reuse. It has been established that ‘internet of things’ device uses secondary frequency which is free, thereby facing the challenge of interference from other users, where some primary frequencies are not being utilised. The design was done by analysing a specific frequency spectrum, checking if all the frequency stations that range from 87.5-108 MHz are presently being used in Benin City, Edo State, Nigeria. From the results, it was noticed that by using Software Defined Radio/Simulink, we were able to identify vacant frequencies in the range of frequency under consideration. Also, we were able to use the significance of energy detection threshold to reuse this vacant frequency spectrum, when the cognitive radio displays a zero output (that is decision H0), meaning that the channel is unoccupied. Hence, the analysis was able to find the spectrum hole and identify how it can be reused.
Keywords: Spectrum, interference, telecommunication, cognitive radio, frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866368 A Comparative Study of Image Segmentation using Edge-Based Approach
Authors: Rajiv Kumar, Arthanariee A. M.
Abstract:
Image segmentation is the process to segment a given image into several parts so that each of these parts present in the image can be further analyzed. There are numerous techniques of image segmentation available in literature. In this paper, authors have been analyzed the edge-based approach for image segmentation. They have been implemented the different edge operators like Prewitt, Sobel, LoG, and Canny on the basis of their threshold parameter. The results of these operators have been shown for various images.
Keywords: Edge Operator, Edge-based Segmentation, Image Segmentation, Matlab 10.4.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3607367 Flight Control of a Trirotor Mini-UAV for Enhanced Situational Awareness
Authors: Igor Astrov, Andrus Pedai
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for an unmanned aerial vehicle (UAV). Autonomous vertical flight is a challenging but important task for tactical UAVs to achieve high level of autonomy under adverse conditions. With the SA strategy, we proposed a two stage flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory for a nontrivial nonlinear trirotor mini-UAV model. This control strategy for chosen mini-UAV model has been verified by simulation of hovering maneuvers using software package Simulink and demonstrated good performance for fast SA in realtime search-and-rescue operations.
Keywords: Flight control, trirotor aircraft, situational awareness, unmanned aerial vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165366 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses
Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh
Abstract:
Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotiv EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.
Keywords: Brain Computer Interface (BCI), Electroencephalogram (EEG), EEGLab, BCILab, Emotiv, Emotions, Interval features, Spectral features, Artificial Neural Network, Control applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5297365 Kinematic Analysis of a Novel Complex DoF Parallel Manipulator
Authors: M.A. Hosseini, P. Ebrahimi Naghani
Abstract:
In this research work, a novel parallel manipulator with high positioning and orienting rate is introduced. This mechanism has two rotational and one translational degree of freedom. Kinematics and Jacobian analysis are investigated. Moreover, workspace analysis and optimization has been performed by using genetic algorithm toolbox in Matlab software. Because of decreasing moving elements, it is expected much more better dynamic performance with respect to other counterpart mechanisms with the same degrees of freedom. In addition, using couple of cylindrical and revolute joints increased mechanism ability to have more extended workspace.Keywords: Kinematics, Workspace, 3-CRS/PU, Parallel robot
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877364 Motion Control of TUAV having Eight Rotors for Enhanced Situational Awareness
Authors: Igor Astrov, Andrus Pedai
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for tactical unmanned aerial vehicle (TUAV). With the SA strategy, we proposed a two stage flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory for a nontrivial nonlinear eight-rotor helicopter model. This control strategy for chosen model of mini-TUAV has been verified by simulation of hovering maneuvers using software package Simulink and demonstrated good performance for fast stabilization of engines in hovering, consequently, fast SA with economy in energy of batteries can be asserted during search-andrescue operations.Keywords: Flight control, eight-rotor helicopter, situational awareness, tactical unmanned aerial vehicle
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738363 Multirate Neural Control for AUV's Increased Situational Awareness during Diving Tasks Using Stochastic Model
Authors: Igor Astrov, Andrus Pedai
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the neural control of depth flight of an autonomous underwater vehicle (AUV). Constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy under adverse conditions. With the SA strategy, we proposed a multirate neural control of an AUV trajectory for a nontrivial mid-small size AUV “r2D4" stochastic model. This control system has been demonstrated and evaluated by simulation of diving maneuvers using software package Simulink. From the simulation results it can be seen that the chosen AUV model is stable in the presence of noises, and also can be concluded that the proposed research technique will be useful for fast SA of similar AUV systems in real-time search-and-rescue operations.
Keywords: Autonomous underwater vehicles, multirate systems, neurocontrollers, situational awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590362 Flight Control of Vectored Thrust Aerial Vehicle by Neural Network Predictive Controller for Enhanced Situational Awareness
Authors: Igor Astrov, Mikhail Pikkov, Rein Paluoja
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a flight control procedure to address the dynamics variation and performance requirement difference of flight trajectory for an unmanned helicopter model with vectored thrust configuration. This control strategy for chosen model of VTAV has been verified by simulation of take-off and forward maneuvers using software package Simulink and demonstrated good performance for fast stabilization of motors, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.
Keywords: Neural network predictive controller, situational awareness, vectored thrust aerial vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502361 Dynamic Analysis of Reduced Order Large Rotating Vibro-Impact Systems
Authors: Miroslav Byrtus
Abstract:
Large rotating systems, especially gear drives and gearboxes, occur as parts of many mechanical devices transmitting the torque with relatively small loss of power. With the increased demand for high speed machinery, mathematical modeling and dynamic analysis of gear drives gained importance. Mathematical description of such mechanical systems is a complex task evolving for several decades. In gear drive dynamic models, which include flexible shafts, bearings and gearing and use the finite elements, nonlinear effects due to gear mesh and bearings are usually ignored, for such models have large number of degrees of freedom (DOF) and it is computationally expensive to analyze nonlinear systems with large number of DOF. Therefore, these models are not suitable for simulation of nonlinear behavior with amplitude jumps in frequency response. The contribution uses a methodology of nonlinear large rotating system modeling which is based on degrees of freedom (DOF) number reduction using modal synthesis method (MSM). The MSM enables significant DOF number reduction while keeping the nonlinear behavior of the system in a specific frequency range. Further, the MSM with DOF number reduction is suitable for including detail models of nonlinear couplings (mainly gear and bearing couplings) into the complete gear drive models. Since each subsystem is modeled separately using different FEM systems, it is advantageous to parameterize models of subsystems and to use the parameterization for optimization of chosen design parameters. Final complex model of gear drive is assembled in MATLAB and MATLAB tools are used for dynamical analysis of the nonlinear system. The contribution is further focused on developing of a methodology for investigation of behavior of the system by Nonlinear Normal Modes with combination of the MSM using numerical continuation method. The proposed methodology will be tested using a two-stage gearbox including its housing.
Keywords: Vibro-impact system, rotating system, gear drive, modal synthesis method, numerical continuation method, periodic solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402360 Robust Control Design and Analysis Using SCILAB for a Mass-Spring-Damper System
Authors: Yoonsoo Kim
Abstract:
This paper introduces an open-source software package SCILAB [1], an alternative of MATLAB [2], which can be used for robust control design and analysis of a typical mass-spring-damper (MSD) system. Using the previously published ideas in [3,4], this popular mechanical system is considered to provide another example of usefulness of SCILAB for advanced control design.
Keywords: Robust Control, SCILAB, Mass-Spring-Damper(MSD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3962359 A Novel Probablistic Strategy for Modeling Photovoltaic Based Distributed Generators
Authors: Engy A. Mohamed, Yasser G. Hegazy
Abstract:
This paper presents a novel algorithm for modeling photovoltaic based distributed generators for the purpose of optimal planning of distribution networks. The proposed algorithm utilizes sequential Monte Carlo method in order to accurately consider the stochastic nature of photovoltaic based distributed generators. The proposed algorithm is implemented in MATLAB environment and the results obtained are presented and discussed.Keywords: Comulative distribution function, distributed generation, Monte Carlo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484358 Digital Predistorter with Pipelined Architecture Using CORDIC Processors
Authors: Kyunghoon Kim, Sungjoon Shim, Jun Tae Kim, Jong Tae Kim
Abstract:
In a wireless communication system, a predistorter(PD) is often employed to alleviate nonlinear distortions due to operating a power amplifier near saturation, thereby improving the system performance and reducing the interference to adjacent channels. This paper presents a new adaptive polynomial digital predistorter(DPD). The proposed DPD uses Coordinate Rotation Digital Computing(CORDIC) processors and PD process by pipelined architecture. It is simpler and faster than conventional adaptive polynomial DPD. The performance of the proposed DPD is proved by MATLAB simulation. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788357 Synchronization of Semiconductor Laser Networks
Authors: R. M. López-Gutiérrez, L. Cardoza-Avendaño, H. Cervantes-De Ávila, J. A. Michel-Macarty, C. Cruz-Hernández, A. Arellano-Delgado, R. Carmona-Rodríguez
Abstract:
In this paper, synchronization of multiple chaotic semiconductor lasers is achieved by appealing to complex system theory. In particular, we consider dynamical networks composed by semiconductor laser, as interconnected nodes, where the interaction in the networks are defined by coupling the first state of each node. An interest case is synchronized with master-slave configuration in star topology. Nodes of these networks are modeled for the laser and simulate by Matlab. These results are applicable to private communication.Keywords: Synchronization, chaotic laser, network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2312356 An Enhanced Situational Awareness of AUV's Mission by Multirate Neural Control
Authors: Igor Astrov, Mikhail Pikkov
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the neural control of depth flight of an autonomous underwater vehicle (AUV). Constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy under adverse conditions. With the SA strategy, we proposed a multirate neural control of an AUV trajectory using neural network model reference controller for a nontrivial mid-small size AUV "r2D4" stochastic model. This control system has been demonstrated and evaluated by simulation of diving maneuvers using software package Simulink. From the simulation results it can be seen that the chosen AUV model is stable in the presence of high noise, and also can be concluded that the fast SA of similar AUV systems with economy in energy of batteries can be asserted during the underwater missions in search-and-rescue operations.
Keywords: Autonomous underwater vehicles, multirate systems, neurocontrollers, situational awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946355 Shunt Power Active Filter Control under NonIdeal Voltages Conditions
Authors: H. Abaali, M. T. Lamchich, M. Raoufi
Abstract:
In this paper, we propose the Modified Synchronous Detection (MSD) Method for determining the reference compensating currents of the shunt active power filter under non sinusoidal voltages conditions. For controlling the inverter switching we used the PI regulator. The numerical simulation results, using Power System Blockset Toolbox PSB of Matlab, from a complete structure, are presented and discussed.
Keywords: Distorted, harmonic, Modified Synchronous Detection Method, PI regulator, Shunt Active Power Filter, unbalanced.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720354 Evaluation of Wavelet Filters for Image Compression
Authors: G. Sadashivappa, K. V. S. AnandaBabu
Abstract:
The aim of this paper to characterize a larger set of wavelet functions for implementation in a still image compression system using SPIHT algorithm. This paper discusses important features of wavelet functions and filters used in sub band coding to convert image into wavelet coefficients in MATLAB. Image quality is measured objectively using peak signal to noise ratio (PSNR) and its variation with bit rate (bpp). The effect of different parameters is studied on different wavelet functions. Our results provide a good reference for application designers of wavelet based coder.Keywords: Wavelet, image compression, sub band, SPIHT, PSNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227353 Signature Recognition Using Conjugate Gradient Neural Networks
Authors: Jamal Fathi Abu Hasna
Abstract:
There are two common methodologies to verify signatures: the functional approach and the parametric approach. This paper presents a new approach for dynamic handwritten signature verification (HSV) using the Neural Network with verification by the Conjugate Gradient Neural Network (NN). It is yet another avenue in the approach to HSV that is found to produce excellent results when compared with other methods of dynamic. Experimental results show the system is insensitive to the order of base-classifiers and gets a high verification ratio.Keywords: Signature Verification, MATLAB Software, Conjugate Gradient, Segmentation, Skilled Forgery, and Genuine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639352 Characterization of Indoor Power Lines as Data Communication Channels Experimental Details and Results
Authors: Sheroz Khan, A. F. Salami, W. A. Lawal, AHM Zahirul Alam, Shihab Abdel Hameed, M. J. E.Salami
Abstract:
In this paper, a multi-branch power line is modeled using ABCD matrix to show its worth as a communication channel. The model is simulated using MATLAB in an effort to investigate the effects of multiple loading, multipath, and those as a result of load mismatching. The channel transfer function is obtained and investigated using different cable lengths, and different number of bridge taps under given loading conditions.
Keywords: Power line Communication, Transfer Function, Channel Modeling, Signal Transmission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933351 Natural Flickering of Methane Diffusion Flames
Authors: K. R. V. Manikantachari, Vasudevan Raghavan, K. Srinivasan
Abstract:
Present study focuses on studying the oscillatory behavior of jet diffusion flames. At a particular jet exit velocity, the flames are seen to exhibit natural flickering. Initially the flickering process is not continuous. In this transition region as well as in the continuous flickering regime, the flickering displays multiple frequency oscillations. The response of the flame to the exit velocity profile of the burner is also studied using three types of burners. The entire range of natural flickering is investigated by capturing high speed digital images and processing them using a MATLAB code.Keywords: Diffusion flames, Natural flickering, flickering frequency, intermittent flickering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136350 Flow and Heat Transfer over a Shrinking Sheet: A Stability Analysis
Authors: Anuar Ishak
Abstract:
The characteristics of fluid flow and heat transfer over a permeable shrinking sheet is studied. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the suction parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.
Keywords: Dual solutions, heat transfer, shrinking sheet, stability analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017349 Direct Sequence Spread Spectrum Technique with Residue Number System
Authors: M. I. Youssef, A. E. Emam, M. Abd Elghany
Abstract:
In this paper, a residue number arithmetic is used in direct sequence spread spectrum system, this system is evaluated and the bit error probability of this system is compared to that of non residue number system. The effect of channel bandwidth, PN sequences, multipath effect and modulation scheme are studied. A Matlab program is developed to measure the signal-to-noise ratio (SNR), and the bit error probability for the various schemes.Keywords: Spread Spectrum, Direct sequence, Bit errorprobability and Residue number system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3652348 CACSC tool for Automatic Design of Robust Controllers for Hydropower Plants
Authors: Jose J.CarreñoZagarra, Rodolfo Villamizar Mejía
Abstract:
This work describes a CACSD tool for automatic design of robust controllers for hydraulic turbines. The tool calculates the optimal controller using the MATLAB hinfopt function and it serves as a practical and effective solution for the laborious task of designing a different controller for each type of turbine and generator, and different parameters and conditions of the plant. Results of the simulation of a generating unit subject to parameters variation show the accuracy and efficiency of the obtained robust controllers.Keywords: Robust Control, Hydroelectric System Turbine, Control H∞, CACSD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569