Search results for: deep learning algorithms
516 Knowledge Creation and Innovation in Classroom
Authors: Salina Daud, Rabiah Eladwiah Abdul Rahim, Rusnita Alimun
Abstract:
The concepts of knowledge creation and innovation have a strong relationship but this relationship has not been examined systematically. This study examines the utilization of knowledge creation processes of the Theory of Knowledge Creation in Higher Education Institutions. These processes consist of socialization, externalization, combination and internalization. This study suggests that the utilization of these processes will give impacts on innovation in academic performance. A cross-sectional study was conducted using survey questionnaires to collect data of the utilization of knowledge creation processes and classroom-s innovation. The samples are Business Management students of a Malaysian Higher Education Institution. The results of this study could help Higher Education Institutions to enrich the learning process of students through knowledge creation and innovation.Keywords: Knowledge creation, innovation, business schools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2533515 Evaluating the Performance of Offensive Lineman in the NFL
Authors: Nikhil Byanna, Abdolghani Ebrahimi, Diego Klabjan
Abstract:
In this paper we objectively measure the performance of an individual offensive lineman in the NFL. The existing literature proposes various measures that rely on subjective assessments of game film, but has yet to develop an objective methodology to evaluate performance. Using a variety of statistics related to an offensive lineman’s performance, we develop a framework to objectively analyze the overall performance of an individual offensive lineman and determine specific linemen who are overvalued or undervalued relative to their salary. We identify eight players across the 2013-2014 and 2014-2015 NFL seasons that are considered to be overvalued or undervalued and corroborate the results with existing metrics that are based on subjective evaluation. To the best of our knowledge, the techniques set forth in this work have not been utilized in previous works to evaluate the performance of NFL players at any position, including offensive linemen.
Keywords: offensive lineman, player performance, NFL, machine learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 534514 Spatial Clustering Model of Vessel Trajectory to Extract Sailing Routes Based on AIS Data
Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin
Abstract:
The automatic extraction of shipping routes is advantageous for intelligent traffic management systems to identify events and support decision-making in maritime surveillance. At present, there is a high demand for the extraction of maritime traffic networks that resemble the real traffic of vessels accurately, which is valuable for further analytical processing tasks for vessels trajectories (e.g., naval routing and voyage planning, anomaly detection, destination prediction, time of arrival estimation). With the help of big data and processing huge amounts of vessels’ trajectory data, it is possible to learn these shipping routes from the navigation history of past behaviour of other, similar ships that were travelling in a given area. In this paper, we propose a spatial clustering model of vessels’ trajectories (SPTCLUST) to extract spatial representations of sailing routes from historical Automatic Identification System (AIS) data. The whole model consists of three main parts: data preprocessing, path finding, and route extraction, which consists of clustering and representative trajectory extraction. The proposed clustering method provides techniques to overcome the problems of: (i) optimal input parameters selection; (ii) the high complexity of processing a huge volume of multidimensional data; (iii) and the spatial representation of complete representative trajectory detection in the context of trajectory clustering algorithms. The experimental evaluation showed the effectiveness of the proposed model by using a real-world AIS dataset from the Port of Halifax. The results contribute to further understanding of shipping route patterns. This could aid surveillance authorities in stable and sustainable vessel traffic management.
Keywords: Vessel trajectory clustering, trajectory mining, Spatial Clustering, marine intelligent navigation, maritime traffic network extraction, sdailing routes extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 455513 Linguistic Competence Analysis and the Development of Speaking Instructional Material
Authors: Felipa M. Rico
Abstract:
Linguistic oral competence plays a vital role in attaining effective communication. Since the English language is considered as universally used language and has a high demand skill needed in the work-place, mastery is the expected output from learners. To achieve this, learners should be given integrated differentiated tasks which help them develop and strengthen the expected skills. This study aimed to develop speaking instructional supplementary material to enhance the English linguistic competence of Grade 9 students in areas of pronunciation, intonation and stress, voice projection, diction and fluency. A descriptive analysis was utilized to analyze the speaking level of performance of the students in order to employ appropriate strategies. There were two sets of respondents: 178 Grade 9 students selected through a stratified sampling and chosen at random. The other set comprised English teachers who evaluated the usefulness of the devised teaching materials. A teacher conducted a speaking test and activities were employed to analyze the speaking needs of students. Observation and recordings were also used to evaluate the students’ performance. The findings revealed that the English pronunciation of the students was slightly unclear at times, but generally fair. There were lapses but generally they rated moderate in intonation and stress, because of other language interference. In terms of voice projection, students have erratic high volume pitch. For diction, the students’ ability to produce comprehensible language is limited, and as to fluency, the choice of vocabulary and use of structure were severely limited. Based on the students’ speaking needs analyses, the supplementary material devised was based on Nunan’s IM model, incorporating context of daily life and global work settings, considering the principle that language is best learned in the actual meaningful situation. To widen the mastery of skill, a rich learning environment, filled with a variety instructional material tends to foster faster acquisition of the requisite skills for sustained learning and development. The role of IM is to encourage information to stick in the learners’ mind, as what is seen is understood more than what is heard. Teachers say they found the IM “very useful.” This implied that English teachers could adopt the materials to improve the speaking skills of students. Further, teachers should provide varied opportunities for students to get involved in real life situations where they could take turns in asking and answering questions and share information related to the activities. This would minimize anxiety among students in the use of the English language.Keywords: Fluency, intonation, instructional materials, linguistic competence, pronunciation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653512 Toward Indoor and Outdoor Surveillance Using an Improved Fast Background Subtraction Algorithm
Authors: A. El Harraj, N. Raissouni
Abstract:
The detection of moving objects from a video image sequences is very important for object tracking, activity recognition, and behavior understanding in video surveillance. The most used approach for moving objects detection / tracking is background subtraction algorithms. Many approaches have been suggested for background subtraction. But, these are illumination change sensitive and the solutions proposed to bypass this problem are time consuming. In this paper, we propose a robust yet computationally efficient background subtraction approach and, mainly, focus on the ability to detect moving objects on dynamic scenes, for possible applications in complex and restricted access areas monitoring, where moving and motionless persons must be reliably detected. It consists of three main phases, establishing illumination changes invariance, background/foreground modeling and morphological analysis for noise removing. We handle illumination changes using Contrast Limited Histogram Equalization (CLAHE), which limits the intensity of each pixel to user determined maximum. Thus, it mitigates the degradation due to scene illumination changes and improves the visibility of the video signal. Initially, the background and foreground images are extracted from the video sequence. Then, the background and foreground images are separately enhanced by applying CLAHE. In order to form multi-modal backgrounds we model each channel of a pixel as a mixture of K Gaussians (K=5) using Gaussian Mixture Model (GMM). Finally, we post process the resulting binary foreground mask using morphological erosion and dilation transformations to remove possible noise. For experimental test, we used a standard dataset to challenge the efficiency and accuracy of the proposed method on a diverse set of dynamic scenes.
Keywords: Video surveillance, background subtraction, Contrast Limited Histogram Equalization, illumination invariance, object tracking, object detection, behavior understanding, dynamic scenes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087511 The Development of a Narrative Management System: Storytelling in Knowledge Management
Authors: Savita K.S, Hazwani H., Kalid K. S.
Abstract:
This paper presents a narrative management system for organizations to capture organization's tacit knowledge through stories. The intention of capturing tacit knowledge is to address the problem that comes with the mobility of workforce in organisation. Storytelling in knowledge management context is seen as a powerful management tool to communicate tacit knowledge in organization. This narrative management system is developed firstly to enable uploading of many types of knowledge sharing stories, from general to work related-specific stories and secondly, each video has comment functionality where knowledge users can post comments to other knowledge users. The narrative management system allows the stories to browse, search and view by the users. In the system, stories are stored in a video repository. Stories that were produced from this framework will improve learning, knowledge transfer facilitation and tacit knowledge quality in an organization.Keywords: Knowledge Management, Storytelling, Stories, Tacit Knowledge
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2442510 Optimal Image Compression Based on Sign and Magnitude Coding of Wavelet Coefficients
Authors: Mbainaibeye Jérôme, Noureddine Ellouze
Abstract:
Wavelet transforms is a very powerful tools for image compression. One of its advantage is the provision of both spatial and frequency localization of image energy. However, wavelet transform coefficients are defined by both a magnitude and sign. While algorithms exist for efficiently coding the magnitude of the transform coefficients, they are not efficient for the coding of their sign. It is generally assumed that there is no compression gain to be obtained from the coding of the sign. Only recently have some authors begun to investigate the sign of wavelet coefficients in image coding. Some authors have assumed that the sign information bit of wavelet coefficients may be encoded with the estimated probability of 0.5; the same assumption concerns the refinement information bit. In this paper, we propose a new method for Separate Sign Coding (SSC) of wavelet image coefficients. The sign and the magnitude of wavelet image coefficients are examined to obtain their online probabilities. We use the scalar quantization in which the information of the wavelet coefficient to belong to the lower or to the upper sub-interval in the uncertainly interval is also examined. We show that the sign information and the refinement information may be encoded by the probability of approximately 0.5 only after about five bit planes. Two maps are separately entropy encoded: the sign map and the magnitude map. The refinement information of the wavelet coefficient to belong to the lower or to the upper sub-interval in the uncertainly interval is also entropy encoded. An algorithm is developed and simulations are performed on three standard images in grey scale: Lena, Barbara and Cameraman. Five scales are performed using the biorthogonal wavelet transform 9/7 filter bank. The obtained results are compared to JPEG2000 standard in terms of peak signal to noise ration (PSNR) for the three images and in terms of subjective quality (visual quality). It is shown that the proposed method outperforms the JPEG2000. The proposed method is also compared to other codec in the literature. It is shown that the proposed method is very successful and shows its performance in term of PSNR.
Keywords: Image compression, wavelet transform, sign coding, magnitude coding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671509 Deterioration of Groundwater in Arid Environments: What Impact in Oasis Dynamics? Case Study of Tafilalet, Morocco
Authors: W. EL Khoumsi, A. Hammani, M. Kuper, A. Bouaziz
Abstract:
Oases are complex and fragile agro-ecosystems. They have always existed in environments characterized by an arid climate, scarcity of rainfall, high temperatures and high evaporation. These palms have grown up despite the severity of the physical characteristics thanks to the water's existence and irrigation practice. The oases are generally spread along non-perennial rivers (wadis), shallow water table or deep artesian groundwater. However, the sustainability of oasis system is threatened by water scarcity and declining of water table levels particularly in arid areas. Located in the southern east area of Morocco, Tafilalet plain encompasses one of the largest palm groves in the kingdom. In recent years, this area has become increasingly threatened by water shortage and has seen a sharp deterioration under the effect of several combined anthropogenic and climatic factors. The Bayoud disease, successive years of drought, Hassan Addakhil dam construction etc are all factors that have affected both water and phoenicicole heritage of the area. The objective of this study is to understand the interaction between qualitative and quantitative degradation of groundwater resources, and the palm grove dynamics, while reviewing the assumption that groundwater resources contribute in a direct way to the conservation of this oasis agroecosystem. A historical analysis tracing both the oasis dynamics and the groundwater evolution has been established. Data were collected from satellite images, surveys with different actors (farmers, Regional Office for Agricultural Development, Basin agency...). They were complemented by a synthesis of numerous technical reports in the area. The results showed that within 40 years, the thickness of the groundwater table has dropped in 50 %. Along with this, there has been a downsizing of date palm by 50 %. Areas with higher groundwater level were the least affected by the downsizing. So we can say that the shallow groundwater contribute significantly and directly to the water supply of date palm through its root system, and largely ensures the oasis ecosystem sustainability.
Keywords: Oasis dynamics, Arid environments, Groundwater deterioration, Date palm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2505508 Motor Imagery Based Brain-Computer Interface for Cerebellar Impaired Patients
Authors: Young-Seok Choi
Abstract:
Cerebellar ataxia is a steadily progressive neurodegenerative disease associated with loss of motor control, leaving patients unable to walk, talk, or perform activities of daily living. Direct motor instruction in cerebella ataxia patients has limited effectiveness, presumably because an inappropriate closed-loop cerebellar response to the inevitable observed error confounds motor learning mechanisms. Could the use of EEG based BCI provide advanced biofeedback to improve motor imagery and provide a “backdoor” to improving motor performance in ataxia patients? In order to determine the feasibility of using EEG-based BCI control in this population, we compare the ability to modulate mu-band power (8-12 Hz) by performing a cued motor imagery task in an ataxia patient and healthy control.Keywords: Cerebellar ataxia, Electroencephalogram, brain-computer interface, motor imagery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750507 Multimodal Biometric System Based on Near- Infra-Red Dorsal Hand Geometry and Fingerprints for Single and Whole Hands
Authors: Mohamed K. Shahin, Ahmed M. Badawi, Mohamed E. M. Rasmy
Abstract:
Prior research evidenced that unimodal biometric systems have several tradeoffs like noisy data, intra-class variations, restricted degrees of freedom, non-universality, spoof attacks, and unacceptable error rates. In order for the biometric system to be more secure and to provide high performance accuracy, more than one form of biometrics are required. Hence, the need arise for multimodal biometrics using combinations of different biometric modalities. This paper introduces a multimodal biometric system (MMBS) based on fusion of whole dorsal hand geometry and fingerprints that acquires right and left (Rt/Lt) near-infra-red (NIR) dorsal hand geometry (HG) shape and (Rt/Lt) index and ring fingerprints (FP). Database of 100 volunteers were acquired using the designed prototype. The acquired images were found to have good quality for all features and patterns extraction to all modalities. HG features based on the hand shape anatomical landmarks were extracted. Robust and fast algorithms for FP minutia points feature extraction and matching were used. Feature vectors that belong to similar biometric traits were fused using feature fusion methodologies. Scores obtained from different biometric trait matchers were fused using the Min-Max transformation-based score fusion technique. Final normalized scores were merged using the sum of scores method to obtain a single decision about the personal identity based on multiple independent sources. High individuality of the fused traits and user acceptability of the designed system along with its experimental high performance biometric measures showed that this MMBS can be considered for med-high security levels biometric identification purposes.Keywords: Unimodal, Multi-Modal, Biometric System, NIR Imaging, Dorsal Hand Geometry, Fingerprint, Whole Hands, Feature Extraction, Feature Fusion, Score Fusion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213506 Creativity: A Motivational Tool for Interest and Conceptual Understanding in Science Education
Authors: Thienhuong Hoang
Abstract:
This qualitative, quantitative mixed-method study explores how students- motivation and interest in creative hands-on activities affected their conceptual understanding of science. The objectives of this research include developing a greater understanding about how creative activities, incorporated into the classroom as instructional strategies, increase student motivation and their learning or mastery of science concepts. The creative activities are viewed as a motivational tool, a specific type of task, which have an impact on student goals. Pre-and-post tests, pre-and-post interviews, and student responses measure motivational-goal theory variables, interest in the activity, and conceptual change. Implications for education and future research will be discussed.
Keywords: Science education, motivation, conceptual understanding, instructional strategies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802505 Object Recognition Approach Based on Generalized Hough Transform and Color Distribution Serving in Generating Arabic Sentences
Authors: Nada Farhani, Naim Terbeh, Mounir Zrigui
Abstract:
The recognition of the objects contained in images has always presented a challenge in the field of research because of several difficulties that the researcher can envisage because of the variability of shape, position, contrast of objects, etc. In this paper, we will be interested in the recognition of objects. The classical Hough Transform (HT) presented a tool for detecting straight line segments in images. The technique of HT has been generalized (GHT) for the detection of arbitrary forms. With GHT, the forms sought are not necessarily defined analytically but rather by a particular silhouette. For more precision, we proposed to combine the results from the GHT with the results from a calculation of similarity between the histograms and the spatiograms of the images. The main purpose of our work is to use the concepts from recognition to generate sentences in Arabic that summarize the content of the image.
Keywords: Recognition of shape, generalized hough transformation, histogram, Spatiogram, learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617504 Managing, Sustaining, and Future Proofing the Business of Educational Provision Following Large-Scale Disaster and Disruption
Authors: Judy Yarwood, Lesley Seaton, Philippa Seaton
Abstract:
A catastrophic earthquake measuring 6.3 on the Richter scale struck the Christchurch, New Zealand Central Business District on February 22, 2012, abruptly disrupting the business of teaching and learning at Christchurch Polytechnic Institute of Technology. This paper presents the findings from a study undertaken about the complexity of delivering an educational programme in the face of this traumatic natural event. Nine interconnected themes emerged from this multiple method study: communication, decision making, leader- and follower-ship, balancing personal and professional responsibilities, taking action, preparedness and thinking ahead, all within a disruptive and uncertain context. Sustainable responses that maximise business continuity, and provide solutions to practical challenges, are among the study-s recommendations.Keywords: Business continuity, earthquake, education, sustainability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903503 Touch Interaction through Tagging Context
Authors: Gabriel Chavira, Jorge Orozco, Salvador Nava, Eduardo Álvarez, Julio Rolón, Roberto Pichardo
Abstract:
Ambient Intelligence promotes a shift in computing which involves fitting-out the environments with devices to support context-aware applications. One of main objectives is the reduction to a minimum of the user’s interactive effort, the diversity and quantity of devices with which people are surrounded with, in existing environments; increase the level of difficulty to achieve this goal. The mobile phones and their amazing global penetration, makes it an excellent device for delivering new services to the user, without requiring a learning effort. The environment will have to be able to perceive all of the interaction techniques. In this paper, we present the PICTAC model (Perceiving touch Interaction through TAgging Context), which similarly delivers service to members of a research group.
Keywords: Ambient Intelligence, Tagging Context, Touch Interaction, Touching Services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834502 Learning Based On Computer Science Unplugged in Computer Science Education: Design, Development, and Assessment
Authors: Eiko Takaoka, Yoshiyuki Fukushima, Koichiro Hirose, Tadashi Hasegawa
Abstract:
Although, all high school students in Japan are required to learn informatics, many of them do not learn this topic sufficiently. In response to this situation, we propose a support package for high school informatics classes. To examine what students learned and if they sufficiently understood the context of the lessons, a questionnaire survey was distributed to 186 students. We analyzed the results of the questionnaire and determined the weakest units, which were “basic computer configuration” and “memory and secondary storage”. We then developed a package for teaching these units. We propose that our package be applied in high school classrooms.
Keywords: Computer Science Unplugged, computer science outreach, high school curriculum, experimental evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2119501 Intelligent Dynamic Decision-making Model Using in Robot's Movement
Authors: Yufang Cheng, Hsiu-Hua Yang
Abstract:
This work develops a novel intelligent “model of dynamic decision-making" usingcell assemblies network architecture in robot's movement. The “model of dynamic decision-making" simulates human decision-making, and follows commands to make the correct decisions. The cell assemblies approach consisting of fLIF neurons was used to implement tasks for finding targets and avoiding obstacles. Experimental results show that the cell assemblies approach of can be employed to efficiently complete finding targets and avoiding obstacles tasks and can simulate the human thinking and the mode of information transactions.
Keywords: Cell assemblies, fLIF, Hebbian learning rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219500 Hopfield Network as Associative Memory with Multiple Reference Points
Authors: Domingo López-Rodríguez, Enrique Mérida-Casermeiro, Juan M. Ortiz-de-Lazcano-Lobato
Abstract:
Hopfield model of associative memory is studied in this work. In particular, two main problems that it possesses: the apparition of spurious patterns in the learning phase, implying the well-known effect of storing the opposite pattern, and the problem of its reduced capacity, meaning that it is not possible to store a great amount of patterns without increasing the error probability in the retrieving phase. In this paper, a method to avoid spurious patterns is presented and studied, and an explanation of the previously mentioned effect is given. Another technique to increase the capacity of a network is proposed here, based on the idea of using several reference points when storing patterns. It is studied in depth, and an explicit formula for the capacity of the network with this technique is provided.
Keywords: Associative memory, Hopfield network, network capacity, spurious patterns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1108499 Implementing Activity-Based Costing in Architectural Aluminum Projects: Case Study and Lessons Learned
Authors: Amer Momani, Tarek Al-Hawari, Abdallah Alakayleh
Abstract:
This study explains how to construct an actionable activity-based costing and management system to accurately track and account the total costs of architectural aluminum projects. Two Activity-Based Costing (ABC) models were proposed to accomplish this purpose. First, the learning and development model was introduced to examine how to apply an ABC model in an architectural aluminum firm for the first time and to be familiar with ABC concepts. Second, an actual ABC model was built on the basis of the results of the previous model to accurately trace the actual costs incurred on each project in a year, and to be able to provide a quote with the best trade-off between competitiveness and profitability. The validity of the proposed model was verified on a local architectural aluminum company.
Keywords: Activity-based costing, activity-based management, construction, architectural aluminum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14498 eLearning Tools Evaluation based on Quality Concept Distance Computing. A Case Study
Authors: Mihai Caramihai, Irina Severin
Abstract:
Despite the extensive use of eLearning systems, there is no consensus on a standard framework for evaluating this kind of quality system. Hence, there is only a minimum set of tools that can supervise this judgment and gives information about the course content value. This paper presents two kinds of quality set evaluation indicators for eLearning courses based on the computational process of three known metrics, the Euclidian, Hamming and Levenshtein distances. The “distance" calculus is applied to standard evaluation templates (i.e. the European Commission Programme procedures vs. the AFNOR Z 76-001 Standard), determining a reference point in the evaluation of the e-learning course quality vs. the optimal concept(s). The case study, based on the results of project(s) developed in the framework of the European Programme “Leonardo da Vinci", with Romanian contractors, try to put into evidence the benefits of such a method.Keywords: eLearning, European programme, metrics, quality evaluation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519497 Fitness Action Recognition Based on MediaPipe
Authors: Zixuan Xu, Yichun Lou, Yang Song, Zihuai Lin
Abstract:
MediaPipe is an open-source machine learning computer vision framework that can be ported into a multi-platform environment, which makes it easier to use it to recognize human activity. Based on this framework, many human recognition systems have been created, but the fundamental issue is the recognition of human behavior and posture. In this paper, two methods are proposed to recognize human gestures based on MediaPipe, the first one uses the Adaptive Boosting algorithm to recognize a series of fitness gestures, and the second one uses the Fast Dynamic Time Warping algorithm to recognize 413 continuous fitness actions. These two methods are also applicable to any human posture movement recognition.
Keywords: Computer Vision, MediaPipe, Adaptive Boosting, Fast Dynamic Time Warping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855496 A New History Based Method to Handle the Recurring Concept Shifts in Data Streams
Authors: Hossein Morshedlou, Ahmad Abdollahzade Barforoush
Abstract:
Recent developments in storage technology and networking architectures have made it possible for broad areas of applications to rely on data streams for quick response and accurate decision making. Data streams are generated from events of real world so existence of associations, which are among the occurrence of these events in real world, among concepts of data streams is logical. Extraction of these hidden associations can be useful for prediction of subsequent concepts in concept shifting data streams. In this paper we present a new method for learning association among concepts of data stream and prediction of what the next concept will be. Knowing the next concept, an informed update of data model will be possible. The results of conducted experiments show that the proposed method is proper for classification of concept shifting data streams.Keywords: Data Stream, Classification, Concept Shift, History.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278495 Balancing Neural Trees to Improve Classification Performance
Authors: Asha Rani, Christian Micheloni, Gian Luca Foresti
Abstract:
In this paper, a neural tree (NT) classifier having a simple perceptron at each node is considered. A new concept for making a balanced tree is applied in the learning algorithm of the tree. At each node, if the perceptron classification is not accurate and unbalanced, then it is replaced by a new perceptron. This separates the training set in such a way that almost the equal number of patterns fall into each of the classes. Moreover, each perceptron is trained only for the classes which are present at respective node and ignore other classes. Splitting nodes are employed into the neural tree architecture to divide the training set when the current perceptron node repeats the same classification of the parent node. A new error function based on the depth of the tree is introduced to reduce the computational time for the training of a perceptron. Experiments are performed to check the efficiency and encouraging results are obtained in terms of accuracy and computational costs.Keywords: Neural Tree, Pattern Classification, Perceptron, Splitting Nodes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225494 Joint Training Offer Selection and Course Timetabling Problems: Models and Algorithms
Authors: Gianpaolo Ghiani, Emanuela Guerriero, Emanuele Manni, Alessandro Romano
Abstract:
In this article, we deal with a variant of the classical course timetabling problem that has a practical application in many areas of education. In particular, in this paper we are interested in high schools remedial courses. The purpose of such courses is to provide under-prepared students with the skills necessary to succeed in their studies. In particular, a student might be under prepared in an entire course, or only in a part of it. The limited availability of funds, as well as the limited amount of time and teachers at disposal, often requires schools to choose which courses and/or which teaching units to activate. Thus, schools need to model the training offer and the related timetabling, with the goal of ensuring the highest possible teaching quality, by meeting the above-mentioned financial, time and resources constraints. Moreover, there are some prerequisites between the teaching units that must be satisfied. We first present a Mixed-Integer Programming (MIP) model to solve this problem to optimality. However, the presence of many peculiar constraints contributes inevitably in increasing the complexity of the mathematical model. Thus, solving it through a general-purpose solver may be performed for small instances only, while solving real-life-sized instances of such model requires specific techniques or heuristic approaches. For this purpose, we also propose a heuristic approach, in which we make use of a fast constructive procedure to obtain a feasible solution. To assess our exact and heuristic approaches we perform extensive computational results on both real-life instances (obtained from a high school in Lecce, Italy) and randomly generated instances. Our tests show that the MIP model is never solved to optimality, with an average optimality gap of 57%. On the other hand, the heuristic algorithm is much faster (in about the 50% of the considered instances it converges in approximately half of the time limit) and in many cases allows achieving an improvement on the objective function value obtained by the MIP model. Such an improvement ranges between 18% and 66%.Keywords: Heuristic, MIP model, Remedial course, School, Timetabling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634493 Pre-Service EFL Teachers' Perceptions of Written Corrective Feedback in a Wiki-Based Environment
Authors: Mabel Ortiz, Claudio Díaz
Abstract:
This paper explores Chilean pre-service teachers' perceptions about the provision of corrective feedback in a wiki environment during the collaborative writing of an argumentative essay. After conducting a semi-structured interview on 22 participants, the data were processed through the content analysis technique. The results show that students have positive perceptions about corrective feedback, provided through a wiki virtual environment, which in turn facilitates feedback provision and impacts language learning effectively. Some of the positive perceptions about virtual feedback refer to permanent access, efficiency, simultaneous revision and immediacy. It would then be advisable to integrate wiki-based feedback as a methodology for the language classroom and collaborative writing tasks.
Keywords: Argumentative essay, focused corrective feedback, perception, wiki environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 986492 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based On an RBF Network
Authors: Magdi M. Nabi, Ding-Li Yu
Abstract:
Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.
Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward and feedback control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2676491 Speaker Recognition Using LIRA Neural Networks
Authors: Nestor A. Garcia Fragoso, Tetyana Baydyk, Ernst Kussul
Abstract:
This article contains information from our investigation in the field of voice recognition. For this purpose, we created a voice database that contains different phrases in two languages, English and Spanish, for men and women. As a classifier, the LIRA (Limited Receptive Area) grayscale neural classifier was selected. The LIRA grayscale neural classifier was developed for image recognition tasks and demonstrated good results. Therefore, we decided to develop a recognition system using this classifier for voice recognition. From a specific set of speakers, we can recognize the speaker’s voice. For this purpose, the system uses spectrograms of the voice signals as input to the system, extracts the characteristics and identifies the speaker. The results are described and analyzed in this article. The classifier can be used for speaker identification in security system or smart buildings for different types of intelligent devices.
Keywords: Extreme learning, LIRA neural classifier, speaker identification, voice recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764490 Applying Multiple Kinect on the Development of a Rapid 3D Mannequin Scan Platform
Authors: Shih-Wen Hsiao, Yi-Cheng Tsao
Abstract:
In the field of reverse engineering and creative industries, applying 3D scanning process to obtain geometric forms of the objects is a mature and common technique. For instance, organic objects such as faces and nonorganic objects such as products could be scanned to acquire the geometric information for further application. However, although the data resolution of 3D scanning device is increasing and there are more and more abundant complementary applications, the penetration rate of 3D scanning for the public is still limited by the relative high price of the devices. On the other hand, Kinect, released by Microsoft, is known for its powerful functions, considerably low price, and complete technology and database support. Therefore, related studies can be done with the applying of Kinect under acceptable cost and data precision. Due to the fact that Kinect utilizes optical mechanism to extracting depth information, limitations are found due to the reason of the straight path of the light. Thus, various angles are required sequentially to obtain the complete 3D information of the object when applying a single Kinect for 3D scanning. The integration process which combines the 3D data from different angles by certain algorithms is also required. This sequential scanning process costs much time and the complex integration process often encounter some technical problems. Therefore, this paper aimed to apply multiple Kinects simultaneously on the field of developing a rapid 3D mannequin scan platform and proposed suggestions on the number and angles of Kinects. In the content, a method of establishing the coordination based on the relation between mannequin and the specifications of Kinect is proposed, and a suggestion of angles and number of Kinects is also described. An experiment of applying multiple Kinect on the scanning of 3D mannequin is constructed by Microsoft API, and the results show that the time required for scanning and technical threshold can be reduced in the industries of fashion and garment design.
Keywords: 3D scan, depth sensor, fashion and garment design, mannequin, multiple kinect sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276489 Parameter Sensitivity Analysis of Artificial Neural Network for Predicting Water Turbidity
Authors: Chia-Ling Chang, Chung-Sheng Liao
Abstract:
The present study focuses on the discussion over the parameter of Artificial Neural Network (ANN). Sensitivity analysis is applied to assess the effect of the parameters of ANN on the prediction of turbidity of raw water in the water treatment plant. The result shows that transfer function of hidden layer is a critical parameter of ANN. When the transfer function changes, the reliability of prediction of water turbidity is greatly different. Moreover, the estimated water turbidity is less sensitive to training times and learning velocity than the number of neurons in the hidden layer. Therefore, it is important to select an appropriate transfer function and suitable number of neurons in the hidden layer in the process of parameter training and validation.Keywords: Artificial Neural Network (ANN), sensitivity analysis, turbidity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2813488 An Intelligent Approach of Rough Set in Knowledge Discovery Databases
Authors: Hrudaya Ku. Tripathy, B. K. Tripathy, Pradip K. Das
Abstract:
Knowledge Discovery in Databases (KDD) has evolved into an important and active area of research because of theoretical challenges and practical applications associated with the problem of discovering (or extracting) interesting and previously unknown knowledge from very large real-world databases. Rough Set Theory (RST) is a mathematical formalism for representing uncertainty that can be considered an extension of the classical set theory. It has been used in many different research areas, including those related to inductive machine learning and reduction of knowledge in knowledge-based systems. One important concept related to RST is that of a rough relation. In this paper we presented the current status of research on applying rough set theory to KDD, which will be helpful for handle the characteristics of real-world databases. The main aim is to show how rough set and rough set analysis can be effectively used to extract knowledge from large databases.Keywords: Data mining, Data tables, Knowledge discovery in database (KDD), Rough sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336487 Creating a Virtual Perception for Upper Limb Rehabilitation
Authors: Nina Robson, Kenneth John Faller II, Vishalkumar Ahir, Arthur Ricardo Deps Miguel Ferreira, John Buchanan, Amarnath Banerjee
Abstract:
This paper describes the development of a virtual-reality system ARWED, which will be used in physical rehabilitation of patients with reduced upper extremity mobility to increase limb Active Range of Motion (AROM). The ARWED system performs a symmetric reflection and real-time mapping of the patient’s healthy limb on to their most affected limb, tapping into the mirror neuron system and facilitating the initial learning phase. Using the ARWED, future experiments will test the extension of the action-observation priming effect linked to the mirror-neuron system on healthy subjects and then stroke patients.Keywords: Physical rehabilitation, mirror neuron, virtual reality, stroke therapy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950