
Abstract—A genetic algorithm (GA) based feature subset 

selection algorithm is proposed in which the correlation structure of 

the features is exploited. The subset of features is validated according 

to the classification performance. Features derived from the 

continuous wavelet transform are potentially strongly correlated. 

GA’s that do not take the correlation structure of features into 

account are inefficient. The proposed algorithm forms clusters of 

correlated features and searches for a good candidate set of clusters. 

Secondly a search within the clusters is performed. Different 

simulations of the algorithm on a real-case data set with strong 

correlations between features show the increased classification 

performance. Comparison is performed with a standard GA without 

use of the correlation structure. 

Keywords—Classification, genetic algorithm, hierarchical 

agglomerative clustering, wavelet transform.

I. INTRODUCTION

N the design of a pattern recognition system possibly a large 

set of features is computed. Many of the computed features 

can be irrelevant to distinguish between the different classes. 

Selection of the most relevant features can increase the 

interpretability of the data under study. Moreover, given a 

finite learning sample size for a classification algorithm, the 

choice of a too high dimensional feature vector can seriously 
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degrade the performance of a classification algorithm [1], [2]. 

This paper describes a GA based algorithm to select important 

features when some features are highly correlated. Especially 

features derived from the continuous wavelet transform 

(CWT) [3] are candidates for the proposed GA based feature 

subset selection algorithm. In the computation of features 

from the CWT for pattern recognition a continuous series of 

scale parameters is considered. Differences in wavelet 

coefficients from neighboring scales are typically relatively 

small. Therefore features that exploit the different scales are 

potentially highly correlated. The proposed algorithm is 

demonstrated on a real-case application [4]. In [4] three 

different sets of features are computed to characterize 

different corrosion processes from electrochemical noise 

measurements. Two sets of features are computed based on 

the continuous wavelet transform. A third set is computed 

based on the power spectral density (PSD) of electrochemical 

voltage time series.  

II. RELATED WORK

Feature subset selection algorithms can be classified into two 

main categories: the wrapper approach and the filter approach

[5], [6]. In the filter approach the feature selection is done 

independently of the learning algorithm of the classifier. This 

is computationally more efficient but ignores the fact that an 

optimal selection of features may be dependent on the learning 

algorithm. On the other hand the wrapper method is 

computationally more involved, but takes the dependence of 

feature subset on the leaning algorithm of the classifier into 

account. The proposed algorithm in this paper belongs to the 

class of wrapper methods by using the learning algorithm in 

the evaluation of the performance of the feature subset.  

GA’s belong to the class of randomized heuristic search 

techniques. In feature subset selection problems they perform 

a population-based probabilistic or randomized sampling in 

feature space. Different approaches in literature have been 

proposed for feature subset selection based on GA’s and are 

often tailored towards specific problem domains [7]-[9]. This 

paper envisages pattern recognition applications where 

features are derived based on the CWT and therefore are 

potentially highly correlated. GA’s that do not take the 
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correlation structure of the data into account, are potentially 

more time-consuming due to the addition or replacement of 

highly correlated features in a subset of features. 

III. THE ALGORITHM

A. Fitness function in the GA’s 

The quality of a particular selection of features, further 

called genotype [10], is determined by its classification 

performance. Therefore it is sound for the fitness function to 

be a function of the classification performance. To increase 

selective pressure [10] compared to the classification 

performance as a fitness function, a cosh function of the 

averaged classification performance is taken: 

               ( ) (cosh( ( )) 1)nf i ACP i   (1) 

where ( )f i  is the fitness value for genotype ‘i’, 

( ) [0,1]ACP i  the averaged classification performance of 

genotype ‘i’ and ' 'n  is a parameter that controls 

selective pressure. A higher ' 'n  increases selective pressure. 

The classification performance ( )CP i  is determined by: the 

classification algorithm, the learning set and test set. 

Therefore ( )CP i  is a random variable. As a validation rule 

10-fold crossvalidation was chosen. The average of ( )CP i

over different runs of 10-fold crossvalidation is ( )ACP i . In 

this paper a Bayesian classifier is opted for. In a Bayesian 

classifier observation xk is assigned to the class with 

maximum posterior class probability: 

( | , ) ( )
arg max ( | ) .

( )

i i
i

i

P C P C
j P C

P

k
k

k

x
x

x
 (2) 

Observation xk takes concrete values for genotype k. iC

represents the class and  is the set of parameters that 

determine the class conditional density ( | , )iP Ckx .

Density estimations are obtained by the minimum message 

length (MML) criterion for Gaussian mixture models (GMM) 

[11]. More details on the use of the GMM in the design of a 

classifier can be found in [4]. In a naïve-Bayesian classifier 

density estimations are factorized under assumption of 

independence of features. In this paper correlations between 

features are assumed. Therefore the assumptions for a naïve-

Bayesian classifier are strictly speaking violated.  

B. Description of the algorithm 

An overview of the different steps in the algorithm is 

presented in figure 1.  

1) Forming clusters of features 

The proposed algorithm exploits the correlations between 

features in a first step by forming clusters of features.  

   
Fig. 1. Flowchart of the 2-stage GA based feature subset selection algorithm, 

GAFCO (Genetic Algorithm for Feature Subset Selection with Exploitation of 

Feature Correlations). In a first step clusters of features are formed. Highly 

correlated features end up in the same cluster. In the first GA, GA1, a search is 

made among good candidate clusters. Only the best set of clusters found in N1

generations is considered in the second GA, GA2. The second GA searches 

within the best set of clusters for good candidate features. In the second GA 

only 1 feature from every cluster is considered. 

The distance between features F  and F  is computed as: 
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( ( ) ( ))
    ( , ) 1 .

( )

( ( ) ( ))
                                     

( )

i

F i mean F
dist F F

std F

F i mean F

std F

 (3) 

where F (i) represents the feature value of feature  for 

observation i, “mean” denotes the mean and “std” the  

standard deviation of the feature values. From (3) one can 

notice that highly correlated features are near in distance. 

In the application of the algorithm to the real-case data set, 

hierarchical agglomerative clustering was used [12]. A 

hierarchical method allows a user of the algorithm to decide 

interactively upon the number of clusters. In order to automate 

finding the number of clusters, different criteria have been 

investigated [13]. These criteria, however, often include user-

defined parameters and performance is highly dependent on 

their choice. These criteria are used in retrieval of the number 

of ‘naturally’ underlying clusters such as different 

populations. In this case clustering is applied to limit search 

space, see (5), and not to determine the ‘natural’ underlying 

populations, which would rather correspond to the number of 

different computations needed to extract features e.g. the 

wavelet transform, Fourier transform, AR-modelling, … . Use 

of these criteria therefore is not advised. Our criterion is 

considered in paragraph V. 

2) Cluster selection with a first GA 

In a first GA a good combination of clusters is searched for. 

For numeric evaluation of the ‘goodness’ of a combination of 

clusters a decision upon a feature representing a cluster needs 

to be taken. In the application the feature closest to the cluster 

center is chosen.  

Note that a high computational cost is involved in 

determining the fitness values of genotypes: GMM-based 

density estimation for different classes, repeated ten times for 

10-fold crossvalidation. This is repeated several times to 

compute the average classification performance ACP. Instead 

of re-running the GA for different numbers of combinations of 

clusters, the GA decides upon the number of clusters to be 

considered. The number of clusters is considered implicitly in 

the fitness evaluation. A small number of combinations of 

clusters is insufficient to express the differences between the 

different classes, and therefore has a lower classification 

performance and hence a lower fitness value. However 

choosing too many features decreases classification 

performance. Addition of features to an existing set of features 

can decrease the asymptotic probability of misclassification 

(PMC). The asymptotic PMC P  is the probability of 

misclassification given an infinite learning sample size. 

Addition of features however requires more parameters to be 

estimated. Inaccurate estimation of parameters increases the 

classification error. If the increase of error is larger than the 

decrease in error by the addition of new features, the net effect 

is a decrease of classification performance. 

 The first GA starts from a set of random combinations of 

clusters. 

In a first step of GA1 the genotypes are chosen with 

probability Pc1 to be used in the crossover operator. Note that 

possibly genotypes of different lengths, namely a different 

number of features, are paired. Therefore a generalized 

crossover operator is introduced. First the smallest genotype is 

shifted a random number of positions against the longer 

genotype. A shift of 0 positions results in an alignment of the 

first feature of the smaller genotype with the first feature of 

the longer genotype. A maximum shift of L2-L1positions 

results in an alignment of the last features from both 

genotypes, where L2 is the length of the longest genotype and 

L1 of the smaller genotype. A crossover position is chosen 

randomly within the smaller genotype. This generalized 

crossover operation results in 2 offspring with potentially 

different lengths from the parents. The parents are replaced by 

their offspring. 

Next a mutation operator is applied to the genotypes. Every 

feature of a genotype has a probability Pm1 to be mutated. 

After mutation and crossover a genotype possibly contains the 

same cluster multiple times. This does not result in additional 

information to separate the classes. Neighboring clusters then 

replace the repeated clusters. Additionally the features are 

sorted so that every combination of clusters has a unique 

representation. The fitness of the genotypes is determined by 

(1).  This implies several runs of 10-fold crossvalidation. 

Roulette wheel selection [10] is applied to determine which 

genotypes pass to the next generation. The elitist model [10] is 

applied to preserve the best genotype. 

When the limiting number of generations N1 is reached, the 

best combination of clusters found so far is considered for 

further investigation in a second GA, GA2.  

3) Search for features within clusters with a second GA 

In GA2 the number of clusters and which ones to consider are 

fixed. GA2 starts from N genotypes. Each genotype consists 

of exactly 1 feature from each cluster found in GA1. These 

features are chosen randomly from the clusters for 

initialization.  

Because all genotypes have the same length there is no need 

for a generalized crossover operation.  

In the mutation operation, every feature is only allowed to be 

mutated into a feature from the same cluster. This implies that 

every cluster is preserved within each genotype. Note that 

there is no need for a repair method. Once sorted, the features 

stay sorted, and no multiple occurrences of the same feature 

can be present, while only 1 feature from every cluster is 

allowed. 

The fitness evaluation is performed in the same manner as in 

GA1. When N2 generations are reached the best solution 

found is the final solution.  

IV. DISCUSSION

The proposed algorithm first searches between clusters of 

features. This implies a coarse grain sampling in feature space. 

No time is lost in a search for features that are highly 

correlated, when an appropriate choice of the number of 
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clusters is chosen. In a 2nd phase the clusters are opened and a 

local search within the clusters is performed. This implies a 

fine grain sampling in feature space. A very similar search 

strategy is performed in simulated annealing. 

The number of clusters is an important parameter to be 

considered.  

The higher the number of clusters the more representative the 

representative features become to represent a cluster. 

However when the number of clusters is equal to the number 

of features, the algorithm degenerates to a standard GA (SGA) 

with variable length of genotypes. In that case the correlation 

structure between features is not exploited. 

The proposed algorithm limits the number of possible 

solutions. In the standard GA (SGA), the number of possible 

subsets cSGA equals: 

SGA

1

                            c  =   c

k
f

i

i

 (4) 

where it is assumed that the initial population contains 

genotypes of length 1 until length k. fc is the total number of 

features and cf

i the number of combinations of i out of fc. In 

the 2-stage GA combinations of features within a cluster are 

not possible and therefore the number of possible outcomes 

equals: 

GAFCO

1 1   2

                c  =   pc

p

k CC k
Nf

i j

i p j
j N

 (5)  

where CC is the cluster count, and Np the number of features 

in cluster ‘P’. 

V. APPLICATION TO A REAL-CASE DATA SET

Details of the data set can be found in [4]. Four different 

classes are considered in the data set for which a (sub-)optimal 

set of features has to be determined to classify the time series 

f(t). A first set of features is derived from the continuous 

wavelet transform: 

                     
,

,

,
( ) 0

,
( ) 0

( ( ) )

( )
( ( ) )

acc k

acc k

acc k
F b

acc k
F b

std F b

x k
std F b

, (6) 

                      with ,

1

( ) ( , )
k

acc k

a

F b F a b , (7)  

                   
,( , ) ( ) ( )a bF a b f t t dt , (8)  

,

1
( ) ( ),  with 0 and ,a b

t b
t a a b

aa
 (9) 

where ( )t  is the mother wavelet function. 

A second set of features, also derived from the continuous 

wavelet transform, is computed as: 

                   

2

, ,max

2

, ,min

( ( ) )
( )

( ( ) )

acc k

acc k

mean F b
y k

mean F b
 (10) 

where , ,max( )acc kF b and , ,min( )acc kF b represent the maxima 

and minima extracted from ,( )acc kF b . A third set of features 

is computed based on the power spectral density (PSD) of the 

signals f(t) that need to be classified. The PSD parameters are 

slopes of line fits on different decades of the log PSD of f(t) 

vs. log frequency plot. A motivation for the derivation of these 

features can be found in [4]. A plot of the x(k) values for 

different k values is shown in figure 2. 

Fig. 2.  Plot of wavelet features for different accumulation levels k. Each plot 

represents the x(k) parameters derived for a different time series. Parameters 

derived from time series from 4 different classes are shown. Different classes 

are encoded in different gray values and in different line styles: ‘- -’, ‘-’, ‘- ·’ 

and ‘··’. For reasons of visibility the complete data set is not shown. Different 

regions of k values can be distinguished where a class becomes separated from 

the other classes. 

A similar plot is obtained for the y(k) parameters. 

In total 263 features are derived: 7 PSD features, 128 x(k) 

features and 128 y(k) features. In total 579 time series spread 

over 4 classes are considered. An agglomerative hierarchical 

clustering technique is used in the formation of the clusters. 

The farthest-neighbor algorithm is used in merging the 

clusters [7]. In this algorithm the distance between clusters is 

computed as:  

max                ( , ) max '
i

j

i j
D
D

d D D
x
x

x x .  (11) 

When the data is gathered in 3 main clusters then 1 cluster is 

formed by the PSD features, 1 by the x(k) features and 1 by 

the y(k) features. So 3 would rather correspond with the 

number of ‘naturally’ underlying clusters. In GA1 each 

representative feature of a cluster represents a set of features 

in the same cluster. Therefore correlations between features 

within the same cluster may not be too small. We propose that 

the number of clusters is defined by a user-defined minimum 

correlation constant. That is the number of clusters is equal to 

the minimum number of clusters where correlations between 

any features in the same cluster are not smaller than the 

minimum correlation constant. 

For this application, the constant is set equal to 0.8. This leads 

to 16 clusters: 6 clusters are formed from the x(k) features, 6 

from the y(k) features and 4 from the PSD features. In this 

case, the smallest correlation between any of the features in 

the same cluster is equal to 0.82. The performance of the 

proposed GA is compared with a standard GA (SGA) with 
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variable length of genotypes without exploitation of feature 

correlations. Results for 4 subsequent simulations are 

summarized in table I.  

The SGA is basically GA1 where the number of clusters 

equals the number of features. 

The SGA and the 2-stage GA were initialized from the same 

sets of genotypes. In each simulation a different setting of Pc1

and Pm1 was chosen. These parameters were set equal for GA1 

and SGA. The parameters Pm2 and PC2 were always set to 0.3. 

The table shows how many generations are considered in 

each simulation and in which generation the best solution is 

found. 

From the table we note that the 2-stage GA finds better 

solutions (about 1%), given a predefined number of 

generations. Note that all solutions, independently from the 

initial set of genotypes, found in the 2-stage GA perform 

better than the best solution found in SGA (95.82%). Note 

also that fewer generations are needed to find the best 

genotypes. The best genotype found (96.41%) contains 5 

features: 1 PSD feature, 2 features from x(k) and 2 features 

from y(k). 

The results in table I are obtained by averaging the 

performances of 10 runs of 10-fold crossvalidation. Due to the 

variance of these performances, one needs to consider whether 

the difference in performance between the SGA and the 2-

stage GA are statistically significant. Hypothesis testing, with 

level of significance  equal to 0.05, has shown that the 

differences are statistically significant. 

VI. CONCLUSIONS

A new 2-stage GA based feature subset selection algorithm 

was proposed in which the correlation structure of the features 

is exploited. Simulations on a real-case data set with 

correlated features show that the 2-stage GA finds better 

solutions in fewer generations compared to a standard GA in 

which the correlation structure is not exploited. 
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TABLE I

SIMULATIONS OF GA ON REAL-CASE DATA SET

Simu- 

lation 1 

Simu- 

lation 2 

Simu-

lation 3 

Simu-

lation 4 

SGA

generartion 
26 of 50 25 of 25 15 of 25 24 of 25 

SGA

performance 
95.82% 95.39% 95.23% 95.42% 

GA1 

generation 
2 of 5 5 of 5 4 of 5 5 of 5 

GA1 

performance 
95.60% 96.40% 95.73% 96.20% 

GA2 

generations 
3 of 10 1 of 10 6 of 10 9 of 10 

GA2 

performance 
96.27% 96.40% 96.20% 96.41% 
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