Search results for: Algorithms decision tree
2807 Contextual Factors in the Decision Making of Industrialized Building System Technology
Authors: S. A. S. Zakaria, G. Brewer, T. Gajendran
Abstract:
Currently, the Malaysian construction industry is focusing on transforming construction processes from conventional building methods to the Industrialized Building System (IBS). Still, research on the decision making of IBS technology adoption with the influence of contextual factors is scarce. The purpose of this paper is to explore how contextual factors influence the IBS decision making in building projects which is perceived by those involved in construction industry namely construction stakeholders and IBS supply chain members. Theoretical background, theoretical frameworks and literatures which identify possible contextual factors that influence decision making towards IBS technology adoption are presented. This paper also discusses the importance of contextual factors in IBS decision making, highlighting some possible crossover benefits and making some suggestions as to how these can be utilized. Conclusions are drawn and recommendations are made with respect to the perception of socio-economic, IBS policy and IBS technology associated with building projects.Keywords: decision making, technology adoptions, contextualfactors, Industrialized Building Systems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26032806 Qualitative Parametric Comparison of Load Balancing Algorithms in Parallel and Distributed Computing Environment
Authors: Amit Chhabra, Gurvinder Singh, Sandeep Singh Waraich, Bhavneet Sidhu, Gaurav Kumar
Abstract:
Decrease in hardware costs and advances in computer networking technologies have led to increased interest in the use of large-scale parallel and distributed computing systems. One of the biggest issues in such systems is the development of effective techniques/algorithms for the distribution of the processes/load of a parallel program on multiple hosts to achieve goal(s) such as minimizing execution time, minimizing communication delays, maximizing resource utilization and maximizing throughput. Substantive research using queuing analysis and assuming job arrivals following a Poisson pattern, have shown that in a multi-host system the probability of one of the hosts being idle while other host has multiple jobs queued up can be very high. Such imbalances in system load suggest that performance can be improved by either transferring jobs from the currently heavily loaded hosts to the lightly loaded ones or distributing load evenly/fairly among the hosts .The algorithms known as load balancing algorithms, helps to achieve the above said goal(s). These algorithms come into two basic categories - static and dynamic. Whereas static load balancing algorithms (SLB) take decisions regarding assignment of tasks to processors based on the average estimated values of process execution times and communication delays at compile time, Dynamic load balancing algorithms (DLB) are adaptive to changing situations and take decisions at run time. The objective of this paper work is to identify qualitative parameters for the comparison of above said algorithms. In future this work can be extended to develop an experimental environment to study these Load balancing algorithms based on comparative parameters quantitatively.Keywords: SLB, DLB, Host, Algorithm and Load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16612805 Performance Analysis of Learning Automata-Based Routing Algorithms in Sparse Graphs
Authors: Z.Farhadpour, Mohammad.R.Meybodi
Abstract:
A number of routing algorithms based on learning automata technique have been proposed for communication networks. How ever, there has been little work on the effects of variation of graph scarcity on the performance of these algorithms. In this paper, a comprehensive study is launched to investigate the performance of LASPA, the first learning automata based solution to the dynamic shortest path routing, across different graph structures with varying scarcities. The sensitivity of three main performance parameters of the algorithm, being average number of processed nodes, scanned edges and average time per update, to variation in graph scarcity is reported. Simulation results indicate that the LASPA algorithm can adapt well to the scarcity variation in graph structure and gives much better outputs than the existing dynamic and fixed algorithms in terms of performance criteria.Keywords: Learning automata, routing, algorithm, sparse graph
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13602804 Framework for the Modeling of the Supply Chain Collaborative Planning Process
Authors: D. Pérez, M. M. E. Alemany
Abstract:
In this work, a framework to model the Supply Chain (SC) Collaborative Planning (CP) process is proposed. The main contributions of this framework concern 1) the presentation of the decision view, the most important one due to the characteristics of the process, jointly within the physical, organisation and information views, and 2) the simultaneous consideration of the spatial and temporal integration among the different supply chain decision centres. This framework provides the basis for a realistic and integrated perspective of the supply chain collaborative planning process and also the analytical modeling of each of its decisional activities.Keywords: Collaborative Planning, Decision View, Distributed Decision-Making, Framework.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13252803 Study of Adaptive Filtering Algorithms and the Equalization of Radio Mobile Channel
Authors: Said Elkassimi, Said Safi, B. Manaut
Abstract:
This paper presented a study of three algorithms, the equalization algorithm to equalize the transmission channel with ZF and MMSE criteria, application of channel Bran A, and adaptive filtering algorithms LMS and RLS to estimate the parameters of the equalizer filter, i.e. move to the channel estimation and therefore reflect the temporal variations of the channel, and reduce the error in the transmitted signal. So far the performance of the algorithm equalizer with ZF and MMSE criteria both in the case without noise, a comparison of performance of the LMS and RLS algorithm.
Keywords: Adaptive filtering second equalizer, LMS, RLS Bran A, Proakis (B) MMSE, ZF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21272802 Decision-Making Tool for Planning the Construction of Infrastructure Projects
Authors: R. Monib, C. I. Goodier, A. Gibb
Abstract:
The aim of this paper is to investigate the key drivers in planning the construction phase for infrastructure projects to reduce project delays. To achieve this aim, the research conducted three case studies using semi-structured and unstructured interviews (n = 59). The results conclude that a lack of modularization awareness is among the key factors attributed to project delays. The current emotive and ill-informed approach to decision-making, coupled with the lack of knowledge regarding appropriate construction method selection, prevents the potential benefits of modularization being fully realized. To assist with decision-making for the best construction method, the research presents project management tools to help decision makers to choose the most appropriate construction approach through optimizing the use of modularization in engineering and construction (EC). A decision-making checklist is presented in this paper. This checklist tool assists the project team in determining the best construction method, taking into consideration the module type.
Keywords: Infrastructure, modularization, decision support, planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1122801 Adaptive Distributed Genetic Algorithms and Its VLSI Design
Authors: Kazutaka Kobayashi, Norihiko Yoshida, Shuji Narazaki
Abstract:
This paper presents a dynamic adaptation scheme for the frequency of inter-deme migration in distributed genetic algorithms (GA), and its VLSI hardware design. Distributed GA, or multi-deme-based GA, uses multiple populations which evolve concurrently. The purpose of dynamic adaptation is to improve convergence performance so as to obtain better solutions. Through simulation experiments, we proved that our scheme achieves better performance than fixed frequency migration schemes.Keywords: Genetic algorithms, dynamic adaptation, VLSI hardware.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16712800 Architectural Stratification and Woody Species Diversity of a Subtropical Forest Grown in a Limestone Habitat in Okinawa Island, Japan
Authors: S. M. Feroz, K. Yoshimura, A. Hagihara
Abstract:
The forest stand consisted of four layers. The species composition between the third and the bottom layers was almost similar, whereas it was almost exclusive between the top and the lower three layers. The values of Shannon-s index H' and Pielou-s index J ' tended to increase from the bottom layer upward, except for H' -value of the top layer. The values of H' and J ' were 4.21 bit and 0.73, respectively, for the total stand. High woody species diversity of the forest depended on large trees in the upper layers, which trend was different from a subtropical evergreen broadleaf forest grown in silicate habitat in the northern part of Okinawa Island. The spatial distribution of trees was overlapped between the third and the bottom layers, whereas it was independent or slightly exclusive between the top and the lower three layers. Mean tree weight of each layer decreased from the top toward the bottom layer, whereas the corresponding tree density increased from the top downward. This relationship was analogous to the process of self-thinning plant populations.Keywords: Canopy multi-layering, limestone habitat, mean tree weight-density relationship, species diversity, subtropical forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12322799 Sparsity-Aware Affine Projection Algorithm for System Identification
Authors: Young-Seok Choi
Abstract:
This work presents a new type of the affine projection (AP) algorithms which incorporate the sparsity condition of a system. To exploit the sparsity of the system, a weighted l1-norm regularization is imposed on the cost function of the AP algorithm. Minimizing the cost function with a subgradient calculus and choosing two distinct weighting for l1-norm, two stochastic gradient based sparsity regularized AP (SR-AP) algorithms are developed. Experimental results exhibit that the SR-AP algorithms outperform the typical AP counterparts for identifying sparse systems.Keywords: System identification, adaptive filter, affine projection, sparsity, sparse system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15572798 Synthesis of Analogue to Camptothecine
Authors: Abdulkareem Hamid, Adam Daïch
Abstract:
Camptothecin (CPT) is a cytotoxic quinoline alkaloid, which inhibits the DNA enzyme topoisomerase I (topo I). It was discovered in 1966 by M. E. Wall and M. C. Wani in systematic screening of natural products for anticancer drugs. It was isolated from the bark and stem of Camptotheca acuminata (Camptotheca, Happy tree), a tree native in China. CPT showed remarkable anticancer activity in preliminary clinical trials but also low solubility and (high) adverse drug reaction. Because of these disadvantages synthetic and medicinal chemists have developed numerous syntheses of Camptothecine [1][2][3] and various derivatives to increase the benefits of the chemical, with good results. In our method CPT analogues has be six steps starting from available material DL Malic acid.Keywords: Camptothecine, synthesis, analogue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16162797 Tree Based Data Aggregation to Resolve Funneling Effect in Wireless Sensor Network
Authors: G. Rajesh, B. Vinayaga Sundaram, C. Aarthi
Abstract:
In wireless sensor network, sensor node transmits the sensed data to the sink node in multi-hop communication periodically. This high traffic induces congestion at the node which is present one-hop distance to the sink node. The packet transmission and reception rate of these nodes should be very high, when compared to other sensor nodes in the network. Therefore, the energy consumption of that node is very high and this effect is known as the “funneling effect”. The tree based-data aggregation technique (TBDA) is used to reduce the energy consumption of the node. The throughput of the overall performance shows a considerable decrease in the number of packet transmissions to the sink node. The proposed scheme, TBDA, avoids the funneling effect and extends the lifetime of the wireless sensor network. The average case time complexity for inserting the node in the tree is O(n log n) and for the worst case time complexity is O(n2).Keywords: Data Aggregation, Funneling Effect, Traffic Congestion, Wireless Sensor Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13172796 Equivalence Class Subset Algorithm
Authors: Jeffrey L. Duffany
Abstract:
The equivalence class subset algorithm is a powerful tool for solving a wide variety of constraint satisfaction problems and is based on the use of a decision function which has a very high but not perfect accuracy. Perfect accuracy is not required in the decision function as even a suboptimal solution contains valuable information that can be used to help find an optimal solution. In the hardest problems, the decision function can break down leading to a suboptimal solution where there are more equivalence classes than are necessary and which can be viewed as a mixture of good decision and bad decisions. By choosing a subset of the decisions made in reaching a suboptimal solution an iterative technique can lead to an optimal solution, using series of steadily improved suboptimal solutions. The goal is to reach an optimal solution as quickly as possible. Various techniques for choosing the decision subset are evaluated.Keywords: np-complete, complexity, algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13672795 Decision Support System for Tourism in Northern Part of Thailand
Authors: Katejarinporn Chaiya, Thawit Janbanklong
Abstract:
The purposes of this study were to design and find users’ satisfaction after using the decision support system for tourism northern part of Thailand, which can provide tourists touristic information and plan their personal voyage. Such information can be retrieved systematically based on personal budget and provinces. The samples of this study were five experts and users 30 persons white collars in Bangkok. This decision support system was designed via ASP.NET. Its database was developed by using MySQL, for administrators are able to effectively manage the database. The application outcome revealed that the innovation works properly as sought in objectives. Specialists and white collars in Bangkok have evaluated the decision support system; the result was satisfactorily positive.
Keywords: Decision Support System, ASP.NET, MySQL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15412794 Redefining “Infrastructure as Code” Orchestration Using AI
Authors: Georges Bou Ghantous
Abstract:
This research delves into the transformative impact of Artificial Intelligence (AI) on Infrastructure as Code (IaC) practices, specifically focusing on the redefinition of infrastructure orchestration. By harnessing AI technologies such as machine learning algorithms and predictive analytics, organizations can achieve unprecedented levels of efficiency and optimization in managing their infrastructure resources. AI-driven IaC introduces proactive decision-making through predictive insights, enabling organizations to anticipate and address potential issues before they arise. Dynamic resource scaling, facilitated by AI, ensures that infrastructure resources can seamlessly adapt to fluctuating workloads and changing business requirements. Through case studies and best practices, this paper sheds light on the tangible benefits and challenges associated with AI-driven IaC transformation, providing valuable insights for organizations navigating the evolving landscape of digital infrastructure management.
Keywords: Artificial intelligence, AI, infrastructure as code, IaC, efficiency optimization, predictive insights, dynamic resource scaling, proactive decision-making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202793 Numerical Algorithms for Solving a Type of Nonlinear Integro-Differential Equations
Authors: Shishen Xie
Abstract:
In this article two algorithms, one based on variation iteration method and the other on Adomian's decomposition method, are developed to find the numerical solution of an initial value problem involving the non linear integro differantial equation where R is a nonlinear operator that contains partial derivatives with respect to x. Special cases of the integro-differential equation are solved using the algorithms. The numerical solutions are compared with analytical solutions. The results show that these two methods are efficient and accurate with only two or three iterations
Keywords: variation iteration method, decomposition method, nonlinear integro-differential equations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21342792 Determination of Sequential Best Replies in N-player Games by Genetic Algorithms
Authors: Mattheos K. Protopapas, Elias B. Kosmatopoulos
Abstract:
An iterative algorithm is proposed and tested in Cournot Game models, which is based on the convergence of sequential best responses and the utilization of a genetic algorithm for determining each player-s best response to a given strategy profile of its opponents. An extra outer loop is used, to address the problem of finite accuracy, which is inherent in genetic algorithms, since the set of feasible values in such an algorithm is finite. The algorithm is tested in five Cournot models, three of which have convergent best replies sequence, one with divergent sequential best replies and one with “local NE traps"[14], where classical local search algorithms fail to identify the Nash Equilibrium. After a series of simulations, we conclude that the algorithm proposed converges to the Nash Equilibrium, with any level of accuracy needed, in all but the case where the sequential best replies process diverges.
Keywords: Best response, Cournot oligopoly, genetic algorithms, Nash equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14482791 Development of an Intelligent Tool for Planning the Operation
Authors: T. R. Alencar, P. T. Leite
Abstract:
Several optimization algorithms specifically applied to the problem of Operation Planning of Hydrothermal Power Systems have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. Thus, this paper presents the development of a computational tool for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique, Genetic Algorithms and programming language Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.Keywords: Energy, Optimization, Hydrothermal Power Systemsand Genetic Algorithms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17002790 Application of Genetic Algorithms for Evolution of Quantum Equivalents of Boolean Circuits
Authors: Swanti Satsangi, Ashish Gulati, Prem Kumar Kalra, C. Patvardhan
Abstract:
Due to the non- intuitive nature of Quantum algorithms, it becomes difficult for a classically trained person to efficiently construct new ones. So rather than designing new algorithms manually, lately, Genetic algorithms (GA) are being implemented for this purpose. GA is a technique to automatically solve a problem using principles of Darwinian evolution. This has been implemented to explore the possibility of evolving an n-qubit circuit when the circuit matrix has been provided using a set of single, two and three qubit gates. Using a variable length population and universal stochastic selection procedure, a number of possible solution circuits, with different number of gates can be obtained for the same input matrix during different runs of GA. The given algorithm has also been successfully implemented to obtain two and three qubit Boolean circuits using Quantum gates. The results demonstrate the effectiveness of the GA procedure even when the search spaces are large.Keywords: Ancillas, Boolean functions, Genetic algorithm, Oracles, Quantum circuits, Scratch bit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19462789 A Comparison among Wolf Pack Search and Four other Optimization Algorithms
Authors: Shahla Shoghian, Maryam Kouzehgar
Abstract:
The main objective of this paper is applying a comparison between the Wolf Pack Search (WPS) as a newly introduced intelligent algorithm with several other known algorithms including Particle Swarm Optimization (PSO), Shuffled Frog Leaping (SFL), Binary and Continues Genetic algorithms. All algorithms are applied on two benchmark cost functions. The aim is to identify the best algorithm in terms of more speed and accuracy in finding the solution, where speed is measured in terms of function evaluations. The simulation results show that the SFL algorithm with less function evaluations becomes first if the simulation time is important, while if accuracy is the significant issue, WPS and PSO would have a better performance.Keywords: Wolf Pack Search, Particle Swarm Optimization, Continues Genetic Algorithm, Binary Genetic Algorithm, Shuffled Frog Leaping, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37582788 Fighter Aircraft Evaluation and Selection Process Based on Triangular Fuzzy Numbers in Multiple Criteria Decision Making Analysis Using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
Authors: C. Ardil
Abstract:
This article presents a multiple criteria evaluation approach to uncertainty, vagueness, and imprecision analysis for ranking alternatives with fuzzy data for decision making using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The fighter aircraft evaluation and selection decision making problem is modeled in a fuzzy environment with triangular fuzzy numbers. The fuzzy decision information related to the fighter aircraft selection problem is taken into account in ordering the alternatives and selecting the best candidate. The basic fuzzy TOPSIS procedure steps transform fuzzy decision matrices into matrices of alternatives evaluated according to all decision criteria. A practical numerical example illustrates the proposed approach to the fighter aircraft selection problem.
Keywords: triangular fuzzy number (TFN), multiple criteria decision making analysis, decision making, aircraft selection, MCDMA, fuzzy TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4752787 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.
Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5312786 Modeling of Dielectric Heating in Radio- Frequency Applicator Optimized for Uniform Temperature by Means of Genetic Algorithms
Authors: Camelia Petrescu, Lavinia Ferariu
Abstract:
The paper presents an optimization study based on genetic algorithms (GA-s) for a radio-frequency applicator used in heating dielectric band products. The weakly coupled electro-thermal problem is analyzed using 2D-FEM. The design variables in the optimization process are: the voltage of a supplementary “guard" electrode and six geometric parameters of the applicator. Two objective functions are used: temperature uniformity and total active power absorbed by the dielectric. Both mono-objective and multiobjective formulations are implemented in GA optimization.Keywords: Dielectric heating, genetic algorithms, optimization, RF applicators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19332785 Level Shifted Carrier Signal Based Scalar Random Pulse Width Modulation Algorithms for Cascaded Multilevel Inverter Fed Induction Motor Drive
Authors: M. Nayeemuddin, T. Bramhananda Reddy, M. Vijaya Kumar
Abstract:
Acoustic noise becoming ever more obnoxious radiated by voltage source inverter fed induction motor drive in modern and industrial applications. The drive utilized for industrial and modern applications should use “spread spectrum” innovation known as Random pulse width modulation (PWM) algorithms where acoustic noise emanates through the machine should be critically concerned. This paper illustrates three types of random PWM control algorithms with fixed switching frequency namely 1) Random modulating PWM 2) Random carrier PWM and 3) Random modulating-carrier PWM. The spectrum plots of the motor stator current demonstrate the strength and robustness of the proposed PWM algorithms. To affirm the proposed algorithms, experimental tests have been conducted using dSPACE rt1104 control board on a v/f control three phase induction motor drive fed by DC link cascaded multilevel inverter.
Keywords: Multilevel inverter, acoustic noise, CSVPWM, total harmonic distortion, random PWM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6652784 Extraction of Forest Plantation Resources in Selected Forest of San Manuel, Pangasinan, Philippines Using LiDAR Data for Forest Status Assessment
Authors: Mark Joseph Quinto, Roan Beronilla, Guiller Damian, Eliza Camaso, Ronaldo Alberto
Abstract:
Forest inventories are essential to assess the composition, structure and distribution of forest vegetation that can be used as baseline information for management decisions. Classical forest inventory is labor intensive and time-consuming and sometimes even dangerous. The use of Light Detection and Ranging (LiDAR) in forest inventory would improve and overcome these restrictions. This study was conducted to determine the possibility of using LiDAR derived data in extracting high accuracy forest biophysical parameters and as a non-destructive method for forest status analysis of San Manual, Pangasinan. Forest resources extraction was carried out using LAS tools, GIS, Envi and .bat scripts with the available LiDAR data. The process includes the generation of derivatives such as Digital Terrain Model (DTM), Canopy Height Model (CHM) and Canopy Cover Model (CCM) in .bat scripts followed by the generation of 17 composite bands to be used in the extraction of forest classification covers using ENVI 4.8 and GIS software. The Diameter in Breast Height (DBH), Above Ground Biomass (AGB) and Carbon Stock (CS) were estimated for each classified forest cover and Tree Count Extraction was carried out using GIS. Subsequently, field validation was conducted for accuracy assessment. Results showed that the forest of San Manuel has 73% Forest Cover, which is relatively much higher as compared to the 10% canopy cover requirement. On the extracted canopy height, 80% of the tree’s height ranges from 12 m to 17 m. CS of the three forest covers based on the AGB were: 20819.59 kg/20x20 m for closed broadleaf, 8609.82 kg/20x20 m for broadleaf plantation and 15545.57 kg/20x20m for open broadleaf. Average tree counts for the tree forest plantation was 413 trees/ha. As such, the forest of San Manuel has high percent forest cover and high CS.
Keywords: Carbon stock, forest inventory, LiDAR, tree count.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12822783 Dynamic Attribute Dependencies in Relational Attribute Grammars
Authors: K. Barbar, M. Dehayni, A. Awada, M. Smaili
Abstract:
Considering the theory of attribute grammars, we use logical formulas instead of traditional functional semantic rules. Following the decoration of a derivation tree, a suitable algorithm should maintain the consistency of the formulas together with the evaluation of the attributes. This may be a Prolog-like resolution, but this paper examines a somewhat different strategy, based on production specialization, local consistency and propagation: given a derivation tree, it is interactively decorated, i.e. incrementally checked and evaluated. The non-directed dependencies are dynamically directed during attribute evaluation.Keywords: Input/Output attribute grammars, local consistency, logical programming, propagation, relational attribute grammars.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14632782 A Review on Comparative Analysis of Path Planning and Collision Avoidance Algorithms
Authors: Divya Agarwal, Pushpendra S. Bharti
Abstract:
Autonomous mobile robots (AMR) are expected as smart tools for operations in every automation industry. Path planning and obstacle avoidance is the backbone of AMR as robots have to reach their goal location avoiding obstacles while traversing through optimized path defined according to some criteria such as distance, time or energy. Path planning can be classified into global and local path planning where environmental information is known and unknown/partially known, respectively. A number of sensors are used for data collection. A number of algorithms such as artificial potential field (APF), rapidly exploring random trees (RRT), bidirectional RRT, Fuzzy approach, Purepursuit, A* algorithm, vector field histogram (VFH) and modified local path planning algorithm, etc. have been used in the last three decades for path planning and obstacle avoidance for AMR. This paper makes an attempt to review some of the path planning and obstacle avoidance algorithms used in the field of AMR. The review includes comparative analysis of simulation and mathematical computations of path planning and obstacle avoidance algorithms using MATLAB 2018a. From the review, it could be concluded that different algorithms may complete the same task (i.e. with a different set of instructions) in less or more time, space, effort, etc.
Keywords: Autonomous mobile robots, obstacle avoidance, path planning, and processing time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16992781 On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation
Authors: Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, Godfried T. Toussaint
Abstract:
Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.Keywords: Machine learning, data mining, support vector machines, proximity graphs, relative-neighborhood graphs, k-nearestneighbor graphs, random sampling, training data condensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19202780 A New Tool for Global Optimization Problems- Cuttlefish Algorithm
Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman
Abstract:
This paper presents a new meta-heuristic bio-inspired optimization algorithm which is called Cuttlefish Algorithm (CFA). The algorithm mimics the mechanism of color changing behavior of the cuttlefish to solve numerical global optimization problems. The colors and patterns of the cuttlefish are produced by reflected light from three different layers of cells. The proposed algorithm considers mainly two processes: reflection and visibility. Reflection process simulates light reflection mechanism used by these layers, while visibility process simulates visibility of matching patterns of the cuttlefish. To show the effectiveness of the algorithm, it is tested with some other popular bio-inspired optimization algorithms such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO) and Bees Algorithm (BA) that have been previously proposed in the literature. Simulations and obtained results indicate that the proposed CFA is superior when compared with these algorithms.
Keywords: Cuttlefish Algorithm, bio-inspired algorithms, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38342779 A Comprehensive Survey on RAT Selection Algorithms for Heterogeneous Networks
Authors: Abdallah AL Sabbagh, Robin Braun, Mehran Abolhasan
Abstract:
Due to the coexistence of different Radio Access Technologies (RATs), Next Generation Wireless Networks (NGWN) are predicted to be heterogeneous in nature. The coexistence of different RATs requires a need for Common Radio Resource Management (CRRM) to support the provision of Quality of Service (QoS) and the efficient utilization of radio resources. RAT selection algorithms are part of the CRRM algorithms. Simply, their role is to verify if an incoming call will be suitable to fit into a heterogeneous wireless network, and to decide which of the available RATs is most suitable to fit the need of the incoming call and admit it. Guaranteeing the requirements of QoS for all accepted calls and at the same time being able to provide the most efficient utilization of the available radio resources is the goal of RAT selection algorithm. The normal call admission control algorithms are designed for homogeneous wireless networks and they do not provide a solution to fit a heterogeneous wireless network which represents the NGWN. Therefore, there is a need to develop RAT selection algorithm for heterogeneous wireless network. In this paper, we propose an approach for RAT selection which includes receiving different criteria, assessing and making decisions, then selecting the most suitable RAT for incoming calls. A comprehensive survey of different RAT selection algorithms for a heterogeneous wireless network is studied.Keywords: Heterogeneous Wireless Network, RAT selection algorithms, Next Generation Wireless Network (NGWN), Beyond 3G Network, Common Radio Resource Management (CRRM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20282778 Fuzzy Multi-Criteria Framework for Supporting Biofuels Policy Making
Authors: Jadwiga R. Ziolkowska
Abstract:
In this paper, a fuzzy algorithm and a fuzzy multicriteria decision framework are developed and used for a practical question of optimizing biofuels policy making. The methodological framework shows how to incorporate fuzzy set theory in a decision process of finding a sustainable biofuels policy among several policy options. Fuzzy set theory is used here as a tool to deal with uncertainties of decision environment, vagueness and ambiguities of policy objectives, subjectivities of human assessments and imprecise and incomplete information about the evaluated policy instruments.Keywords: Fuzzy set theory, multi-criteria decision-makingsupport, uncertainties, policy making, biofuels
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034