Search results for: Least Squares Support Vector
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2459

Search results for: Least Squares Support Vector

2159 Face Recognition Based On Vector Quantization Using Fuzzy Neuro Clustering

Authors: Elizabeth B. Varghese, M. Wilscy

Abstract:

A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame. A lot of algorithms have been proposed for face recognition. Vector Quantization (VQ) based face recognition is a novel approach for face recognition. Here a new codebook generation for VQ based face recognition using Integrated Adaptive Fuzzy Clustering (IAFC) is proposed. IAFC is a fuzzy neural network which incorporates a fuzzy learning rule into a competitive neural network. The performance of proposed algorithm is demonstrated by using publicly available AT&T database, Yale database, Indian Face database and a small face database, DCSKU database created in our lab. In all the databases the proposed approach got a higher recognition rate than most of the existing methods. In terms of Equal Error Rate (ERR) also the proposed codebook is better than the existing methods.

Keywords: Face Recognition, Vector Quantization, Integrated Adaptive Fuzzy Clustering, Self Organization Map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
2158 Comparative Analysis of Geographical Routing Protocol in Wireless Sensor Networks

Authors: Rahul Malhotra

Abstract:

The field of wireless sensor networks (WSN) engages a lot of associates in the research community as an interdisciplinary field of interest. This type of network is inexpensive, multifunctionally attributable to advances in micro-electromechanical systems and conjointly the explosion and expansion of wireless communications. A mobile ad hoc network is a wireless network without fastened infrastructure or federal management. Due to the infrastructure-less mode of operation, mobile ad-hoc networks are gaining quality. During this work, we have performed an efficient performance study of the two major routing protocols: Ad hoc On-Demand Distance Vector Routing (AODV) and Dynamic Source Routing (DSR) protocols. We have used an accurate simulation model supported NS2 for this purpose. Our simulation results showed that AODV mitigates the drawbacks of the DSDV and provides better performance as compared to DSDV.

Keywords: Routing protocols, mobility, Mobile Ad-hoc Networks, Ad-hoc On-demand Distance Vector, Dynamic Source Routing, Destination Sequence Distance Vector, Quality of Service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 707
2157 Local Image Descriptor using VQ-SIFT for Image Retrieval

Authors: Qiu Chen, Feifei Lee, Koji Kotani, Tadahiro Ohmi

Abstract:

In this paper, we present local image descriptor using VQ-SIFT for more effective and efficient image retrieval. Instead of SIFT's weighted orientation histograms, we apply vector quantization (VQ) histogram as an alternate representation for SIFT features. Experimental results show that SIFT features using VQ-based local descriptors can achieve better image retrieval accuracy than the conventional algorithm while the computational cost is significantly reduced.

Keywords: SIFT feature, Vector quantization histogram, Localdescriptor, Image retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2403
2156 Iterative Image Reconstruction for Sparse-View Computed Tomography via Total Variation Regularization and Dictionary Learning

Authors: XianYu Zhao, JinXu Guo

Abstract:

Recently, low-dose computed tomography (CT) has become highly desirable due to increasing attention to the potential risks of excessive radiation. For low-dose CT imaging, ensuring image quality while reducing radiation dose is a major challenge. To facilitate low-dose CT imaging, we propose an improved statistical iterative reconstruction scheme based on the Penalized Weighted Least Squares (PWLS) standard combined with total variation (TV) minimization and sparse dictionary learning (DL) to improve reconstruction performance. We call this method "PWLS-TV-DL". In order to evaluate the PWLS-TV-DL method, we performed experiments on digital phantoms and physical phantoms, respectively. The experimental results show that our method is in image quality and calculation. The efficiency is superior to other methods, which confirms the potential of its low-dose CT imaging.

Keywords: Low dose computed tomography, penalized weighted least squares, total variation, dictionary learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834
2155 Knowledge Relationship Model among User in Virtual Community

Authors: Fariba Haghbin, Othman Bin Ibrahim, Mohammad Reza Attarzadeh Niaki

Abstract:

With the development of virtual communities, there is an increase in the number of members in Virtual Communities (VCs). Many join VCs with the objective of sharing their knowledge and seeking knowledge from others. Despite the eagerness of sharing knowledge and receiving knowledge through VCs, there is no standard of assessing ones knowledge sharing capabilities and prospects of knowledge sharing. This paper developed a vector space model to assess the knowledge sharing prospect of VC users.

Keywords: Knowledge sharing network, Virtual community, knowledge relationship, Vector Space Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
2154 Fuzzy Logic Speed Control of Three Phase Induction Motor Drive

Authors: P.Tripura, Y.Srinivasa Kishore Babu

Abstract:

This paper presents an intelligent speed control system based on fuzzy logic for a voltage source PWM inverter-fed indirect vector controlled induction motor drive. Traditional indirect vector control system of induction motor introduces conventional PI regulator in outer speed loop; it is proved that the low precision of the speed regulator debases the performance of the whole system. To overcome this problem, replacement of PI controller by an intelligent controller based on fuzzy set theory is proposed. The performance of the intelligent controller has been investigated through digital simulation using MATLAB-SIMULINK package for different operating conditions such as sudden change in reference speed and load torque. The simulation results demonstrate that the performance of the proposed controller is better than that of the conventional PI controller.

Keywords: Fuzzy Logic, Intelligent controllers, Conventional PI controller, Induction motor drives, indirect vector control, Speed control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6499
2153 Automatically Driven Vector for Guidewire Segmentation in 2D and Biplane Fluoroscopy

Authors: Simon Lessard, Pascal Bigras, Caroline Lau, Daniel Roy, Gilles Soulez, Jacques A. de Guise

Abstract:

The segmentation of endovascular tools in fluoroscopy images can be accurately performed automatically or by minimum user intervention, using known modern techniques. It has been proven in literature, but no clinical implementation exists so far because the computational time requirements of such technology have not yet been met. A classical segmentation scheme is composed of edge enhancement filtering, line detection, and segmentation. A new method is presented that consists of a vector that propagates in the image to track an edge as it advances. The filtering is performed progressively in the projected path of the vector, whose orientation allows for oriented edge detection, and a minimal image area is globally filtered. Such an algorithm is rapidly computed and can be implemented in real-time applications. It was tested on medical fluoroscopy images from an endovascular cerebral intervention. Ex- periments showed that the 2D tracking was limited to guidewires without intersection crosspoints, while the 3D implementation was able to cope with such planar difficulties.

Keywords: Edge detection, Line Enhancement, Segmentation, Fluoroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
2152 Using the Technology Acceptance Model to Examine Seniors’ Attitudes toward Facebook

Authors: Chien-Jen Liu, Shu Ching Yang

Abstract:

Using the technology acceptance model (TAM), this study examined the external variables of technological complexity (TC) to acquire a better understanding of the factors that influence the acceptance of computer application courses by learners at Active Aging Universities. After the learners in this study had completed a 27-hour Facebook course, 44 learners responded to a modified TAM survey. Data were collected to examine the path relationships among the variables that influence the acceptance of Facebook-mediated community learning. The partial least squares (PLS) method was used to test the measurement and the structural model. The study results demonstrated that attitudes toward Facebook use directly influence behavioral intentions (BI) with respect to Facebook use, evincing a high prediction rate of 58.3%. In addition to the perceived usefulness (PU) and perceived ease of use (PEOU) measures that are proposed in the TAM, other external variables, such as TC, also indirectly influence BI. These four variables can explain 88% of the variance in BI and demonstrate a high level of predictive ability. Finally, limitations of this investigation and implications for further research are discussed.

Keywords: Technology acceptance model (TAM), technological complexity, partial least squares (PLS), perceived usefulness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3195
2151 DTC-SVM Scheme for Induction Motors Fedwith a Three-level Inverter

Authors: Ehsan Hassankhan, Davood A. Khaburi

Abstract:

Direct Torque Control is a control technique in AC drive systems to obtain high performance torque control. The conventional DTC drive contains a pair of hysteresis comparators. DTC drives utilizing hysteresis comparators suffer from high torque ripple and variable switching frequency. The most common solution to those problems is to use the space vector depends on the reference torque and flux. In this Paper The space vector modulation technique (SVPWM) is applied to 2 level inverter control in the proposed DTC-based induction motor drive system, thereby dramatically reducing the torque ripple. Then the controller based on space vector modulation is designed to be applied in the control of Induction Motor (IM) with a three-level Inverter. This type of Inverter has several advantages over the standard two-level VSI, such as a greater number of levels in the output voltage waveforms, Lower dV/dt, less harmonic distortion in voltage and current waveforms and lower switching frequencies. This paper proposes a general SVPWM algorithm for three-level based on standard two-level SVPWM. The proposed scheme is described clearly and simulation results are reported to demonstrate its effectiveness. The entire control scheme is implemented with Matlab/Simulink.

Keywords: Direct torque control, space vector Pulsewidthmodulation(SVPWM), neutral point clamped(NPC), two-levelinverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4396
2150 Frequency-Variation Based Method for Parameter Estimation of Transistor Amplifier

Authors: Akash Rathee, Harish Parthasarathy

Abstract:

In this paper, a frequency-variation based method has been proposed for transistor parameter estimation in a commonemitter transistor amplifier circuit. We design an algorithm to estimate the transistor parameters, based on noisy measurements of the output voltage when the input voltage is a sine wave of variable frequency and constant amplitude. The common emitter amplifier circuit has been modelled using the transistor Ebers-Moll equations and the perturbation technique has been used for separating the linear and nonlinear parts of the Ebers-Moll equations. This model of the amplifier has been used to determine the amplitude of the output sinusoid as a function of the frequency and the parameter vector. Then, applying the proposed method to the frequency components, the transistor parameters have been estimated. As compared to the conventional time-domain least squares method, the proposed method requires much less data storage and it results in more accurate parameter estimation, as it exploits the information in the time and frequency domain, simultaneously. The proposed method can be utilized for parameter estimation of an analog device in its operating range of frequencies, as it uses data collected from different frequencies output signals for parameter estimation.

Keywords: Perturbation Technique, Parameter estimation, frequency-variation based method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
2149 Implementing a Visual Servoing System for Robot Controlling

Authors: Maryam Vafadar, Alireza Behrad, Saeed Akbari

Abstract:

Nowadays, with the emerging of the new applications like robot control in image processing, artificial vision for visual servoing is a rapidly growing discipline and Human-machine interaction plays a significant role for controlling the robot. This paper presents a new algorithm based on spatio-temporal volumes for visual servoing aims to control robots. In this algorithm, after applying necessary pre-processing on video frames, a spatio-temporal volume is constructed for each gesture and feature vector is extracted. These volumes are then analyzed for matching in two consecutive stages. For hand gesture recognition and classification we tested different classifiers including k-Nearest neighbor, learning vector quantization and back propagation neural networks. We tested the proposed algorithm with the collected data set and results showed the correct gesture recognition rate of 99.58 percent. We also tested the algorithm with noisy images and algorithm showed the correct recognition rate of 97.92 percent in noisy images.

Keywords: Back propagation neural network, Feature vector, Hand gesture recognition, k-Nearest Neighbor, Learning vector quantization neural network, Robot control, Spatio-temporal volume, Visual servoing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
2148 Physical Conserved Quantities for the Axisymmetric Liquid, Free and Wall Jets

Authors: Rehana Naz, D. P. Mason, Fazal Mahomed

Abstract:

A systematic way to derive the conserved quantities for the axisymmetric liquid jet, free jet and wall jet using conservation laws is presented. The flow in axisymmetric jets is governed by Prandtl-s momentum boundary layer equation and the continuity equation. The multiplier approach is used to construct a basis of conserved vectors for the system of two partial differential equations for the two velocity components. The basis consists of two conserved vectors. By integrating the corresponding conservation laws across the jet and imposing the boundary conditions, conserved quantities are derived for the axisymmetric liquid and free jet. The multiplier approach applied to the third-order partial differential equation for the stream function yields two local conserved vectors one of which is a non-local conserved vector for the system. One of the conserved vectors gives the conserved quantity for the axisymmetric free jet but the conserved quantity for the wall jet is not obtained from the second conserved vector. The conserved quantity for the axisymmetric wall jet is derived from a non-local conserved vector of the third-order partial differential equation for the stream function. This non-local conserved vector for the third-order partial differential equation for the stream function is obtained by using the stream function as multiplier.

Keywords: Axisymmetric jet, liquid jet, free jet, wall jet, conservation laws, conserved quantity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
2147 Standard Deviation of Mean and Variance of Rows and Columns of Images for CBIR

Authors: H. B. Kekre, Kavita Patil

Abstract:

This paper describes a novel and effective approach to content-based image retrieval (CBIR) that represents each image in the database by a vector of feature values called “Standard deviation of mean vectors of color distribution of rows and columns of images for CBIR". In many areas of commerce, government, academia, and hospitals, large collections of digital images are being created. This paper describes the approach that uses contents as feature vector for retrieval of similar images. There are several classes of features that are used to specify queries: colour, texture, shape, spatial layout. Colour features are often easily obtained directly from the pixel intensities. In this paper feature extraction is done for the texture descriptor that is 'variance' and 'Variance of Variances'. First standard deviation of each row and column mean is calculated for R, G, and B planes. These six values are obtained for one image which acts as a feature vector. Secondly we calculate variance of the row and column of R, G and B planes of an image. Then six standard deviations of these variance sequences are calculated to form a feature vector of dimension six. We applied our approach to a database of 300 BMP images. We have determined the capability of automatic indexing by analyzing image content: color and texture as features and by applying a similarity measure Euclidean distance.

Keywords: Standard deviation Image retrieval, color distribution, Variance, Variance of Variance, Euclidean distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3746
2146 Comparative Analysis of SVPWM and the Standard PWM Technique for Three Level Diode Clamped Inverter fed Induction Motor

Authors: L. Lakhdari, B. Bouchiba, M. Bechar

Abstract:

The multi-level inverters present an important novelty in the field of energy control with high voltage and power. The major advantage of all multi-level inverters is the improvement and spectral quality of its generated output signals. In recent years, various pulse width modulation techniques have been developed. From these technics we have: Sinusoidal Pulse Width Modulation (SPWM) and Space Vector Pulse Width Modulation (SVPWM). This work presents a detailed analysis of the comparative advantage of space vector pulse width modulation (SVPWM) and the standard SPWM technique for Three Level Diode Clamped Inverter fed Induction Motor. The comparison is based on the evaluation of harmonic distortion THD.

Keywords: Induction motor, multi-level inverters, NPC inverter, sinusoidal pulse width modulation, space vector pulse width modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 978
2145 Human Action Recognition Based on Ridgelet Transform and SVM

Authors: A. Ouanane, A. Serir

Abstract:

In this paper, a novel algorithm based on Ridgelet Transform and support vector machine is proposed for human action recognition. The Ridgelet transform is a directional multi-resolution transform and it is more suitable for describing the human action by performing its directional information to form spatial features vectors. The dynamic transition between the spatial features is carried out using both the Principal Component Analysis and clustering algorithm K-means. First, the Principal Component Analysis is used to reduce the dimensionality of the obtained vectors. Then, the kmeans algorithm is then used to perform the obtained vectors to form the spatio-temporal pattern, called set-of-labels, according to given periodicity of human action. Finally, a Support Machine classifier is used to discriminate between the different human actions. Different tests are conducted on popular Datasets, such as Weizmann and KTH. The obtained results show that the proposed method provides more significant accuracy rate and it drives more robustness in very challenging situations such as lighting changes, scaling and dynamic environment

Keywords: Human action, Ridgelet Transform, PCA, K-means, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
2144 A Study on the Differential Diagnostic Model for Newborn Hearing Loss Screening

Authors: Chun-Lang Chang

Abstract:

According to the statistics, the prevalence of congenital hearing loss in Taiwan is approximately six thousandths; furthermore, one thousandths of infants have severe hearing impairment. Hearing ability during infancy has significant impact in the development of children-s oral expressions, language maturity, cognitive performance, education ability and social behaviors in the future. Although most children born with hearing impairment have sensorineural hearing loss, almost every child more or less still retains some residual hearing. If provided with a hearing aid or cochlear implant (a bionic ear) timely in addition to hearing speech training, even severely hearing-impaired children can still learn to talk. On the other hand, those who failed to be diagnosed and thus unable to begin hearing and speech rehabilitations on a timely manner might lose an important opportunity to live a complete and healthy life. Eventually, the lack of hearing and speaking ability will affect the development of both mental and physical functions, intelligence, and social adaptability. Not only will this problem result in an irreparable regret to the hearing-impaired child for the life time, but also create a heavy burden for the family and society. Therefore, it is necessary to establish a set of computer-assisted predictive model that can accurately detect and help diagnose newborn hearing loss so that early interventions can be provided timely to eliminate waste of medical resources. This study uses information from the neonatal database of the case hospital as the subjects, adopting two different analysis methods of using support vector machine (SVM) for model predictions and using logistic regression to conduct factor screening prior to model predictions in SVM to examine the results. The results indicate that prediction accuracy is as high as 96.43% when the factors are screened and selected through logistic regression. Hence, the model constructed in this study will have real help in clinical diagnosis for the physicians and actually beneficial to the early interventions of newborn hearing impairment.

Keywords: Data mining, Hearing impairment, Logistic regression analysis, Support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
2143 E-Learning Network Support Services: A Comparative Case Study of Australian and United States Universities

Authors: Sayed Hadi Sadeghi

Abstract:

This research study examines the current state of support services for e-network practice in an Australian and an American university. It identifies information that will be of assistance to Australian and American universities to improve their existing online programs. The study investigated the two universities using a quantitative methodological approach. Participants were students, lecturers and admins of universities engaged with online courses and learning management systems. The support services for e-network practice variables, namely academic support services, administrative support and technical support, were investigated for e-practice. Evaluations of e-network support service and its sub factors were above average and excellent in both countries, although the American admins and lecturers tended to evaluate this factor higher than others did. Support practice was evaluated higher by all participants of an American university than by Australians. One explanation for the results may be that most suppliers of the Australian university e-learning system were from eastern Asian cultural backgrounds with a western networking support perspective about e-learning.

Keywords: Support services, e-network practice, Australian universities, United States universities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 987
2142 Single Spectrum End Point Predict of BOF with SVM

Authors: Ling-fei Xu, Qi Zhao, Yan-ru Chen, Mu-chun Zhou, Meng Zhang, Shi-xue Xu

Abstract:

SVM ( Support Vector Machine ) is a new method in the artificial neural network ( ANN ). In the steel making, how to use computer to predict the end point of BOF accuracy is a great problem. A lot of method and theory have been claimed, but most of the results is not satisfied. Now the hot topic in the BOF end point predicting is to use optical way the predict the end point in the BOF. And we found that there exist some regular in the characteristic curve of the flame from the mouse of pudding. And we can use SVM to predict end point of the BOF, just single spectrum intensity should be required as the input parameter. Moreover, its compatibility for the input space is better than the BP network.

Keywords: SVM, predict, BOF, single spectrum intensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
2141 Improved Computational Efficiency of Machine Learning Algorithms Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK

Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick

Abstract:

The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning (ML) archetypal that could forecast the COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID-19 cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organization (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data are split into 8:2 ratio for training and testing purposes to forecast future new COVID-19 cases. Support Vector Machine (SVM), Random Forest (RF), and linear regression (LR) algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID-19 cases is evaluated. RF outperformed the other two ML algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n = 30. The mean square error obtained for RF is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis, RF algorithm can perform more effectively and efficiently in predicting the new COVID-19 cases, which could help the health sector to take relevant control measures for the spread of the virus.

Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172
2140 Investigation of Wave Atom Sub-Bands via Breast Cancer Classification

Authors: Nebi Gedik, Ayten Atasoy

Abstract:

This paper investigates successful sub-bands of wave atom transform via classification of mammograms, when the coefficients of sub-bands are used as features. A computer-aided diagnosis system is constructed by using wave atom transform, support vector machine and k-nearest neighbor classifiers. Two-class classification is studied in detail using two data sets, separately. The successful sub-bands are determined according to the accuracy rates, coefficient numbers, and sensitivity rates.

Keywords: Breast cancer, wave atom transform, SVM, k-NN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
2139 Design of Saddle Support for Horizontal Pressure Vessel

Authors: Vinod Kumar, Navin Kumar, Surjit Angra, Prince Sharma

Abstract:

This paper presents the design analysis of saddle support of a horizontal pressure vessel. Since saddle have the vital role to support the pressure vessel and to maintain its stability, it should be designed in such a way that it can afford the vessel load and internal pressure of the vessel due to liquid contained in the vessel. A model of horizontal pressure vessel and saddle support is created in ANSYS. Stresses are calculated using mathematical approach and ANSYS software. The analysis reveals the zone of high localized stress at the junction part of the pressure vessel and saddle support due to operating conditions. The results obtained by both the methods are compared with allowable stress value for safe designing.

Keywords: ANSYS, Pressure Vessel, Saddle, Support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26141
2138 Construction of Space-Filling Designs for Three Input Variables Computer Experiments

Authors: Kazeem A. Osuolale, Waheed B. Yahya, Babatunde L. Adeleke

Abstract:

Latin hypercube designs (LHDs) have been applied in many computer experiments among the space-filling designs found in the literature. A LHD can be randomly generated but a randomly chosen LHD may have bad properties and thus act poorly in estimation and prediction. There is a connection between Latin squares and orthogonal arrays (OAs). A Latin square of order s involves an arrangement of s symbols in s rows and s columns, such that every symbol occurs once in each row and once in each column and this exists for every non-negative integer s. In this paper, a computer program was written to construct orthogonal array-based Latin hypercube designs (OA-LHDs). Orthogonal arrays (OAs) were constructed from Latin square of order s and the OAs constructed were afterward used to construct the desired Latin hypercube designs for three input variables for use in computer experiments. The LHDs constructed have better space-filling properties and they can be used in computer experiments that involve only three input factors. MATLAB 2012a computer package (www.mathworks.com/) was used for the development of the program that constructs the designs.

Keywords: Computer Experiments, Latin Squares, Latin Hypercube Designs, Orthogonal Array, Space-filling Designs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
2137 Evaluation Factors of Clinical Decision Support System in u_Healthcare Service

Authors: Sun K. Yoo, Ki-Chang Nam, Hyun-Young Shin, Ho-Seong Moon, Hee Cheol Kang

Abstract:

Automated intelligent, clinical decision support systems generally promote to help or to assist physicians and patients regarding to prevention of diseases or treatment of illnesses using computer represented knowledge and information. In this paper, assessment factors affecting the proper design of clinical decision support system were investigated. The required procedure steps for gathering the data from clinical trial and extracting the information from large volume of healthcare repositories were listed, which are necessary for validation and verification of evidence-based implementation of clinical decision support system. The goal of this paper is to extract useful evaluation factors affecting the quality of the clinical decision support system in the design, development, and implementation of a computer-based decision support system.

Keywords: Evaluation, Clinical Decision Support System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237
2136 Acceleration Analysis of a Rotating Body

Authors: R. Usubamatov

Abstract:

The velocity of a moving point in a general path is the vector quantity, which has both magnitude and direction. The magnitude or the direction of the velocity vector can change over time as a result of acceleration that the time rate of velocity changes. Acceleration analysis is important because inertial forces and inertial torques are proportional to rectilinear and angular accelerations accordingly. The loads must be determined in advance to ensure that a machine is adequately designed to handle these dynamic loads. For planar motion, the vector direction of acceleration is commonly separated into two elements: tangential and centripetal or radial components of a point on a rotating body. All textbooks in physics, kinematics and dynamics of machinery consider the magnitude of a radial acceleration at condition when a point rotates with a constant angular velocity and it means without acceleration. The magnitude of the tangential acceleration considered on a basis of acceleration for a rotating point. Such condition of presentation of magnitudes for two components of acceleration logically and mathematically is not correct and may cause further confusion in calculation. This paper presents new analytical expressions of the radial and absolute accelerations of a rotating point with acceleration and covers the gap in theoretical study of acceleration analysis.

Keywords: acceleration analysis, kinematics of mechanisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2695
2135 A Supervised Text-Independent Speaker Recognition Approach

Authors: Tudor Barbu

Abstract:

We provide a supervised speech-independent voice recognition technique in this paper. In the feature extraction stage we propose a mel-cepstral based approach. Our feature vector classification method uses a special nonlinear metric, derived from the Hausdorff distance for sets, and a minimum mean distance classifier.

Keywords: Text-independent speaker recognition, mel cepstral analysis, speech feature vector, Hausdorff-based metric, supervised classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
2134 Optimal Control Strategy for High Performance EV Interior Permanent Magnet Synchronous Motor

Authors: Mehdi Karbalaye Zadeh, Ehsan M. Siavashi

Abstract:

The controllable electrical loss which consists of the copper loss and iron loss can be minimized by the optimal control of the armature current vector. The control algorithm of current vector minimizing the electrical loss is proposed and the optimal current vector can be decided according to the operating speed and the load conditions. The proposed control algorithm is applied to the experimental PM motor drive system and this paper presents a modern approach of speed control for permanent magnet synchronous motor (PMSM) applied for Electric Vehicle using a nonlinear control. The regulation algorithms are based on the feedback linearization technique. The direct component of the current is controlled to be zero which insures the maximum torque operation. The near unity power factor operation is also achieved. More over, among EV-s motor electric propulsion features, the energy efficiency is a basic characteristic that is influenced by vehicle dynamics and system architecture. For this reason, the EV dynamics are taken into account.

Keywords: PMSM, Electric Vehicle, Optimal control, Traction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
2133 Comparing SVM and Naïve Bayes Classifier for Automatic Microaneurysm Detections

Authors: A. Sopharak, B. Uyyanonvara, S. Barman

Abstract:

Diabetic retinopathy is characterized by the development of retinal microaneurysms. The damage can be prevented if disease is treated in its early stages. In this paper, we are comparing Support Vector Machine (SVM) and Naïve Bayes (NB) classifiers for automatic microaneurysm detection in images acquired through non-dilated pupils. The Nearest Neighbor classifier is used as a baseline for comparison. Detected microaneurysms are validated with expert ophthalmologists’ hand-drawn ground-truths. The sensitivity, specificity, precision and accuracy of each method are also compared.

Keywords: Diabetic retinopathy, microaneurysm, Naïve Bayes classifier, SVM classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6106
2132 Data Hiding by Vector Quantization in Color Image

Authors: Yung-Gi Wu

Abstract:

With the growing of computer and network, digital data can be spread to anywhere in the world quickly. In addition, digital data can also be copied or tampered easily so that the security issue becomes an important topic in the protection of digital data. Digital watermark is a method to protect the ownership of digital data. Embedding the watermark will influence the quality certainly. In this paper, Vector Quantization (VQ) is used to embed the watermark into the image to fulfill the goal of data hiding. This kind of watermarking is invisible which means that the users will not conscious the existing of embedded watermark even though the embedded image has tiny difference compared to the original image. Meanwhile, VQ needs a lot of computation burden so that we adopt a fast VQ encoding scheme by partial distortion searching (PDS) and mean approximation scheme to speed up the data hiding process. The watermarks we hide to the image could be gray, bi-level and color images. Texts are also can be regarded as watermark to embed. In order to test the robustness of the system, we adopt Photoshop to fulfill sharpen, cropping and altering to check if the extracted watermark is still recognizable. Experimental results demonstrate that the proposed system can resist the above three kinds of tampering in general cases.

Keywords: Data hiding, vector quantization, watermark.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
2131 Evaluation of Best-Fit Probability Distribution for Prediction of Extreme Hydrologic Phenomena

Authors: Karim Hamidi Machekposhti, Hossein Sedghi

Abstract:

The probability distributions are the best method for forecasting of extreme hydrologic phenomena such as rainfall and flood flows. In this research, in order to determine suitable probability distribution for estimating of annual extreme rainfall and flood flows (discharge) series with different return periods, precipitation with 40 and discharge with 58 years time period had been collected from Karkheh River at Iran. After homogeneity and adequacy tests, data have been analyzed by Stormwater Management and Design Aid (SMADA) software and residual sum of squares (R.S.S). The best probability distribution was Log Pearson Type III with R.S.S value (145.91) and value (13.67) for peak discharge and Log Pearson Type III with R.S.S values (141.08) and (8.95) for maximum discharge in Jelogir Majin and Pole Zal stations, respectively. The best distribution for maximum precipitation in Jelogir Majin and Pole Zal stations was Log Pearson Type III distribution with R.S.S values (1.74&1.90) and then Pearson Type III distribution with R.S.S values (1.53&1.69). Overall, the Log Pearson Type III distributions are acceptable distribution types for representing statistics of extreme hydrologic phenomena in Karkheh River at Iran with the Pearson Type III distribution as a potential alternative.

Keywords: Karkheh river, log pearson type III, probability distribution, residual sum of squares.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 881
2130 Fast Codevector Search Algorithm for 3-D Vector Quantized Codebook

Authors: H. B. Kekre, Tanuja K. Sarode

Abstract:

This paper presents a very simple and efficient algorithm for codebook search, which reduces a great deal of computation as compared to the full codebook search. The algorithm is based on sorting and centroid technique for search. The results table shows the effectiveness of the proposed algorithm in terms of computational complexity. In this paper we also introduce a new performance parameter named as Average fractional change in pixel value as we feel that it gives better understanding of the closeness of the image since it is related to the perception. This new performance parameter takes into consideration the average fractional change in each pixel value.

Keywords: Vector Quantization, Data Compression, Encoding, Searching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612