Search results for: Decision Based Algorithm
13249 A New Objective Weight on Interval Type-2 Fuzzy Sets
Authors: Nurnadiah Z., Lazim A.
Abstract:
The design of weight is one of the important parts in fuzzy decision making, as it would have a deep effect on the evaluation results. Entropy is one of the weight measure based on objective evaluation. Non--probabilistic-type entropy measures for fuzzy set and interval type-2 fuzzy sets (IT2FS) have been developed and applied to weight measure. Since the entropy for (IT2FS) for decision making yet to be explored, this paper proposes a new objective weight method by using entropy weight method for multiple attribute decision making (MADM). This paper utilizes the nature of IT2FS concept in the evaluation process to assess the attribute weight based on the credibility of data. An example was presented to demonstrate the feasibility of the new method in decision making. The entropy measure of interval type-2 fuzzy sets yield flexible judgment and could be applied in decision making environment.Keywords: Objective weight, entropy weight, multiple attributedecision making, type-2 fuzzy sets, interval type-2 fuzzy sets
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166013248 HelpMeBreathe: A Web-Based System for Asthma Management
Authors: Alia Al Rayssi, Mahra Al Marar, Alyazia Alkhaili, Reem Al Dhaheri, Shayma Alkobaisi, Hoda Amer
Abstract:
We present in this paper a web-based system called “HelpMeBreathe” for managing asthma. The proposed system provides analytical tools, which allow better understanding of environmental triggers of asthma, hence better support of data-driven decision making. The developed system provides warning messages to a specific asthma patient if the weather in his/her area might cause any difficulty in breathing or could trigger an asthma attack. HelpMeBreathe collects, stores, and analyzes individuals’ moving trajectories and health conditions as well as environmental data. It then processes and displays the patients’ data through an analytical tool that leads to an effective decision making by physicians and other decision makers.
Keywords: Asthma, environmental triggers, map interface, peak flow, web-based system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 86913247 Using the Polynomial Approximation Algorithm in the Algorithm 2 for Manipulator's Control in an Unknown Environment
Authors: Pavel K. Lopatin, Artyom S. Yegorov
Abstract:
The Algorithm 2 for a n-link manipulator movement amidst arbitrary unknown static obstacles for a case when a sensor system supplies information about local neighborhoods of different points in the configuration space is presented. The Algorithm 2 guarantees the reaching of a target position in a finite number of steps. The Algorithm 2 is reduced to a finite number of calls of a subroutine for planning a trajectory in the presence of known forbidden states. The polynomial approximation algorithm which is used as the subroutine is presented. The results of the Algorithm2 implementation are given.
Keywords: Manipulator, trajectory planning, unknown obstacles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 124013246 Fighter Aircraft Evaluation and Selection Process Based on Triangular Fuzzy Numbers in Multiple Criteria Decision Making Analysis Using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
Authors: C. Ardil
Abstract:
This article presents a multiple criteria evaluation approach to uncertainty, vagueness, and imprecision analysis for ranking alternatives with fuzzy data for decision making using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The fighter aircraft evaluation and selection decision making problem is modeled in a fuzzy environment with triangular fuzzy numbers. The fuzzy decision information related to the fighter aircraft selection problem is taken into account in ordering the alternatives and selecting the best candidate. The basic fuzzy TOPSIS procedure steps transform fuzzy decision matrices into matrices of alternatives evaluated according to all decision criteria. A practical numerical example illustrates the proposed approach to the fighter aircraft selection problem.
Keywords: triangular fuzzy number (TFN), multiple criteria decision making analysis, decision making, aircraft selection, MCDMA, fuzzy TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47313245 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification
Authors: Cemil Turan, Mohammad Shukri Salman
Abstract:
The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.Keywords: Adaptive filtering, sparse system identification, VSSLMS algorithm, TD-LMS algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 100013244 IIR Filter design with Craziness based Particle Swarm Optimization Technique
Authors: Suman Kumar Saha, Rajib Kar, Durbadal Mandal, S. P. Ghoshal
Abstract:
This paper demonstrates the application of craziness based particle swarm optimization (CRPSO) technique for designing the 8th order low pass Infinite Impulse Response (IIR) filter. CRPSO, the much improved version of PSO, is a population based global heuristic search algorithm which finds near optimal solution in terms of a set of filter coefficients. Effectiveness of this algorithm is justified with a comparative study of some well established algorithms, namely, real coded genetic algorithm (RGA) and particle swarm optimization (PSO). Simulation results affirm that the proposed algorithm CRPSO, outperforms over its counterparts not only in terms of quality output i.e. sharpness at cut-off, pass band ripple, stop band ripple, and stop band attenuation but also in convergence speed with assured stability.
Keywords: IIR Filter, RGA, PSO, CRPSO, Evolutionary Optimization Techniques, Low Pass (LP) Filter, Magnitude Response, Pole-Zero Plot, Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 257613243 Using Single Decision Tree to Assess the Impact of Cutting Conditions on Vibration
Authors: S. Ghorbani, N. I. Polushin
Abstract:
Vibration during machining process is crucial since it affects cutting tool, machine, and workpiece leading to a tool wear, tool breakage, and an unacceptable surface roughness. This paper applies a nonparametric statistical method, single decision tree (SDT), to identify factors affecting on vibration in machining process. Workpiece material (AISI 1045 Steel, AA2024 Aluminum alloy, A48-class30 Gray Cast Iron), cutting tool (conventional, cutting tool with holes in toolholder, cutting tool filled up with epoxy-granite), tool overhang (41-65 mm), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev) and depth of cut (0.05-0.15 mm) were used as input variables, while vibration was the output parameter. It is concluded that workpiece material is the most important parameters for natural frequency followed by cutting tool and overhang.Keywords: Cutting condition, vibration, natural frequency, decision tree, CART algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143413242 Bitrate Reduction Using FMO for Video Streaming over Packet Networks
Authors: Le Thanh Ha, Hye-Soo Kim, Chun-Su Park, Seung-Won Jung, Sung-Jea Ko
Abstract:
Flexible macroblock ordering (FMO), adopted in the H.264 standard, allows to partition all macroblocks (MBs) in a frame into separate groups of MBs called Slice Groups (SGs). FMO can not only support error-resilience, but also control the size of video packets for different network types. However, it is well-known that the number of bits required for encoding the frame is increased by adopting FMO. In this paper, we propose a novel algorithm that can reduce the bitrate overhead caused by utilizing FMO. In the proposed algorithm, all MBs are grouped in SGs based on the similarity of the transform coefficients. Experimental results show that our algorithm can reduce the bitrate as compared with conventional FMO.Keywords: Data Partition, Entropy Coding, Greedy Algorithm, H.264/AVC, Slice Group.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 130613241 SDVAR Algorithm for Detecting Fraud in Telecommunications
Authors: Fatimah Almah Saaid, Darfiana Nur, Robert King
Abstract:
This paper presents a procedure for estimating VAR using Sequential Discounting VAR (SDVAR) algorithm for online model learning to detect fraudulent acts using the telecommunications call detailed records (CDR). The volatility of the VAR is observed allowing for non-linearity, outliers and change points based on the works of [1]. This paper extends their procedure from univariate to multivariate time series. A simulation and a case study for detecting telecommunications fraud using CDR illustrate the use of the algorithm in the bivariate setting.Keywords: Telecommunications Fraud, SDVAR Algorithm, Multivariate time series, Vector Autoregressive, Change points.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 225613240 A New Self-stabilizing Algorithm for Maximal 2-packing
Authors: Zhengnan Shi
Abstract:
In the self-stabilizing algorithmic paradigm, each node has a local view of the system, in a finite amount of time the system converges to a global state with desired property. In a graph G = (V, E), a subset S C V is a 2-packing if Vi c V: IN[i] n SI <1. In this paper, an ID-based, constant space, self-stabilizing algorithm that stabilizes to a maximal 2-packing in an arbitrary graph is proposed. It is shown that the algorithm stabilizes in 0(n3) moves under any scheduler (daemon). Specifically, it is shown that the algorithm stabilizes in linear time-steps under a synchronous daemon where every privileged node moves at each time-step.Keywords: self-stabilization, 2-packing, distributed computing, fault tolerance, graph algorithms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166813239 Optimal Grid Scheduling Using Improved Artificial Bee Colony Algorithm
Authors: T. Vigneswari, M. A. Maluk Mohamed
Abstract:
Job Scheduling plays an important role for efficient utilization of grid resources available across different domains and geographical zones. Scheduling of jobs is challenging and NPcomplete. Evolutionary / Swarm Intelligence algorithms have been extensively used to address the NP problem in grid scheduling. Artificial Bee Colony (ABC) has been proposed for optimization problems based on foraging behaviour of bees. This work proposes a modified ABC algorithm, Cluster Heterogeneous Earliest First Min- Min Artificial Bee Colony (CHMM-ABC), to optimally schedule jobs for the available resources. The proposed model utilizes a novel Heterogeneous Earliest Finish Time (HEFT) Heuristic Algorithm along with Min-Min algorithm to identify the initial food source. Simulation results show the performance improvement of the proposed algorithm over other swarm intelligence techniques.
Keywords: Grid Computing, Grid Scheduling, Heterogeneous Earliest Finish Time (HEFT), Artificial Bee colony (ABC) Algorithm, Resource Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 310413238 Plant Location Selection by Using a Three-Step Methodology: Delphi-AHP-VIKOR
Authors: B. Vahdani, S. M. Mousavi, R. Tavakkoli-Moghaddam
Abstract:
Nowadays, the plant location selection has a critical impact on the performance of numerous companies. In this paper, a methodology is presented to solve this problem. The three decision making methods, namely Delphi, AHP and improved VIKOR, are hybridized in order to make the best use of information available based on the decision makers or experts. In this respect, the aim of using Delphi is to select the most influential criteria by a few decision makers. The AHP is utilized to give weights of the selected criteria. Finally, the improved VIKOR method is applied to rank alternatives. At the end of paper, an application example demonstrates the applicability of the proposed methodology.Keywords: Decision making, Plant location selection, Delphi, AHP, Improved VIKOR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 397613237 Critical Analysis of Decision Making Experience with a Machine Learning Approach in Playing Ayo Game
Authors: Ibidapo O. Akinyemi, Ezekiel F. Adebiyi, Harrison O. D. Longe
Abstract:
The major goal in defining and examining game scenarios is to find good strategies as solutions to the game. A plausible solution is a recommendation to the players on how to play the game, which is represented as strategies guided by the various choices available to the players. These choices invariably compel the players (decision makers) to execute an action following some conscious tactics. In this paper, we proposed a refinement-based heuristic as a machine learning technique for human-like decision making in playing Ayo game. The result showed that our machine learning technique is more adaptable and more responsive in making decision than human intelligence. The technique has the advantage that a search is astutely conducted in a shallow horizon game tree. Our simulation was tested against Awale shareware and an appealing result was obtained.Keywords: Decision making, Machine learning, Strategy, Ayo game.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 129213236 Fast Codevector Search Algorithm for 3-D Vector Quantized Codebook
Authors: H. B. Kekre, Tanuja K. Sarode
Abstract:
This paper presents a very simple and efficient algorithm for codebook search, which reduces a great deal of computation as compared to the full codebook search. The algorithm is based on sorting and centroid technique for search. The results table shows the effectiveness of the proposed algorithm in terms of computational complexity. In this paper we also introduce a new performance parameter named as Average fractional change in pixel value as we feel that it gives better understanding of the closeness of the image since it is related to the perception. This new performance parameter takes into consideration the average fractional change in each pixel value.Keywords: Vector Quantization, Data Compression, Encoding, Searching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161313235 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm
Authors: Mohammadhosein Hasanbeig, Lacra Pavel
Abstract:
In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.Keywords: Distributed control, game theory, multi-agent learning, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 97313234 A Novel Deinterlacing Algorithm Based on Adaptive Polynomial Interpolation
Authors: Seung-Won Jung, Hye-Soo Kim, Le Thanh Ha, Seung-Jin Baek, Sung-Jea Ko
Abstract:
In this paper, a novel deinterlacing algorithm is proposed. The proposed algorithm approximates the distribution of the luminance into a polynomial function. Instead of using one polynomial function for all pixels, different polynomial functions are used for the uniform, texture, and directional edge regions. The function coefficients for each region are computed by matrix multiplications. Experimental results demonstrate that the proposed method performs better than the conventional algorithms.Keywords: Deinterlacing, polynomial interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138213233 On the EM Algorithm and Bootstrap Approach Combination for Improving Satellite Image Fusion
Authors: Tijani Delleji, Mourad Zribi, Ahmed Ben Hamida
Abstract:
This paper discusses EM algorithm and Bootstrap approach combination applied for the improvement of the satellite image fusion process. This novel satellite image fusion method based on estimation theory EM algorithm and reinforced by Bootstrap approach was successfully implemented and tested. The sensor images are firstly split by a Bayesian segmentation method to determine a joint region map for the fused image. Then, we use the EM algorithm in conjunction with the Bootstrap approach to develop the bootstrap EM fusion algorithm, hence producing the fused targeted image. We proposed in this research to estimate the statistical parameters from some iterative equations of the EM algorithm relying on a reference of representative Bootstrap samples of images. Sizes of those samples are determined from a new criterion called 'hybrid criterion'. Consequently, the obtained results of our work show that using the Bootstrap EM (BEM) in image fusion improve performances of estimated parameters which involve amelioration of the fused image quality; and reduce the computing time during the fusion process.Keywords: Satellite image fusion, Bayesian segmentation, Bootstrap approach, EM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 226013232 e Collaborative Decisions – a DSS for Academic Environment
Authors: C. Oprean, C. V. Kifor, S. C. Negulescu, C. Candea, L. Oprean, C. Oprean, S. Kifor
Abstract:
This paper presents an innovative approach within the area of Group Decision Support System (GDSS) by using tools based on intelligent agents. It introduces iGDSS, a software platform for decision support and collaboration and an application of this platform - eCollaborative Decisions - for academic environment, all these developed within a framework of a research project.
Keywords: Group Decision Support System, Managerial Academic Decisions, Computer Interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169413231 Agreement Options on Multi Criteria Group Decision and Negotiation
Authors: Christiono Utomo, Arazi Idrus, Madzlan Napiah, Mohd. Faris Khamidi
Abstract:
This paper presents a conceptual model of agreement options on negotiation support for civil engineering decision. The negotiation support facilitates the solving of group choice decision making problems in civil engineering decision to reduce the impact of mud volcano disaster in Sidoarjo, Indonesia. The approach based on application of analytical hierarchy process (AHP) method for multi criteria decision on three level of decision hierarchy. Decisions for reducing impact is very complicated since many parties involved in a critical time. Where a number of stakeholders are involved in choosing a single alternative from a set of solution alternatives, there are different concern caused by differing stakeholder preferences, experiences, and background. Therefore, a group choice decision support is required to enable each stakeholder to evaluate and rank the solution alternatives before engaging into negotiation with the other stakeholders. Such civil engineering solutions as alternatives are referred to as agreement options that are determined by identifying the possible stakeholder choice, followed by determining the optimal solution for each group of stakeholder. Determination of the optimal solution is based on a game theory model of n-person general sum game with complete information that involves forming coalitions among stakeholders.Keywords: Agreement options, AHP, agent, negotiation, multicriteria, game theory, and coalition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164213230 A New Method in Detection of Ceramic Tiles Color Defects Using Genetic C-Means Algorithm
Authors: Mahkameh S. Mostafavi
Abstract:
In this paper an algorithm is used to detect the color defects of ceramic tiles. First the image of a normal tile is clustered using GCMA; Genetic C-means Clustering Algorithm; those results in best cluster centers. C-means is a common clustering algorithm which optimizes an objective function, based on a measure between data points and the cluster centers in the data space. Here the objective function describes the mean square error. After finding the best centers, each pixel of the image is assigned to the cluster with closest cluster center. Then, the maximum errors of clusters are computed. For each cluster, max error is the maximum distance between its center and all the pixels which belong to it. After computing errors all the pixels of defected tile image are clustered based on the centers obtained from normal tile image in previous stage. Pixels which their distance from their cluster center is more than the maximum error of that cluster are considered as defected pixels.
Keywords: C-Means algorithm, color spaces, Genetic Algorithm, image clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165213229 A Method to Compute Efficient 3D Helicopters Flight Trajectories Based on a Motion Polymorph-Primitives Algorithm
Authors: Konstanca Nikolajevic, Nicolas Belanger, David Duvivier, Rabie Ben Atitallah, Abdelhakim Artiba
Abstract:
Finding the optimal 3D path of an aerial vehicle under flight mechanics constraints is a major challenge, especially when the algorithm has to produce real time results in flight. Kinematics models and Pythagorian Hodograph curves have been widely used in mobile robotics to solve this problematic. The level of difficulty is mainly driven by the number of constraints to be saturated at the same time while minimizing the total length of the path. In this paper, we suggest a pragmatic algorithm capable of saturating at the same time most of dimensioning helicopter 3D trajectories’ constraints like: curvature, curvature derivative, torsion, torsion derivative, climb angle, climb angle derivative, positions. The trajectories generation algorithm is able to generate versatile complex 3D motion primitives feasible by a helicopter with parameterization of the curvature and the climb angle. An upper ”motion primitives’ concatenation” algorithm is presented based. In this article we introduce a new way of designing three-dimensional trajectories based on what we call the ”Dubins gliding symmetry conjecture”. This extremely performing algorithm will be soon integrated to a real-time decisional system dealing with inflight safety issues.Keywords: Aerial robots, Motion primitives, Robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 218113228 Further Investigations on Higher Mathematics Scores for Chinese University Students
Authors: Xun Ge
Abstract:
Recently, X. Ge and J. Qian investigated some relations between higher mathematics scores and calculus scores (resp. linear algebra scores, probability statistics scores) for Chinese university students. Based on rough-set theory, they established an information system S = (U,CuD,V, f). In this information system, higher mathematics score was taken as a decision attribute and calculus score, linear algebra score, probability statistics score were taken as condition attributes. They investigated importance of each condition attribute with respective to decision attribute and strength of each condition attribute supporting decision attribute. In this paper, we give further investigations for this issue. Based on the above information system S = (U, CU D, V, f), we analyze the decision rules between condition and decision granules. For each x E U, we obtain support (resp. strength, certainty factor, coverage factor) of the decision rule C —>x D, where C —>x D is the decision rule induced by x in S = (U, CU D, V, f). Results of this paper gives new analysis of on higher mathematics scores for Chinese university students, which can further lead Chinese university students to raise higher mathematics scores in Chinese graduate student entrance examination.
Keywords: Rough set, support, strength, certainty factor, coverage factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136913227 Approximation Incremental Training Algorithm Based on a Changeable Training Set
Authors: Yi-Fan Zhu, Wei Zhang, Xuan Zhou, Qun Li, Yong-Lin Lei
Abstract:
The quick training algorithms and accurate solution procedure for incremental learning aim at improving the efficiency of training of SVR, whereas there are some disadvantages for them, i.e. the nonconvergence of the formers for changeable training set and the inefficiency of the latter for a massive dataset. In order to handle the problems, a new training algorithm for a changeable training set, named Approximation Incremental Training Algorithm (AITA), was proposed. This paper explored the reason of nonconvergence theoretically and discussed the realization of AITA, and finally demonstrated the benefits of AITA both on precision and efficiency.Keywords: support vector regression, incremental learning, changeable training set, quick training algorithm, accurate solutionprocedure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148413226 Genetic Algorithm for Feature Subset Selection with Exploitation of Feature Correlations from Continuous Wavelet Transform: a real-case Application
Authors: G. Van Dijck, M. M. Van Hulle, M. Wevers
Abstract:
A genetic algorithm (GA) based feature subset selection algorithm is proposed in which the correlation structure of the features is exploited. The subset of features is validated according to the classification performance. Features derived from the continuous wavelet transform are potentially strongly correlated. GA-s that do not take the correlation structure of features into account are inefficient. The proposed algorithm forms clusters of correlated features and searches for a good candidate set of clusters. Secondly a search within the clusters is performed. Different simulations of the algorithm on a real-case data set with strong correlations between features show the increased classification performance. Comparison is performed with a standard GA without use of the correlation structure.Keywords: Classification, genetic algorithm, hierarchicalagglomerative clustering, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 122413225 Analysis of Modified Heap Sort Algorithm on Different Environment
Authors: Vandana Sharma, Parvinder S. Sandhu, Satwinder Singh, Baljit Saini
Abstract:
In field of Computer Science and Mathematics, sorting algorithm is an algorithm that puts elements of a list in a certain order i.e. ascending or descending. Sorting is perhaps the most widely studied problem in computer science and is frequently used as a benchmark of a system-s performance. This paper presented the comparative performance study of four sorting algorithms on different platform. For each machine, it is found that the algorithm depends upon the number of elements to be sorted. In addition, as expected, results show that the relative performance of the algorithms differed on the various machines. So, algorithm performance is dependent on data size and there exists impact of hardware also.Keywords: Algorithm, Analysis, Complexity, Sorting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 241213224 Optimization of a Three-Term Backpropagation Algorithm Used for Neural Network Learning
Authors: Yahya H. Zweiri
Abstract:
The back-propagation algorithm calculates the weight changes of an artificial neural network, and a two-term algorithm with a dynamically optimal learning rate and a momentum factor is commonly used. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third term increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and optimization approaches for evaluating the learning parameters are required to facilitate the application of the three terms BP algorithm. This paper considers the optimization of the new back-propagation algorithm by using derivative information. A family of approaches exploiting the derivatives with respect to the learning rate, momentum factor and proportional factor is presented. These autonomously compute the derivatives in the weight space, by using information gathered from the forward and backward procedures. The three-term BP algorithm and the optimization approaches are evaluated using the benchmark XOR problem.Keywords: Neural Networks, Backpropagation, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154213223 Stealth Laser Dicing Process Improvement via Shuffled Frog Leaping Algorithm
Authors: Pongchanun Luangpaiboon, Wanwisa Sarasang
Abstract:
In this paper, performances of shuffled frog leaping algorithm was investigated on the stealth laser dicing process. Effect of problem on the performance of the algorithm was based on the tolerance of meandering data. From the customer specification it could be less than five microns with the target of zero microns. Currently, the meandering levels are unsatisfactory when compared to the customer specification. Firstly, the two-level factorial design was applied to preliminarily study the statistically significant effects of five process variables. In this study one influential process variable is integer. From the experimental results, the new operating condition from the algorithm was superior when compared to the current manufacturing condition.
Keywords: Stealth Laser Dicing Process, Meandering, Metaheuristics, Shuffled Frog Leaping Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 263513222 Learning User Keystroke Patterns for Authentication
Authors: Ying Zhao
Abstract:
Keystroke authentication is a new access control system to identify legitimate users via their typing behavior. In this paper, machine learning techniques are adapted for keystroke authentication. Seven learning methods are used to build models to differentiate user keystroke patterns. The selected classification methods are Decision Tree, Naive Bayesian, Instance Based Learning, Decision Table, One Rule, Random Tree and K-star. Among these methods, three of them are studied in more details. The results show that machine learning is a feasible alternative for keystroke authentication. Compared to the conventional Nearest Neighbour method in the recent research, learning methods especially Decision Tree can be more accurate. In addition, the experiment results reveal that 3-Grams is more accurate than 2-Grams and 4-Grams for feature extraction. Also, combination of attributes tend to result higher accuracy.Keywords: Keystroke Authentication, Pattern recognition, MachineLearning, Instance-based Learning, Bayesian, Decision Tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 282213221 Qualitative Possibilistic Influence Diagrams
Authors: Wided GuezGuez, Nahla Ben Amor, Khaled Mellouli
Abstract:
Influence diagrams (IDs) are one of the most commonly used graphical decision models for reasoning under uncertainty. The quantification of IDs which consists in defining conditional probabilities for chance nodes and utility functions for value nodes is not always obvious. In fact, decision makers cannot always provide exact numerical values and in some cases, it is more easier for them to specify qualitative preference orders. This work proposes an adaptation of standard IDs to the qualitative framework based on possibility theory.
Keywords: decision making, influence diagrams, qualitative utility, possibility theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153013220 An Improved Fast Video Clip Search Algorithm for Copy Detection using Histogram-based Features
Authors: Feifei Lee, Qiu Chen, Koji Kotani, Tadahiro Ohmi
Abstract:
In this paper, we present an improved fast and robust search algorithm for copy detection using histogram-based features for short MPEG video clips from large video database. There are two types of histogram features used to generate more robust features. The first one is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human face recognition previously. An APIDQ histogram is utilized as the feature vector of the frame image. Another one is ordinal histogram feature which is robust to color distortion. Furthermore, by Combining with a temporal division method, the spatial and temporal features of the video sequence are integrated to realize fast and robust video search for copy detection. Experimental results show the proposed algorithm can detect the similar video clip more accurately and robust than conventional fast video search algorithm.Keywords: Fast search, Copy detection, Adjacent pixel intensity difference quantization (APIDQ), DC image, Histogram feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450