Search results for: Mobile Ad Hoc Network
286 Performance Evaluation of Hybrid Intelligent Controllers in Load Frequency Control of Multi Area Interconnected Power Systems
Authors: Surya Prakash, Sunil Kumar Sinha
Abstract:
This paper deals with the application of artificial neural network (ANN) and fuzzy based Adaptive Neuro Fuzzy Inference System(ANFIS) approach to Load Frequency Control (LFC) of multi unequal area hydro-thermal interconnected power system. The proposed ANFIS controller combines the advantages of fuzzy controller as well as quick response and adaptability nature of ANN. Area-1 and area-2 consists of thermal reheat power plant whereas area-3 and area-4 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent controller like ANFIS, ANN and Fuzzy controllers and conventional PI and PID control approaches. To enhance the performance of intelligent and conventional controller sliding surface is included. The performances of the controllers are simulated using MATLAB/SIMULINK package. A comparison of ANFIS, ANN, Fuzzy, PI and PID based approaches shows the superiority of proposed ANFIS over ANN & fuzzy, PI and PID controller for 1% step load variation.Keywords: Load Frequency Control (LFC), ANFIS, ANN & Fuzzy, PI, PID Controllers, Area Control Error (ACE), Tie-line, MATLAB / SIMULINK.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3660285 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks
Authors: Siddhant Rao
Abstract:
Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.Keywords: Object detection, histopathology, breast cancer, mitotic count, deep learning, computer vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414284 Urban Areas Management in Developing Countries: Analysis of the Urban Areas Crossed with Risk of Storm Water Drains, Aswan-Egypt
Authors: Omar Hamdy, Schichen Zhao, Hussein Abd El-Atty, Ayman Ragab, Muhammad Salem
Abstract:
One of the most risky areas in Aswan is Abouelreesh, which is suffering from flood disasters, as heavy deluge inundates urban areas causing considerable damage to buildings and infrastructure. Moreover, the main problem was the urban sprawl towards this risky area. This paper aims to identify the urban areas located in the risk areas prone to flash floods. Analyzing this phenomenon needs a lot of data to ensure satisfactory results; however, in this case the official data and field data were limited, and therefore, free sources of satellite data were used. This paper used ArcGIS tools to obtain the storm water drains network by analyzing DEM files. Additionally, historical imagery in Google Earth was studied to determine the age of each building. The last step was to overlay the urban area layer and the storm water drains layer to identify the vulnerable areas. The results of this study would be helpful to urban planners and government officials to make the disasters risk estimation and develop primary plans to recover the risky area, especially urban areas located in torrents.
Keywords: Risk area, DEM, storm water drains, GIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921283 A Methodology for Investigating Public Opinion Using Multilevel Text Analysis
Authors: William Xiu Shun Wong, Myungsu Lim, Yoonjin Hyun, Chen Liu, Seongi Choi, Dasom Kim, Kee-Young Kwahk, Namgyu Kim
Abstract:
Recently, many users have begun to frequently share their opinions on diverse issues using various social media. Therefore, numerous governments have attempted to establish or improve national policies according to the public opinions captured from various social media. In this paper, we indicate several limitations of the traditional approaches to analyze public opinion on science and technology and provide an alternative methodology to overcome these limitations. First, we distinguish between the science and technology analysis phase and the social issue analysis phase to reflect the fact that public opinion can be formed only when a certain science and technology is applied to a specific social issue. Next, we successively apply a start list and a stop list to acquire clarified and interesting results. Finally, to identify the most appropriate documents that fit with a given subject, we develop a new logical filter concept that consists of not only mere keywords but also a logical relationship among the keywords. This study then analyzes the possibilities for the practical use of the proposed methodology thorough its application to discover core issues and public opinions from 1,700,886 documents comprising SNS, blogs, news, and discussions.Keywords: Big data, social network analysis, text mining, topic modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661282 Power Quality Improvement Using UPQC Integrated with Distributed Generation Network
Authors: B. Gopal, Pannala Krishna Murthy, G. N. Sreenivas
Abstract:
The increasing demand of electric power is giving an emphasis on the need for the maximum utilization of renewable energy sources. On the other hand maintaining power quality to satisfaction of utility is an essential requirement. In this paper the design aspects of a Unified Power Quality Conditioner integrated with photovoltaic system in a distributed generation is presented. The proposed system consist of series inverter, shunt inverter are connected back to back on the dc side and share a common dc-link capacitor with Distributed Generation through a boost converter. The primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation. In addition to primary tasks of UPQC, other functionalities such as compensation of voltage interruption and active power transfer to the load and grid in both islanding and interconnected mode have been addressed. The simulation model is design in MATLAB/ Simulation environment and the results are in good agreement with the published work.Keywords: Distributed Generation(DG), Interconnected mode, Islanding mode, Maximum power point tracking (MPPT), Power Quality (PQ), Unified power quality conditioner (UPQC), Photovoltaic array (PV).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2382281 Real-time Performance Study of EPA Periodic Data Transmission
Authors: Liu Ning, Zhong Chongquan, Teng Hongfei
Abstract:
EPA (Ethernet for Plant Automation) resolves the nondeterministic problem of standard Ethernet and accomplishes real-time communication by means of micro-segment topology and deterministic scheduling mechanism. This paper studies the real-time performance of EPA periodic data transmission from theoretical and experimental perspective. By analyzing information transmission characteristics and EPA deterministic scheduling mechanism, 5 indicators including delivery time, time synchronization accuracy, data-sending time offset accuracy, utilization percentage of configured timeslice and non-RTE bandwidth that can be used to specify the real-time performance of EPA periodic data transmission are presented and investigated. On this basis, the test principles and test methods of the indicators are respectively studied and some formulas for real-time performance of EPA system are derived. Furthermore, an experiment platform is developed to test the indicators of EPA periodic data transmission in a micro-segment. According to the analysis and the experiment, the methods to improve the real-time performance of EPA periodic data transmission including optimizing network structure, studying self-adaptive adjustment method of timeslice and providing data-sending time offset accuracy for configuration are proposed.
Keywords: EPA system, Industrial Ethernet, Periodic data, Real-time performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468280 Optimal Location of Multi Type Facts Devices for Multiple Contingencies Using Particle Swarm Optimization
Authors: S. Sutha, N. Kamaraj
Abstract:
In deregulated operating regime power system security is an issue that needs due thoughtfulness from researchers in the horizon of unbundling of generation and transmission. Electric power systems are exposed to various contingencies. Network contingencies often contribute to overloading of branches, violation of voltages and also leading to problems of security/stability. To maintain the security of the systems, it is desirable to estimate the effect of contingencies and pertinent control measurement can be taken on to improve the system security. This paper presents the application of particle swarm optimization algorithm to find the optimal location of multi type FACTS devices in a power system in order to eliminate or alleviate the line over loads. The optimizations are performed on the parameters, namely the location of the devices, their types, their settings and installation cost of FACTS devices for single and multiple contingencies. TCSC, SVC and UPFC are considered and modeled for steady state analysis. The selection of UPFC and TCSC suitable location uses the criteria on the basis of improved system security. The effectiveness of the proposed method is tested for IEEE 6 bus and IEEE 30 bus test systems.
Keywords: Contingency Severity Index, Particle Swarm Optimization, Performance Index, Static Security Assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2766279 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models
Authors: Ramin Vafadary, Maryam Khanbaghi
Abstract:
Forecasting electricity load is important for various purposes like planning, operation and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria namely, the Mean Absolute Error and Root Mean Square Error. The National Renewable Energy Laboratory (NREL) residential energy consumption data are used to train the models. The results of this study show that SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts we can improve the robustness of the models for 24 hour ahead electricity load forecasting.
Keywords: Bagging, Fbprophet, Holt-Winters, LSTM, Load Forecast, SARIMA, tensorflow probability, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 483278 Virtual Container Yard: Assessing the Perceived Impact of Legal Implications to Container Carriers
Authors: L. Edirisinghe, P. Mukherjee, H. Edirisinghe
Abstract:
Virtual Container Yard (VCY) is a modern concept that helps to reduce the empty container repositioning cost of carriers. The concept of VCY is based on container interchange between shipping lines. Although this mechanism has been theoretically accepted by the shipping community as a feasible solution, it has not yet achieved the necessary momentum among container shipping lines (CSL). This paper investigates whether there is any legal influence on this industry myopia about the VCY. It is believed that this is the first publication that focuses on the legal aspects of container exchange between carriers. Not much literature on this subject is available. This study establishes with statistical evidence that there is a phobia prevailing in the shipping industry that exchanging containers with other carriers may lead to various legal implications. The complexity of exchange is two faceted. CSLs assume that offering a container to another carrier (obviously, a competitor in terms of commercial context) or using a container offered by another carrier may lead to undue legal implications. This research reveals that this fear is reflected through four types of perceived components, namely: shipping associate; warehouse associate; network associate; and trading associate. These components carry eighteen subcomponents that comprehensively cover the entire process of a container shipment. The statistical explanation has been supported through regression analysis; INCO terms were used to illustrate the shipping process.
Keywords: Container, legal, shipping, virtual.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 619277 Optical Fish Tracking in Fishways using Neural Networks
Authors: Alvaro Rodriguez, Maria Bermudez, Juan R. Rabuñal, Jeronimo Puertas
Abstract:
One of the main issues in Computer Vision is to extract the movement of one or several points or objects of interest in an image or video sequence to conduct any kind of study or control process. Different techniques to solve this problem have been applied in numerous areas such as surveillance systems, analysis of traffic, motion capture, image compression, navigation systems and others, where the specific characteristics of each scenario determine the approximation to the problem. This paper puts forward a Computer Vision based algorithm to analyze fish trajectories in high turbulence conditions in artificial structures called vertical slot fishways, designed to allow the upstream migration of fish through obstructions in rivers. The suggested algorithm calculates the position of the fish at every instant starting from images recorded with a camera and using neural networks to execute fish detection on images. Different laboratory tests have been carried out in a full scale fishway model and with living fishes, allowing the reconstruction of the fish trajectory and the measurement of velocities and accelerations of the fish. These data can provide useful information to design more effective vertical slot fishways.
Keywords: Computer Vision, Neural Network, Fishway, Fish Trajectory, Tracking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001276 Clique and Clan Analysis of Patient-Sharing Physician Collaborations
Authors: Shahadat Uddin, Md Ekramul Hossain, Arif Khan
Abstract:
The collaboration among physicians during episodes of care for a hospitalised patient has a significant contribution towards effective health outcome. This research aims at improving this health outcome by analysing the attributes of patient-sharing physician collaboration network (PCN) on hospital data. To accomplish this goal, we present a research framework that explores the impact of several types of attributes (such as clique and clan) of PCN on hospitalisation cost and hospital length of stay. We use electronic health insurance claim dataset to construct and explore PCNs. Each PCN is categorised as ‘low’ and ‘high’ in terms of hospitalisation cost and length of stay. The results from the proposed model show that the clique and clan of PCNs affect the hospitalisation cost and length of stay. The clique and clan of PCNs show the difference between ‘low’ and ‘high’ PCNs in terms of hospitalisation cost and length of stay. The findings and insights from this research can potentially help the healthcare stakeholders to better formulate the policy in order to improve quality of care while reducing cost.
Keywords: Clique, clan, electronic health records, physician collaboration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 868275 Exploring the Activity Fabric of an Intelligent Environment with Hierarchical Hidden Markov Theory
Authors: Chiung-Hui Chen
Abstract:
The Internet of Things (IoT) was designed for widespread convenience. With the smart tag and the sensing network, a large quantity of dynamic information is immediately presented in the IoT. Through the internal communication and interaction, meaningful objects provide real-time services for users. Therefore, the service with appropriate decision-making has become an essential issue. Based on the science of human behavior, this study employed the environment model to record the time sequences and locations of different behaviors and adopted the probability module of the hierarchical Hidden Markov Model for the inference. The statistical analysis was conducted to achieve the following objectives: First, define user behaviors and predict the user behavior routes with the environment model to analyze user purposes. Second, construct the hierarchical Hidden Markov Model according to the logic framework, and establish the sequential intensity among behaviors to get acquainted with the use and activity fabric of the intelligent environment. Third, establish the intensity of the relation between the probability of objects’ being used and the objects. The indicator can describe the possible limitations of the mechanism. As the process is recorded in the information of the system created in this study, these data can be reused to adjust the procedure of intelligent design services.Keywords: Behavior, big data, hierarchical Hidden Markov Model, intelligent object.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764274 Artificial Intelligence Model to Predict Surface Roughness of Ti-15-3 Alloy in EDM Process
Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama, M.A. Maleque, Rosli A. Bakar
Abstract:
Conventionally the selection of parameters depends intensely on the operator-s experience or conservative technological data provided by the EDM equipment manufacturers that assign inconsistent machining performance. The parameter settings given by the manufacturers are only relevant with common steel grades. A single parameter change influences the process in a complex way. Hence, the present research proposes artificial neural network (ANN) models for the prediction of surface roughness on first commenced Ti-15-3 alloy in electrical discharge machining (EDM) process. The proposed models use peak current, pulse on time, pulse off time and servo voltage as input parameters. Multilayer perceptron (MLP) with three hidden layer feedforward networks are applied. An assessment is carried out with the models of distinct hidden layer. Training of the models is performed with data from an extensive series of experiments utilizing copper electrode as positive polarity. The predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results. Beside this they can be exercised as precious tools for the process planning for EDM.Keywords: Ti-15l-3, surface roughness, copper, positive polarity, multi-layered perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907273 Plasma Properties Effect on Fluorescent Tube Plasma Antenna Performance
Authors: A. N. Dagang, E. I. Ismail, Z. Zakaria
Abstract:
This paper presents the analysis on the performance of monopole antenna with fluorescent tubes. In this research, the simulation and experimental approach is conducted. The fluorescent tube with different length and size is designed using Computer Simulation Technology (CST) software and the characteristics of antenna parameter are simulated throughout the software. CST was used to simulate antenna parameters such as return loss, resonant frequency, gain and directivity. Vector Network Analyzer (VNA) was used to measure the return loss of plasma antenna in order to validate the simulation results. In the simulation and experiment, the supply frequency is set starting from 1 GHz to 10 GHz. The results show that the return loss of plasma antenna changes when size of fluorescent tubes is varied, correspond to the different plasma properties. It shows that different values of plasma properties such as plasma frequency and collision frequency gives difference result of return loss, gain and directivity. For the gain, the values range from 2.14 dB to 2.36 dB. The return loss of plasma antenna offers higher value range from -22.187 dB to -32.903 dB. The higher the values of plasma frequency and collision frequency, the higher return loss can be obtained. The values obtained are comparative to the conventional type of metal antenna.
Keywords: Plasma antenna, fluorescent tube, computer simulation technology, plasma parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667272 Developing a Web-Based Workflow Management System in Cloud Computing Platforms
Authors: Wang Shuen-Tai, Lin Yu-Ching, Chang Hsi-Ya
Abstract:
Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. In this paper, we aim at the development of workflow management system for cloud computing platforms based on our previous research on the dynamic allocation of the cloud computing resources and its workflow process. We took advantage of the HTML5 technology and developed web-based workflow interface. In order to enable the combination of many tasks running on the cloud platform in sequence, we designed a mechanism and developed an execution engine for workflow management on clouds. We also established a prediction model which was integrated with job queuing system to estimate the waiting time and cost of the individual tasks on different computing nodes, therefore helping users achieve maximum performance at lowest payment. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud computing platform. This development also helps boost user productivity by promoting a flexible workflow interface that lets users design and control their tasks' flow from anywhere.Keywords: Web-based, workflow, HTML5, Cloud Computing, Queuing System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2911271 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.
Keywords: Cancer classification, feature selection, deep learning, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271270 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study
Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple
Abstract:
There is a dramatic surge in the adoption of Machine Learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. Artificial Intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and two defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt ML techniques without rigorous testing, since they may be vulnerable to adversarial attacks, especially in security-critical areas such as the nuclear industry. We observed that while the adopted defence methods can effectively defend against different attacks, none of them could protect against all five adversarial attacks entirely.
Keywords: Resilient Machine Learning, attacks, defences, nuclear industry, crack detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 500269 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems
Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano
Abstract:
The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.Keywords: EIoT, machine learning, anomaly detection, environment monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1027268 Kinetic Modeling of the Fischer-Tropsch Reactions and Modeling Steady State Heterogeneous Reactor
Authors: M. Ahmadi Marvast, M. Sohrabi, H. Ganji
Abstract:
The rate of production of main products of the Fischer-Tropsch reactions over Fe/HZSM5 bifunctional catalyst in a fixed bed reactor is investigated at a broad range of temperature, pressure, space velocity, H2/CO feed molar ratio and CO2, CH4 and water flow rates. Model discrimination and parameter estimation were performed according to the integral method of kinetic analysis. Due to lack of mechanism development for Fisher – Tropsch Synthesis on bifunctional catalysts, 26 different models were tested and the best model is selected. Comprehensive one and two dimensional heterogeneous reactor models are developed to simulate the performance of fixed-bed Fischer – Tropsch reactors. To reduce computational time for optimization purposes, an Artificial Feed Forward Neural Network (AFFNN) has been used to describe intra particle mass and heat transfer diffusion in the catalyst pellet. It is seen that products' reaction rates have direct relation with H2 partial pressure and reverse relation with CO partial pressure. The results show that the hybrid model has good agreement with rigorous mechanistic model, favoring that the hybrid model is about 25-30 times faster.
Keywords: Fischer-Tropsch, heterogeneous modeling, kinetic study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2820267 A Novel Approach for Protein Classification Using Fourier Transform
Authors: A. F. Ali, D. M. Shawky
Abstract:
Discovering new biological knowledge from the highthroughput biological data is a major challenge to bioinformatics today. To address this challenge, we developed a new approach for protein classification. Proteins that are evolutionarily- and thereby functionally- related are said to belong to the same classification. Identifying protein classification is of fundamental importance to document the diversity of the known protein universe. It also provides a means to determine the functional roles of newly discovered protein sequences. Our goal is to predict the functional classification of novel protein sequences based on a set of features extracted from each protein sequence. The proposed technique used datasets extracted from the Structural Classification of Proteins (SCOP) database. A set of spectral domain features based on Fast Fourier Transform (FFT) is used. The proposed classifier uses multilayer back propagation (MLBP) neural network for protein classification. The maximum classification accuracy is about 91% when applying the classifier to the full four levels of the SCOP database. However, it reaches a maximum of 96% when limiting the classification to the family level. The classification results reveal that spectral domain contains information that can be used for classification with high accuracy. In addition, the results emphasize that sequence similarity measures are of great importance especially at the family level.
Keywords: Bioinformatics, Artificial Neural Networks, Protein Sequence Analysis, Feature Extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2360266 MONPAR - A Page Replacement Algorithm for a Spatiotemporal Database
Authors: U. Kalay, O. Kalıpsız
Abstract:
For a spatiotemporal database management system, I/O cost of queries and other operations is an important performance criterion. In order to optimize this cost, an intense research on designing robust index structures has been done in the past decade. With these major considerations, there are still other design issues that deserve addressing due to their direct impact on the I/O cost. Having said this, an efficient buffer management strategy plays a key role on reducing redundant disk access. In this paper, we proposed an efficient buffer strategy for a spatiotemporal database index structure, specifically indexing objects moving over a network of roads. The proposed strategy, namely MONPAR, is based on the data type (i.e. spatiotemporal data) and the structure of the index structure. For the purpose of an experimental evaluation, we set up a simulation environment that counts the number of disk accesses while executing a number of spatiotemporal range-queries over the index. We reiterated simulations with query sets with different distributions, such as uniform query distribution and skewed query distribution. Based on the comparison of our strategy with wellknown page-replacement techniques, like LRU-based and Prioritybased buffers, we conclude that MONPAR behaves better than its competitors for small and medium size buffers under all used query-distributions.Keywords: Buffer Management, Spatiotemporal databases.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476265 Application of Machine Learning Methods to Online Test Error Detection in Semiconductor Test
Authors: Matthias Kirmse, Uwe Petersohn, Elief Paffrath
Abstract:
As in today's semiconductor industries test costs can make up to 50 percent of the total production costs, an efficient test error detection becomes more and more important. In this paper, we present a new machine learning approach to test error detection that should provide a faster recognition of test system faults as well as an improved test error recall. The key idea is to learn a classifier ensemble, detecting typical test error patterns in wafer test results immediately after finishing these tests. Since test error detection has not yet been discussed in the machine learning community, we define central problem-relevant terms and provide an analysis of important domain properties. Finally, we present comparative studies reflecting the failure detection performance of three individual classifiers and three ensemble methods based upon them. As base classifiers we chose a decision tree learner, a support vector machine and a Bayesian network, while the compared ensemble methods were simple and weighted majority vote as well as stacking. For the evaluation, we used cross validation and a specially designed practical simulation. By implementing our approach in a semiconductor test department for the observation of two products, we proofed its practical applicability.
Keywords: Ensemble methods, fault detection, machine learning, semiconductor test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274264 Effect on Physicochemical and Sensory Attributes of Bread Substituted with Different Levels of Matured Soursop (Anona muricata) Flour
Authors: Mardiana Ahamad Zabidi, Akmalluddin Md. Yunus
Abstract:
Soursop (Anona muricata) is one of the underutilized tropical fruits containing nutrients, particularly dietary fibre and antioxidant properties that are beneficial to human health. This objective of this study is to investigate the feasibility of matured soursop pulp flour (SPF) to be substituted with high-protein wheat flour in bread. Bread formulation was substituted with different levels of SPF (0%, 5%, 10% and 15%). The effect on physicochemical properties and sensory attributes were evaluated. Higher substitution level of SPF resulted in significantly higher (p<0.05) fibre, protein and ash content, while fat and carbohydrate content reduced significantly (p<0.05). FESEM showed that the bread crumb surface of control and 5% SPF appeared to distribute evenly and coalesced by thin gluten film. However, higher SPF substitution level in bread formulation exhibited a deleterious effect by formation of discontinuous gluten network. For texture profile analysis, 5% SPF bread resulted in the lowest value of hardness. The score of sensory evaluation showed that 5% SPF bread received good acceptability and is comparable with control bread.
Keywords: Bread, Physicochemical properties, Scanning electron microscopy (SEM), Sensory attributes, Soursop pulp flour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3154263 An Advanced Approach Based on Artificial Neural Networks to Identify Environmental Bacteria
Authors: Mauro Giacomini, Stefania Bertone, Federico Caneva Soumetz, Carmelina Ruggiero
Abstract:
Environmental micro-organisms include a large number of taxa and some species that are generally considered nonpathogenic, but can represent a risk in certain conditions, especially for elderly people and immunocompromised individuals. Chemotaxonomic identification techniques are powerful tools for environmental micro-organisms, and cellular fatty acid methyl esters (FAME) content is a powerful fingerprinting identification technique. A system based on an unsupervised artificial neural network (ANN) was set up using the fatty acid profiles of standard bacterial strains, obtained by gas-chromatography, used as learning data. We analysed 45 certified strains belonging to Acinetobacter, Aeromonas, Alcaligenes, Aquaspirillum, Arthrobacter, Bacillus, Brevundimonas, Enterobacter, Flavobacterium, Micrococcus, Pseudomonas, Serratia, Shewanella and Vibrio genera. A set of 79 bacteria isolated from a drinking water line (AMGA, the major water supply system in Genoa) were used as an example for identification compared to standard MIDI method. The resulting ANN output map was found to be a very powerful tool to identify these fresh isolates.
Keywords: Cellular fatty acid methyl esters, environmental bacteria, gas-chromatography, unsupervised ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840262 Analyzing the Perception of Social Networking Sites as a Learning Tool among University Students: Case Study of a Business School in India
Authors: Bhaskar Basu
Abstract:
Universities and higher education institutes are finding it increasingly difficult to engage students fruitfully through traditional pedagogic tools. Web 2.0 technologies comprising social networking sites (SNSs) offer a platform for students to collaborate and share information, thereby enhancing their learning experience. Despite the potential and reach of SNSs, its use has been limited in academic settings promoting higher education. The purpose of this paper is to assess the perception of social networking sites among business school students in India and analyze its role in enhancing quality of student experiences in a business school leading to the proposal of an agenda for future research. In this study, more than 300 students of a reputed business school were involved in a survey of their preferences of different social networking sites and their perceptions and attitudes towards these sites. A questionnaire with three major sections was designed, validated and distributed among a sample of students, the research method being descriptive in nature. Crucial questions were addressed to the students concerning time commitment, reasons for usage, nature of interaction on these sites, and the propensity to share information leading to direct and indirect modes of learning. It was further supplemented with focus group discussion to analyze the findings. The paper notes the resistance in the adoption of new technology by a section of business school faculty, who are staunch supporters of the classical “face-to-face” instruction. In conclusion, social networking sites like Facebook and LinkedIn provide new avenues for students to express themselves and to interact with one another. Universities could take advantage of the new ways in which students are communicating with one another. Although interactive educational options such as Moodle exist, social networking sites are rarely used for academic purposes. Using this medium opens new ways of academically-oriented interactions where faculty could discover more about students' interests, and students, in turn, might express and develop more intellectual facets of their lives. hitherto unknown intellectual facets. This study also throws up the enormous potential of mobile phones as a tool for “blended learning” in business schools going forward.
Keywords: Business school, India, learning, social media, social networking, university.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428261 Impact of Solar Energy Based Power Grid for Future Prospective of Pakistan
Authors: Muhammd Usman Sardar, Mazhar Hussain Baloch, Muhammad Shahbaz Ahmad, Zahir Javed Paracha
Abstract:
Shortfall of electrical energy in Pakistan is a challenge adversely affecting its industrial output and social growth. As elsewhere, Pakistan derives its electrical energy from a number of conventional sources. The exhaustion of petroleum and conventional resources, the rising costs coupled with extremely adverse climatic effects are taking its toll especially on the under-developed countries like Pakistan. As alternate, renewable energy sources like hydropower, solar, wind, even bio-energy and a mix of some or all of them could provide a credible alternative to the conventional energy resources that would not only be cleaner but sustainable as well. As a model, solar energy-based power grid for the near future has been attempted to offset the energy shortfalls as a mix with our existing sustainable natural energy resources. An assessment of solar energy potential for electricity generation is being presented for fulfilling the energy demands with higher level of reliability and sustainability. This model is based on the premise that solar energy potential of Pakistan is not only reliable but also sustainable. This research estimates the present & future approaching renewable energy resource specially the impact of solar energy based power grid for mitigating energy shortage in Pakistan.
Keywords: Powergrid network, solar photovoltaic (SPV) setups, solar power generation, solar energy technology (SET).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3450260 Simultaneous HPAM/SDS Injection in Heterogeneous/Layered Models
Authors: M. H. Sedaghat, A. Zamani, S. Morshedi, R. Janamiri, M. Safdari, I. Mahdavi, A. Hosseini, A. Hatampour
Abstract:
Although lots of experiments have been done in enhanced oil recovery, the number of experiments which consider the effects of local and global heterogeneity on efficiency of enhanced oil recovery based on the polymer-surfactant flooding is low and rarely done. In this research, we have done numerous experiments of water flooding and polymer-surfactant flooding on a five spot glass micromodel in different conditions such as different positions of layers. In these experiments, five different micromodels with three different pore structures are designed. Three models with different layer orientation, one homogenous model and one heterogeneous model are designed. In order to import the effect of heterogeneity of porous media, three types of pore structures are distributed accidentally and with equal ratio throughout heterogeneous micromodel network according to random normal distribution. The results show that maximum EOR recovery factor will happen in a situation where the layers are orthogonal to the path of mainstream and the minimum EOR recovery factor will happen in a situation where the model is heterogeneous. This experiments show that in polymer-surfactant flooding, with increase of angles of layers the EOR recovery factor will increase and this recovery factor is strongly affected by local heterogeneity around the injection zone.
Keywords: Layered Reservoir, Micromodel, Local Heterogeneity, Polymer-Surfactant Flooding, Enhanced Oil Recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2219259 The Design and Analysis of Learning Effects for a Game-based Learning System
Authors: Wernhuar Tarng, Weichian Tsai
Abstract:
The major purpose of this study is to use network and multimedia technologies to build a game-based learning system for junior high school students to apply in learning “World Geography" through the “role-playing" game approaches. This study first investigated the motivation and habits of junior high school students to use the Internet and online games, and then designed a game-based learning system according to situated and game-based learning theories. A teaching experiment was conducted to analyze the learning effectiveness of students on the game-based learning system and the major factors affecting their learning. A questionnaire survey was used to understand the students- attitudes towards game-based learning. The results showed that the game-based learning system can enhance students- learning, but the gender of students and their habits in using the Internet have no significant impact on learning. Game experience has a significant impact on students- learning, and the higher the experience value the better the effectiveness of their learning. The results of questionnaire survey also revealed that the system can increase students- motivation and interest in learning "World Geography".
Keywords: Game-based learning, situated learning, role playing, learning effectiveness, learning motivation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595258 Exploiting Two Intelligent Models to Predict Water Level: A Field Study of Urmia Lake, Iran
Authors: Shahab Kavehkar, Mohammad Ali Ghorbani, Valeriy Khokhlov, Afshin Ashrafzadeh, Sabereh Darbandi
Abstract:
Water level forecasting using records of past time series is of importance in water resources engineering and management. For example, water level affects groundwater tables in low-lying coastal areas, as well as hydrological regimes of some coastal rivers. Then, a reliable prediction of sea-level variations is required in coastal engineering and hydrologic studies. During the past two decades, the approaches based on the Genetic Programming (GP) and Artificial Neural Networks (ANN) were developed. In the present study, the GP is used to forecast daily water level variations for a set of time intervals using observed water levels. The measurements from a single tide gauge at Urmia Lake, Northwest Iran, were used to train and validate the GP approach for the period from January 1997 to July 2008. Statistics, the root mean square error and correlation coefficient, are used to verify model by comparing with a corresponding outputs from Artificial Neural Network model. The results show that both these artificial intelligence methodologies are satisfactory and can be considered as alternatives to the conventional harmonic analysis.
Keywords: Water-Level variation, forecasting, artificial neural networks, genetic programming, comparative analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2332257 Providing a Secure, Reliable and Decentralized Document Management Solution Using Blockchain by a Virtual Identity Card
Authors: Meet Shah, Ankita Aditya, Dhruv Bindra, V. S. Omkar, Aashruti Seervi
Abstract:
In today's world, we need documents everywhere for a smooth workflow in the identification process or any other security aspects. The current system and techniques which are used for identification need one thing, that is ‘proof of existence’, which involves valid documents, for example, educational, financial, etc. The main issue with the current identity access management system and digital identification process is that the system is centralized in their network, which makes it inefficient. The paper presents the system which resolves all these cited issues. It is based on ‘blockchain’ technology, which is a 'decentralized system'. It allows transactions in a decentralized and immutable manner. The primary notion of the model is to ‘have everything with nothing’. It involves inter-linking required documents of a person with a single identity card so that a person can go anywhere without having the required documents with him/her. The person just needs to be physically present at a place wherein documents are necessary, and using a fingerprint impression and an iris scan print, the rest of the verification will progress. Furthermore, some technical overheads and advancements are listed. This paper also aims to layout its far-vision scenario of blockchain and its impact on future trends.
Keywords: Blockchain, decentralized system, fingerprint impression, identity management, iris scan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303