
 

 

  
Abstract—The equivalence class subset algorithm is a powerful 

tool for solving a wide variety of constraint satisfaction problems and 
is based on the use of a decision function which has a very high but 
not perfect accuracy.  Perfect accuracy is not required in the decision 
function as even a suboptimal solution contains valuable information 
that can be used to help find an optimal solution. In the hardest 
problems, the decision function can break down leading to a 
suboptimal solution where there are more equivalence classes than 
are necessary and which can be viewed as a mixture of good decision 
and bad decisions. By choosing a subset of the decisions made in 
reaching a suboptimal solution an iterative technique can lead to an 
optimal solution, using series of steadily improved suboptimal 
solutions.  The goal is to reach an optimal solution as quickly as 
possible. Various techniques for choosing the decision subset are 
evaluated. 
 

Keywords—np-complete, complexity, algorithm.  

I. INTRODUCTION 

ONSIDER the well-known compatibility problem, also   
known as a system of inequations[4,5,10,11] which is one 

of the best known examples of an NP-hard problem[2,6,8] 
which include the set of NP-complete problems as a special 
case[7]. The compatibility problem can be stated as follows. 
Suppose there are n objects each of which are incompatible 
with some subset of the other n-1 objects. The problem is to 
partition all n objects into a set of k equivalence classes such 
that no object is incompatible with any other object in its 
equivalence class and where k is minimum.  

The problem can be stated in terms of an adjacency matrix 
(A) of ones and zeros which summarizes the compatibility of 
each object (variable xi) with every other object (variable xj). 
A one in the (i,j) element of the A matrix indicates 
incompatibility between variables xi and xj while a zero 
represents compatibility.  A solution vector (s) is a mapping of 
each variable xi into an integer si such that 1<= si <= k while 
ensuring that si ≠ sj when A[i,j] = 1.  If an optimal solution 
vector s* is permuted such that all equivalence classes are 
grouped together and the corresponding A matrix is permuted 
accordingly, it is seen that the A matrix takes on a block 
diagonal form.  A zero inside the block diagonal represents a 
good decision which leads towards an optimal solution. A 
zero outside the block diagonal or any zero of a suboptimal 
solution may be good or bad and may or may not lead to an 
optimal solution. A typical problem of n=100 variables has n2 
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= 10,000 elements each of which is a zero or a one. For 
example a system may have 5000 zeros of which 3000 are 
inside the block diagonal (zin) and 2000 which are outside 
(zout). Each zero represents a possible decision and at each 
step of the solution only one of these can be chosen. Clearly 
there can be a large number of choices and some kind of 
decision function is required to proceed towards a solution. A 
pair association {ij} occurs when a pair of variables xi and xj 
are combined into the same equivalence class. Generally 
speaking the lower the solution cardinality (k) the greater the  
number of zeros in the blocks of the block diagonal form. 

Consider a decision function f(A) =max(A2) which is the 
maximum value of the square of the A matrix over all (i,j) 
elements where A(i,j)=0 (all pairs of variables that can be 
combined to form the basis of an equivalence class). This is 
also known as the correlation function which represents for 
each (i,j) the number of constraints that match between the 
variables xi and xj. Using the ineq algorithm (described in 
section IV)  it is possible to find an optimal solution vector s* 
and permute the A matrix into block diagonal form. Now 
compute A2 and take only the values corresponding to 
A(i,j)=0 and place all of these values into two groups:  zin for 
those inside the block diagonal and zout for those outside and 
plot them as a histogram. The result for four different A 
matrices of four different ones densities is shown in Figs. (1)-
(4). The solid line in each of the figures represents the 
distribution of correlation values for pairs of variables xi and 
xj inside the block diagonal zin and the dashed line is for those 
pair associations xi and xj outside the block diagonal zout. The 
area underneath each curve represents the number of zeros 
either inside or outside of the diagonal blocks. 

Fig. 1 shows the result of squaring an A matrix of very high 
ones density while Fig. 2 shows what happens when that ones 
density is reduced by about half. In Fig. 1 all of the zeros are 
in the block diagonal and none outside which is known as a 
complete k-partite system.  It can be seen in this case that 
there are three equivalence classes of different sizes resulting 
in three separate spectral peaks. The decision function f(A) 
=max(A2) tells us to choose the pair association corresponding 
to the rightmost tail of the distribution which has a value of 
about f(A) = max(A2) = 42. 
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Fig. 1   Matrix A with very high constraint density 

 
Because this is a complete k-partite system choosing any 

valid pair association will lead to an optimal solution so any 
decision function could be used in this case. This is a special 
case where any decision is a good decision and there are no 
bad decisions. There are other decision functions such as a 
power series expansion of the A matrix  f(A) =max(∑ciAi) 
which is explored in more depth in [5]. 

Fig. 2 shows the result for an A matrix with average ones 
density where the zeros outside of the main block diagonal 
increase significantly. However the decision function f(A) 
=max(A2) can clearly still differentiate between good 
decisions which lead to an optimal solution (under the solid 
curve) and other decisions or pair associations which may or 
may not lead to an optimal solution (under the dashed curve). 
The decision function will continue to work as long as the tail 
of the solid curve extends further to the right than the dashed 
curve since it only needs to make one correct decision at a 
time. The decision function f(A) =max(A2) is not perfect it has 
been estimated to be correct about 99.5% of the time over the 
ensemble of  systems of dimension n=100. Usually an optimal 
solution will be found for any system similar to the one in Fig. 
2 because as the solution proceeds the system gets closer to a 
complete k-partite system (Fig. 1).  

Fig. 3 illustrates what happens when the number of zeros 
zout continues to increase to the point where it equals or 
exceeds zin.  It can be seen in Fig. 3 the two distributions do 
overlap however the right hand tail of the solid line 
distribution extends significantly higher than the dashed 
distribution so the decision function still works. Fig. 4 shows 
the extreme case where there are far more zeros outside the 
block diagonal zout than inside zin.  
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Fig. 2   Matrix A with average constraint density 

 
Note in Fig. 4 that the two distributions are almost perfectly 

overlapping causing the decision function to break down and 
lose its ability to discriminate. This also corresponds to a very 
low ones density which is known to be the where the most 
difficult problems are[1,3]. This provides clear insight as to 
why the problems are so hard at this constraint density.  

It is important to note that all problems start near to one of 
the situations (Figs. (1)-(4)) and then progresses towards a 
complete k-partite as in Fig. 1. That explains why most of 
these problems are easily solved except for low density 
problems such as in Fig. 4.  Each system progresses along a 
trajectory towards a solution and will always pass through and 
end up as a complete k-partite system [3] as in Fig. 1.    

II. EQUIVALENCE CLASS SUBSET ALGORITHM 
Consider the case of a typical np-complete problem which 

must determine if a given set of variables can be represented 
as three equivalence classes (k*=3) or not. If a wrong decision 
is made at any point during the solution it will find a 
suboptimal solution of more than k*=3 equivalence classes. In 
the more general case of the np-hard compatibility problem 
the optimal solution is k* equivalence classes and the 
algorithm finds a suboptimal solution of cardinality k >k*. 
One technique to improve the success rate is to assume that 
the suboptimal solution is somehow close to an optimal 
solution and that most of the decisions made by the decision 
function were correct. The method chooses some subset of the 
decisions that were made in reaching the suboptimal solution 
and combines those variables creating a problem that does fall 
into the optimal solution space of the decision function.    
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Fig. 3   Matrix A with low constraint density 

The central idea is that somewhere near every system A that 
cannot be solved directly in one iteration is another equivalent 
system A' with the same optimal solution as system A which 
can be solved in one iteration. Finding this system A' can be 
viewed as a search of the very top of the decision tree. The  
equivalence class subset algorithm can be stated as in Fig. 5: 

(1)  find any solution s to system A  

 (2)  choose a subset of variable associations from  s     

 (3)  combine these variables  to create the A' matrix  

 (4)  find a solution s' to system A'  

Fig. 5 The Equivalence Class Subset Algorithm 

The equivalence class subset algorithm is based on the 
observation that any solution vector s will partition the zeros 
of the A matrix into two groups: those inside the block 
diagonal zin and those outside the block diagonal zout. 
Combining a small subset of pair associations corresponding 
to zeros inside the block diagonal may lead to an optimal 
solution if all of the decisions they represent were good. The 
exact size of the subset can be referred to as the search depth. 
Easier problems are solved by combining variables in the 
same equivalence class while difficult problems can require 
combining variables in different equivalence classes.  

The equivalence class subset algorithm works by stepping 
through a sequence of suboptimal solutions towards an 
optimal solution. Each time a solution s' is found the number 
of zeros on the block diagonal (zin) is calculated.  If this is 
more than in the previous solution use s' to take the next 
subset otherwise continue using s. If you take two suboptimal 
solutions it is likely that that one has more zeros on the main 
diagonal than the other. The one with more zeros is likely to   
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Fig. 4   Matrix A with very low constraint density 

be closer to an optimal solution. Each time you find a system 
where the number of zeros on the block diagonal is greater 
than any yet calculated,  choose that as the new system s’. 

Fig. 6 shows a typical trajectory of the equivalence class 
subset algorithm from suboptimal to optimal solution for a 
system of n=100 variables and optimal solution cardinality 
k*=13.  The lower line represents the sequence of k values 
starting at k=15 and ending an optimal solution k*=13. The 
dashed line represents the total number of pair associations zin 
which it is desired to maximize (for simplicity the actual 
numbers are not shown for the pair associations).  The method 
required choosing about 100 subsets from suboptimal solution 
vectors before an optimal solution was found.  Usually an 
optimal solution is found in fewer attempts and occasionally it 
can take several hundred attempts[3] for systems of dimension 
n=100.  The optimal size for the subset is a parameter of great 
interest and has been studied in [3]. The larger the size of the 
subset, the higher the probability it is to contain an incorrect 
decision. The smaller the size of the subset, the less likely it is 
to contain an incorrect decision however the less likely it is to 
move the system over to one that is in the solution space of the 
decision function. For systems of dimension n=100 it has been 
seen a range of subsets from as few as 1 to as many as 9 
falling off rapidly in what appears to be a geometric type of 
distribution[3].       

The assumptions behind the equivalence class subset 
algorithm that a suboptimal solution is somehow close to an 
optimal solution may not hold for a small set of the most 
difficult problems which are typically of low ones density as 
seen in    Fig. 4. This is due to a type of avalanche effect 
whereby mistakes made by a decision function early on can 
lead to suboptimal solutions that are far away from an optimal 
solution. In this situation it can be hopeless to combine any  
subset of variables as the probability of including a bad 
decision is very high. In this situation it would be better to  
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 Fig. 6 Typical Trajectory of the Equivalence Class Subset Algorithm 

  
assume that the suboptimal solution is far from an optimal 
solution and do the opposite. Instead of combining variables 
from the same equivalence class the method should split 
variables under the assumption that a significant proportion of 
the decisions made were probably wrong. For example, 
variables combined in the smallest equivalence class can act 
like a set of misfits that should be split up rather than 
combined in the equivalence class subset algorithm. 

That raises the problem of how to separate the split pair 
associations so that they don't recombine. This can be done 
quite effectively by creating a list of all pair associations that 
were previously combined and the resulting value of zin that 
resulted from doing this. When a pair association needs to be 
split it is looked up on the list and combined with a variable it 
is most compatible with. Use of this technique has extended 
the capability of the equivalence class subset algorithm to 
solve very difficult problems. Since the difficulty of a given 
problem is not known a priori, techniques of both splitting and 
combining can be used in an alternate fashion. 

III.   PROBLEM COMPLEXITY 

Considerable discussion has been put forth already on the 
ones density of the A matrix and the number of zeros inside 
and outside of the block diagonal. From a purely probabilistic 
viewpoint the odds of making a good decision depends on the 
underlying ratio of good to bad which is related to the number 
of zeros inside and outside of the block diagonal. The decision 
function works most of the time except in low ones density 
problems as in Fig. 4. By contrast, in a complete k-partite 
system (the opposite extreme) there are only good decisions. 
For any given system and optimal solution vector s* there will 
be a zozi ratio given by equation (1): 

zozi = zout/zin                                                                (1) 
 
In general it makes intuitive sense that the higher the zozi 

ratio the more difficult the problem.  Recall for example that 
the easiest problems all have a zozi ratio of zozi=0. Difficult 
can be defined as the average time complexity of solving a 
problem[3] or as the difficulty of guessing at random and 
getting the correct answer. Fig. 7 shows the result from a 
sample of 200 systems all in the most difficult region of low 
density but with different zozi ratios. It was observed that all 
of the most difficult problems had a zozi ratio of greater than 
about 1.8. The zozi ratio for k*=3  can vary between about 
.0006 and 2.  The difficulty tapered off as the zozi ratio 
decreased from 1.8 to 1.5 and for zozi ratios less than about 
1.5 all were solved in one iteration. It is premature to reach a 
general conclusion from a small sample of 200 however there 
is a clear indication that most if not all of the difficult 
problems are concentrated in the region with the highest ratio 
of zeros outside zout to zeros inside the block diagonal zin. This 
leads to the question of how it is possible to construct 
problems which have the highest ratio of zeros outside to 
zeros inside the block diagonal. Simply decreasing the ones  
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Fig. 7 Problem Complexity and Number of Zeros zin and zout 
 

density does not necessarily accomplish the desired result as it 
can result in the trivial problem where the ones density is zero. 
Referring to equation (1) it can be seen that to maximize the 
zozi ratio it would be necessary to consider both maximizing 
the numerator and minimizing the denominator of the fraction. 
The formula for calculating the minimum number zeros in the 
block diagonal is given by equation (2): 

 
         zmin = k*(n/k)2 = n2/k                                  (2) 

 
which gives approximately the minimum number of block 
diagonal zeros for solution cardinality k (exactly if n is 
divisible by k). This tells us that the minimum number of 
zeros on the block diagonal occurs when the size of all the 
equivalence classes are the same (n/k). For n=100 and k=3 
this gives about 3334 as the minimum and it is for these 
problems that would be expected to be the most difficult. To 
test this hypothesis a sample of 200 systems were chosen and 
solved. For each system the ratio zin/zmin was plotted against 
complexity as shown in Figure 8. All of the most difficult 
problems were seen to fall very close (within 4% ) of zmin.   

IV. THE INEQ ALGORITHM 
The decision function f(A) =max(A2) and the equivalence 

class subset algorithm were discussed in some detail. However 
this does not give the details of how to use a decision function 
by itself to generate a solution vector s as required in step (1) 
and step (4) of the equivalence class subset algorithm as given 
in Fig. 5. The method used to generate solutions is called the 
ineq algorithm (see Fig. 9).   

 
 

 
 

Fig. 8 Problem Complexity and Number of Zeros zin >  zmin 
 
ineq(A) 
ij<-max(A2) 
xi=xi|xj 
s[j]=s[i] 
A=A[-j,-j] 
ineq(A) 
 

Fig. 9  The ineq algorithm 
 
The ineq algorithm is so named because it can solve 

systems of inequations[4][10][11]. The algorithm starts with a 
solution vector s which has an initial value of s = (1,2,3,...n).  
The algorithm squares the adjacency matrix A and finds the 
maximum value of A2 [i,j] for pairs of variables that can be 
combined (i.e., A[i,j]=0). Similar to gaussian elimination it 
then combines variables xi and xj by taking the constraints 
that are in xj but not in xi and adding them to xi. It then 
updates the solution vector s[j]=s[i] and eliminates variable xj 
as in Gaussian elimination. The matrix A is reduced by one in 
dimension each time a variable is eliminated.  Note that the 
algorithm ineq is recursive, calling itself in the last step of the 
algorithm and stopping when there are no longer any variables 
to combine. The difference between ineq and Gaussian 
elimination is that ineq uses logical OR instead of addition 
and uses a decision function f(A)=max(A2) to determine (i,j). 
Since squaring a matrix is complexity O(n3) it would appear 
that ineq would be O(n4) however it is shown in [12] that ineq 
is O(n3). This has to be repeated for O(n) repetitions giving 
O(n3)*O(n) = O(n4) for the equivalence class subset 
algorithm. 

 

0 2 4 6 8 1

0

10

20

30

40

       percent Zin > 

 

1.6 1.7 1.7 1.8 1.8 1.9

0 

10

20

30

400 

 Zo/Zi ratio 

 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:5, 2009 

1313International Scholarly and Scientific Research & Innovation 3(5) 2009 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

5,
 2

00
9 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

14
01

.p
df



 

 

V. SUMMARY AND CONCLUSION 
A method called the equivalence class subset algorithm is 

described which can solve a wide variety of constraint 
satisfaction problems even in the most difficult ones[1]. It is 
based on the idea of the use of an imperfect decision function 
and by successively improving suboptimal solutions until an 
optimal solution is found. It was found that two different 
techniques were required depending on how far the 
suboptimal solution is from an optimal solution. If the 
suboptimal solution was close to an optimal solution then 
most of the decisions it made were correct so that choosing a 
subset of pair associations from even a suboptimal solution s 
will in many cases only contain pair associations which lead 
toward an optimal solution. When the subset of pair 
associations {ij} are associated by combining the indicated 
variables the matrix A is modified to form a new matrix A’. If 
no incorrect decisions were included in {ij} then the A’ matrix 
will have the same optimal solution cardinality as the matrix 
A. If in addition the matrix A’ falls into the solution space of 
the decision function f(A) being used then an optimal solution 
will also be found. In the case where the suboptimal solution 
is very far from an optimal solution the opposite approach of 
splitting up pair associations was seen to be far more 
successful. For any given problem it is not known whether a 
solution is optimal so in those cases it appears best to alternate 
between the two techniques. Each time a new solution is 
generated the number of block diagonal zeros zin is calculated.  
If the new solution vector has a higher zin value than previous 
solutions it is kept as the new basis for choosing subsets to 
combine or split. If not it is discarded. This method has been 
used on thousands of problems in the most difficult problem 
regions and has found an optimal solution in every case within 
at most a few hundred iterations. This leads to a conservative 
estimate for a lower bound of success rate of over 99.9% for 
systems of n=100 variables[3]. This investigation also further 
explored the idea of characterizing the most difficult 
problems[1,3]. Any insight into the nature of the most difficult 
problems can lead to either new or improved methods for 
solving these types of problems. It was found that one of the 
main source of problem difficulty is a result of the ratio of the 
number of zeros inside the block diagonal zin to those outside 
the block diagonal zout which can also be called the zozi ratio. 
It was further determined that the problems with the smallest 
number of zeros in the block diagonal would also be among 
the most difficult and this was corroborated by experimental 
results. Future research in this area is planned to include 
extending the dimension of the problems to be solved into the 
range of several thousand variables. Another goal is to test 
this algorithm more thoroughly by applying it to known 
problems for example the standard set of problems at the 
Carnegie Mellon University mathematics website[13]. It is 
also desired to create a package for the R language[14] for the 
ineq and ecsa algorithms so any results can be independently 
verified. 
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