Search results for: Temperature Sensor
182 Effect of Three Drying Methods on Antioxidant Efficiency and Vitamin C Content of Moringa oleifera Leaf Extract
Authors: Kenia Martínez, Geniel Talavera, Juan Alonso
Abstract:
Moringa oleifera is a plant containing many nutrients that are mostly concentrated within the leaves. Commonly, the separation process of these nutrients involves solid-liquid extraction followed by evaporation and drying to obtain a concentrated extract, which is rich in proteins, vitamins, carbohydrates, and other essential nutrients that can be used in the food industry. In this work, three drying methods were used, which involved very different temperature and pressure conditions, to evaluate the effect of each method on the vitamin C content and the antioxidant efficiency of the extracts. Solid-liquid extractions of Moringa leaf (LE) were carried out by employing an ethanol solution (35% v/v) at 50 °C for 2 hours. The resulting extracts were then dried i) in a convective oven (CO) at 100 °C and at an atmospheric pressure of 750 mbar for 8 hours, ii) in a vacuum evaporator (VE) at 50 °C and at 300 mbar for 2 hours, and iii) in a freeze-drier (FD) at -40 °C and at 0.050 mbar for 36 hours. The antioxidant capacity (EC50, mg solids/g DPPH) of the dry solids was calculated by the free radical inhibition method employing DPPH˙ at 517 nm, resulting in a value of 2902.5 ± 14.8 for LE, 3433.1 ± 85.2 for FD, 3980.1 ± 37.2 for VE, and 8123.5 ± 263.3 for CO. The calculated antioxidant efficiency (AE, g DPPH/(mg solids·min)) was 2.920 × 10-5 for LE, 2.884 × 10-5 for FD, 2.512 × 10-5 for VE, and 1.009 × 10-5 for CO. Further, the content of vitamin C (mg/L) determined by HPLC was 59.0 ± 0.3 for LE, 49.7 ± 0.6 for FD, 45.0 ± 0.4 for VE, and 23.6 ± 0.7 for CO. The results indicate that the convective drying preserves vitamin C and antioxidant efficiency to 40% and 34% of the initial value, respectively, while vacuum drying to 76% and 86%, and freeze-drying to 84% and 98%, respectively.
Keywords: Antioxidant efficiency, convective drying, freeze-drying, Moringa oleifera, vacuum drying, vitamin C content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801181 Effect of Injection Moulding Process Parameter on Tensile Strength Using Taguchi Method
Authors: Gurjeet Singh, M. K. Pradhan, Ajay Verma
Abstract:
The plastic industry plays very important role in the economy of any country. It is generally among the leading share of the economy of the country. Since metals and their alloys are very rarely available on the earth. Therefore, to produce plastic products and components, which finds application in many industrial as well as household consumer products is beneficial. Since 50% plastic products are manufactured by injection moulding process. For production of better quality product, we have to control quality characteristics and performance of the product. The process parameters plays a significant role in production of plastic, hence the control of process parameter is essential. In this paper the effect of the parameters selection on injection moulding process has been described. It is to define suitable parameters in producing plastic product. Selecting the process parameter by trial and error is neither desirable nor acceptable, as it is often tends to increase the cost and time. Hence, optimization of processing parameter of injection moulding process is essential. The experiments were designed with Taguchi’s orthogonal array to achieve the result with least number of experiments. Plastic material polypropylene is studied. Tensile strength test of material is done on universal testing machine, which is produced by injection moulding machine. By using Taguchi technique with the help of MiniTab-14 software the best value of injection pressure, melt temperature, packing pressure and packing time is obtained. We found that process parameter packing pressure contribute more in production of good tensile plastic product.
Keywords: Injection moulding, tensile strength, Taguchi method, poly-propylene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3769180 Quantification of Biomethane Potential from Anaerobic Digestion of Food Waste at Vaal University of Technology
Authors: Kgomotso Matobole, Pascal Mwenge, Tumisang Seodigeng
Abstract:
The global urbanisation and worldwide economic growth have caused a high rate of food waste generation, resulting in environmental pollution. Food waste disposed on landfills decomposes to produce methane (CH4), a greenhouse gas. Inadequate waste management practices contribute to food waste polluting the environment. Thus effective organic fraction of municipal solid waste (OFMSW) management and treatment are attracting widespread attention in many countries. This problem can be minimised by the employment of anaerobic digestion process, since food waste is rich in organic matter and highly biodegradable, resulting in energy generation and waste volume reduction. The current study investigated the Biomethane Potential (BMP) of the Vaal University of Technology canteen food waste using anaerobic digestion. Tests were performed on canteen food waste, as a substrate, with total solids (TS) of 22%, volatile solids (VS) of 21% and moisture content of 78%. The tests were performed in batch reactors, at a mesophilic temperature of 37 °C, with two different types of inoculum, primary and digested sludge. The resulting CH4 yields for both food waste with digested sludge and primary sludge were equal, being 357 Nml/g VS. This indicated that food waste form this canteen is rich in organic and highly biodegradable. Hence it can be used as a substrate for the anaerobic digestion process. The food waste with digested sludge and primary sludge both fitted the first order kinetic model with k for primary sludge inoculated food waste being 0.278 day-1 with R2 of 0.98, whereas k for digested sludge inoculated food waste being 0.034 day-1, with R2 of 0.847.
Keywords: Anaerobic digestion, biogas, biomethane potential, food waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 935179 The Effects of Shot and Grit Blasting Process Parameters on Steel Pipes Coating Adhesion
Authors: Saeed Khorasanizadeh
Abstract:
Adhesion strength of exterior or interior coating of steel pipes is too important. Increasing of coating adhesion on surfaces can increase the life time of coating, safety factor of transmitting line pipe and decreasing the rate of corrosion and costs. Preparation of steel pipe surfaces before doing the coating process is done by shot and grit blasting. This is a mechanical way to do it. Some effective parameters on that process, are particle size of abrasives, distance to surface, rate of abrasive flow, abrasive physical properties, shapes, selection of abrasive, kind of machine and its power, standard of surface cleanness degree, roughness, time of blasting and weather humidity. This search intended to find some better conditions which improve the surface preparation, adhesion strength and corrosion resistance of coating. So, this paper has studied the effect of varying abrasive flow rate, changing the abrasive particle size, time of surface blasting on steel surface roughness and over blasting on it by using the centrifugal blasting machine. After preparation of numbers of steel samples (according to API 5L X52) and applying epoxy powder coating on them, to compare strength adhesion of coating by Pull-Off test. The results have shown that, increasing the abrasive particles size and flow rate, can increase the steel surface roughness and coating adhesion strength but increasing the blasting time can do surface over blasting and increasing surface temperature and hardness too, change, decreasing steel surface roughness and coating adhesion strength.Keywords: surface preparation, abrasive particles, adhesionstrength
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9080178 Influence of Yeast Strains on Microbiological Stability of Wheat Bread
Authors: E. Soboleva, E. Sergachyova, S. G. Davydenko, T. V. Meledina
Abstract:
Problem of food preservation is extremely important for mankind. Viscous damage ("illness") of bread results from development of Bacillus spp. bacteria. High temperature resistant spores of this microorganism are steady against 120°C) and remain in bread during pastries, potentially causing spoilage of the final product. Scientists are interested in further characterization of bread spoiling Bacillus spp. species. Our aim was to find weather yeast Saccharomyces cerevisiae strains that are able to produce natural antimicrobial killer factor can preserve bread illness. By diffusion method, we showed yeast antagonistic activity against spore-forming bacteria. Experimental technological parameters were the same as for bakers' yeasts production on the industrial scale. Risograph test during dough fermentation demonstrated gas production. The major finding of the study was a clear indication of the presence of killer yeast strain antagonistic activity against rope in bread causing bacteria. After demonstrating antagonistic effect of S. cerevisiae on bacteria using solid nutrient medium, we tested baked bread under provocative conditions. We also measured formation of carbon dioxide in the dough, dough-making duration and quality of the final products, when using different strains of S. cerevisiae. It is determined that the use of yeast S. cerevisiae RCAM 01730 killer strain inhibits appearance of rope in bread. Thus, natural yeast antimicrobial killer toxin, produced by some S. cerevisiae strains is an anti-rope in bread protector.Keywords: Bakers' yeasts, rope in bread, Saccharomyces cerevisiae.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885177 Removal of Elemental Mercury from Dry Methane Gas with Manganese Oxides
Authors: Junya Takenami, Md. Azhar Uddin, Eiji Sasaoka, Yasushi Shioya, Tsuneyoshi Takase
Abstract:
In this study, we sought to investigate the mercury removal efficiency of manganese oxides from natural gas. The fundamental studies on mercury removal with manganese oxides sorbents were carried out in a laboratory scale fixed bed reactor at 30 °C with a mixture of methane (20%) and nitrogen gas laden with 4.8 ppb of elemental mercury. Manganese oxides with varying surface area and crystalline phase were prepared by conventional precipitation method in this study. The effects of surface area, crystallinity and other metal oxides on mercury removal efficiency were investigated. Effect of Ag impregnation on mercury removal efficiency was also investigated. Ag supported on metal oxide such titania and zirconia as reference materials were also used in this study for comparison. The characteristics of mercury removal reaction with manganese oxide was investigated using a temperature programmed desorption (TPD) technique. Manganese oxides showed very high Hg removal activity (about 73-93% Hg removal) for first time use. Surface area of the manganese oxide samples decreased after heat-treatment and resulted in complete loss of Hg removal ability for repeated use after Hg desorption in the case of amorphous MnO2, and 75% loss of the initial Hg removal activity for the crystalline MnO2. Mercury desorption efficiency of crystalline MnO2 was very low (37%) for first time use and high (98%) after second time use. Residual potassium content in MnO2 may have some effect on the thermal stability of the adsorbed Hg species. Desorption of Hg from manganese oxides occurs at much higher temperatures (with a peak at 400 °C) than Ag/TiO2 or Ag/ZrO2. Mercury may be captured on manganese oxides in the form of mercury manganese oxide.Keywords: Mercury removal, Metal and metal oxide sorbents, Methane, Natural gas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106176 Numerical Simulation of the Flowing of Ice Slurry in Seawater Pipe of Polar Ships
Authors: Li Xu, Huanbao Jiang, Zhenfei Huang, Lailai Zhang
Abstract:
In recent years, as global warming, the sea-ice extent of North Arctic undergoes an evident decrease and Arctic channel has attracted the attention of shipping industry. Ice crystals existing in the seawater of Arctic channel which enter the seawater system of the ship with the seawater were found blocking the seawater pipe. The appearance of cooler paralysis, auxiliary machine error and even ship power system paralysis may be happened if seriously. In order to reduce the effect of high temperature in auxiliary equipment, seawater system will use external ice-water to participate in the cooling cycle and achieve the state of its flow. The distribution of ice crystals in seawater pipe can be achieved. As the ice slurry system is solid liquid two-phase system, the flow process of ice-water mixture is very complex and diverse. In this paper, the flow process in seawater pipe of ice slurry is simulated with fluid dynamics simulation software based on k-ε turbulence model. As the ice packing fraction is a key factor effecting the distribution of ice crystals, the influence of ice packing fraction on the flowing process of ice slurry is analyzed. In this work, the simulation results show that as the ice packing fraction is relatively large, the distribution of ice crystals is uneven in the flowing process of the seawater which has such disadvantage as increase the possibility of blocking, that will provide scientific forecasting methods for the forming of ice block in seawater piping system. It has important significance for the reliability of the operating of polar ships in the future.Keywords: Ice slurry, seawater pipe, ice packing fraction, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382175 Study of Mechanical Properties of Glutarylated Jute Fiber Reinforced Epoxy Composites
Authors: V. Manush Nandan, K. Lokdeep, R. Vimal, K. Hari Hara Subramanyan, C. Aswin, V. Logeswaran
Abstract:
Natural fibers have attained the potential market in the composite industry because of the huge environmental impact caused by synthetic fibers. Among the natural fibers, jute fibers are the most abundant plant fibers which are manufactured mainly in countries like India. Even though there is a good motive to utilize the natural supplement, the strength of the natural fiber composites is still a topic of discussion. In recent days, many researchers are showing interest in the chemical modification of the natural fibers to increase various mechanical and thermal properties. In the present study, jute fibers have been modified chemically using glutaric anhydride at different concentrations of 5%, 10%, 20%, and 30%. The glutaric anhydride solution is prepared by dissolving the different quantity of glutaric anhydride in benzene and dimethyl-sulfoxide using sodium formate catalyst. The jute fiber mats have been treated by the method of retting at various time intervals of 3, 6, 12, 24, and 36 hours. The modification structure of the treated fibers has been confirmed with infrared spectroscopy. The degree of modification increases with an increase in retention time, but higher retention time has damaged the fiber structure. The unmodified fibers and glutarylated fibers at different retention times are reinforced with epoxy matrix under room temperature. The tensile strength and flexural strength of the composites are analyzed in detail. Among these, the composite made with glutarylated fiber has shown good mechanical properties when compared to those made of unmodified fiber.
Keywords: Flexural properties, glutarylation, glutaric anhydride, tensile properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708174 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.Keywords: Deep learning, artificial neural networks, energy price forecasting, Turkey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1103173 Contribution of Vitaton (Β-Carotene) to the Rearing Factors Survival Rate and Visual Flesh Color of Rainbow Trout Fish in Comparison With Astaxanthin
Authors: M.Ghotbi, M.Ghotbi, Gh. Azari Takami
Abstract:
In this study Vitaton (an organic supplement which contains fermentative β-carotene) and synthetic astaxanthin (CAROPHYLL® Pink) were evaluated as pro-growth factors in Rainbow trout diet. An 8 week feeding trial was conducted to determine the effects of Vitaton versus astaxanthin on rearing factors, survival rate and visual flesh color of Rainbow trout (Oncorhnchynchus mykiss) with initial weight of 196±5. Four practical diets were formulated to contain 50 and 80 (ppm) of β- carotene and astaxanthin and also a control diet was prepared without any pigment. Each diet was fed to triplicate groups of fish rearing in fresh water. Fish were fed twice daily. The water temperature fluctuated from 12 to 15 (C˚) and also dissolved oxygen content was between 7 to 7.5 (mg/lit) during the experimental period. At the end of the experiment, growth and food utilization parameters and survival rate were unaffected by dietary treatments (p>0.05). Also, there was no significant difference between carcass yield within treatments (p>0.05). No significant difference recognized between visual flesh color (SalmoFan score) of fish fed Vitaton-containing diets. On the contrary, feeding on diets containing 50 and 80 (ppm) of astaxanthin, increased SalmoFan score (flesh astaxanthin concentration) from <20 (<1 mg/kg) to 23.33 (2.03 mg/kg) and 27.67 (5.74 mg/kg), respectively. Ultimately, a significant difference was seen between flesh carotenoid concentrations of fish feeding on astaxanthin containing treatments and control treatment (P<0.05). It should be mentioned that just raw fillet color of fish belonged to 80 (ppm) of astaxanthin treatment was seen to be close to color targets (SalmoFan scores) adopted for harvest-size fish.Keywords: Astaxanthin, Flesh color, Rainbow trout, Vitaton, β- carotene,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3432172 CFD-Parametric Study in Stator Heat Transfer of an Axial Flux Permanent Magnet Machine
Authors: Alireza Rasekh, Peter Sergeant, Jan Vierendeels
Abstract:
This paper copes with the numerical simulation for convective heat transfer in the stator disk of an axial flux permanent magnet (AFPM) electrical machine. Overheating is one of the main issues in the design of AFMPs, which mainly occurs in the stator disk, so that it needs to be prevented. A rotor-stator configuration with 16 magnets at the periphery of the rotor is considered. Air is allowed to flow through openings in the rotor disk and channels being formed between the magnets and in the gap region between the magnets and the stator surface. The rotating channels between the magnets act as a driving force for the air flow. The significant non-dimensional parameters are the rotational Reynolds number, the gap size ratio, the magnet thickness ratio, and the magnet angle ratio. The goal is to find correlations for the Nusselt number on the stator disk according to these non-dimensional numbers. Therefore, CFD simulations have been performed with the multiple reference frame (MRF) technique to model the rotary motion of the rotor and the flow around and inside the machine. A minimization method is introduced by a pattern-search algorithm to find the appropriate values of the reference temperature. It is found that the correlations are fast, robust and is capable of predicting the stator heat transfer with a good accuracy. The results reveal that the magnet angle ratio diminishes the stator heat transfer, whereas the rotational Reynolds number and the magnet thickness ratio improve the convective heat transfer. On the other hand, there a certain gap size ratio at which the stator heat transfer reaches a maximum.
Keywords: Axial flux permanent magnet, CFD, magnet parameters, stator heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482171 A Comparative Study of Single- and Multi-Walled Carbon Nanotube Incorporation to Indium Tin Oxide Electrodes for Solar Cells
Authors: G. Gokceli, O. Eksik, E. Ozkan Zayim, N. Karatepe
Abstract:
Alternative electrode materials for optoelectronic devices have been widely investigated in recent years. Since indium tin oxide (ITO) is the most preferred transparent conductive electrode, producing ITO films by simple and cost-effective solution-based techniques with enhanced optical and electrical properties has great importance. In this study, single- and multi-walled carbon nanotubes (SWCNT and MWCNT) incorporated into the ITO structure to increase electrical conductivity, mechanical strength, and chemical stability. Carbon nanotubes (CNTs) were firstly functionalized by acid treatment (HNO3:H2SO4), and the thermal resistance of CNTs after functionalization was determined by thermogravimetric analysis (TGA). Thin films were then prepared by spin coating technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), four-point probe measurement system and UV-Vis spectrophotometer. The effects of process parameters were compared for ITO, MWCNT-ITO, and SWCNT-ITO films. Two factors including CNT concentration and annealing temperature were considered. The UV-Vis measurements demonstrated that the transmittance of ITO films was 83.58% at 550 nm, which was decreased depending on the concentration of CNT dopant. On the other hand, both CNT dopants provided an enhancement in the crystalline structure and electrical conductivity. Due to compatible diameter and better dispersibility of SWCNTs in the ITO solution, the best result in terms of electrical conductivity was obtained by SWCNT-ITO films with the 0.1 g/L SWCNT dopant concentration and heat-treatment at 550 °C for 1 hour.Keywords: CNT incorporation, ITO electrode, spin coating, thin film.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829170 Spanner Barb at Thepchana Waterfall, Khao Nan National Park, Thailand
Authors: S. Sutin, M. Pollar, M. Jaroensutasinee, K. Jaroensutasinee
Abstract:
This study investigated morphology of the Spanner Barb (Puntius lateristriga Valenciennes, 1842) and water quality at Thepchana waterfall. This study was conducted at Thepchana Waterfall, Khao Nan National Park from March to May 2007. There were 40 Spanner Barb collected with 20 males and 20 females. Males had an average of 5.57 cm in standard length, 6.62 cm in total length and 5.18 g in total body weight. Females had an average of 7.25 cm in standard length, 8.24 cm in total length and 10.96 g in total body weight. The length (L) – weight (W) relationships for combining sexes, males and females were LogW = -2.137 + 3.355logL, log W = -0.068 + 3.297logL, and log W = -2.068 + 3.297logL, respectively. The Spanner Barb were smaller size fish with a compressed form; terminal mouth; villiform teeth; ctenoid scale; concave tail; general body color yellowish olive, with slight reddish tint to fins; vertical band beginning below dorsal and horizontal stripe from base of tail almost to vertical band. They also had a vertical band midway between the eye and first vertical band. There was a black spot above anal fin. The bladder looked like J-shape. Inside of the bladder was found small insects and insect lava. The body length and the bowels length was 1:1 ratio. The water temperature ranged from 25.00 – 27.00 °C which was appropriate for their habitat characteristics. Acid - alkalinity ranged from 6.65 – 6.90 mg/l. Dissolved oxygen ranged from 4.55 – 4.70 mg/l. Water hardness ranged from 31.00 – 48.00 mg/l. The amount of ammonia was about 0.25 mg/l.
Keywords: Spanner barb, morphology, water quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653169 Effect of Sodium Hydroxide Treatment on the Mechanical Properties of Crushed and Uncrushed Luffa cylindrica Fibre Reinforced rLDPE Composites
Authors: Paschal A. Ubi, Salawu Abdul Rahman Asipita
Abstract:
Sustainability and eco-friendly requirement of engineering materials are sort for in recent times, thus giving rise to the development of bio-composites. However, the natural fibres to matrix interface interactions remain a key issue in getting the desired mechanical properties from such composites. Treatment of natural fibres is essential in improving matrix to filler adhesion, hence improving its mechanical properties. In this study, investigations were carried out to determine the effect of sodium hydroxide treatment on the tensile, flexural, impact and hardness properties of crushed and uncrushed Luffa cylindrica fibre reinforced recycled low density polyethylene composites. The LC (Luffa cylindrica) fibres were treated with 0%, 2%, 4%, 6%, 8% and 10% wt. sodium hydroxide (NaOH) concentrations for a period of 24 hours under room temperature conditions. A formulation ratio of 80/20 g (matrix to reinforcement) was maintained for all developed samples. Analysis of the results showed that the uncrushed luffa fibre samples gave better mechanical properties compared with the crushed luffa fibre samples. The uncrushed luffa fibre composites had a maximum tensile and flexural strength of 7.65 MPa and 17.08 Mpa respectively corresponding to a young modulus and flexural modulus of 21.08 MPa and 232.22 MPa for the 8% and 4% wt. NaOH concentration respectively. Results obtained in the research showed that NaOH treatment with the 8% NaOH concentration improved the mechanical properties of the LC fibre reinforced composites when compared with other NaOH treatment concentration values.
Keywords: Flexural strength, LC fibres, LC/rLDPE composite, Tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2615168 Analyzing the Impact of Spatio-Temporal Climate Variations on the Rice Crop Calendar in Pakistan
Authors: Muhammad Imran, Iqra Basit, Mobushir Riaz Khan, Sajid Rasheed Ahmad
Abstract:
The present study investigates the space-time impact of climate change on the rice crop calendar in tropical Gujranwala, Pakistan. The climate change impact was quantified through the climatic variables, whereas the existing calendar of the rice crop was compared with the phonological stages of the crop, depicted through the time series of the Normalized Difference Vegetation Index (NDVI) derived from Landsat data for the decade 2005-2015. Local maxima were applied on the time series of NDVI to compute the rice phonological stages. Panel models with fixed and cross-section fixed effects were used to establish the relation between the climatic parameters and the time-series of NDVI across villages and across rice growing periods. Results show that the climatic parameters have significant impact on the rice crop calendar. Moreover, the fixed effect model is a significant improvement over cross-sectional fixed effect models (R-squared equal to 0.673 vs. 0.0338). We conclude that high inter-annual variability of climatic variables cause high variability of NDVI, and thus, a shift in the rice crop calendar. Moreover, inter-annual (temporal) variability of the rice crop calendar is high compared to the inter-village (spatial) variability. We suggest the local rice farmers to adapt this change in the rice crop calendar.
Keywords: Landsat NDVI, panel models, temperature, rainfall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914167 Development of High Strength Self Curing Concrete Using Super Absorbing Polymer
Authors: K. Bala Subramanian, A. Siva, S. Swaminathan, Arul. M. G. Ajin
Abstract:
Concrete is an essential building material which is widely used in construction industry all over the world due to its compressible strength. Curing of concrete plays a vital role in durability and other performance necessities. Improper curing can affect the concrete performance and durability easily. When areas like scarcity of water, structures is not accessible by humans external curing cannot be performed, so we opt for internal curing. Internal curing (or) self curing plays a major role in developing the concrete pore structure and microstructure. The concept of internal curing is to enhance the hydration process to maintain the temperature uniformly. The evaporation of water in the concrete is reduced by self curing agent (Super Absorbing Polymer – SAP) there by increasing the water retention capacity of the concrete. The research work was carried out to reduce water, which is prime material used for concrete in the construction industry. Concrete curing plays a major role in developing hydration process. Concept of self curing will reduce the evaporation of water from concrete. Self curing will increase water retention capacity as compared to the conventional concrete. Proper self curing (or) internal curing increases the strength, durability and performance of concrete. Super absorbing Polymer (SAP) used as internal curing agent. In this study 0.2% to 0.4% of SAP was varied in different grade of high strength concrete. In the experiment replacement of cement by silica fumes with 5%, 10% and 15% are studied. It is found that replacement of silica fumes by 10 % gives more strength and durability when compared to others.
Keywords: Compressive Strength, High strength Concrete Rapid chloride permeability, Super Absorbing Polymer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3228166 Gate Tunnel Current Calculation for NMOSFET Based on Deep Sub-Micron Effects
Authors: Ashwani K. Rana, Narottam Chand, Vinod Kapoor
Abstract:
Aggressive scaling of MOS devices requires use of ultra-thin gate oxides to maintain a reasonable short channel effect and to take the advantage of higher density, high speed, lower cost etc. Such thin oxides give rise to high electric fields, resulting in considerable gate tunneling current through gate oxide in nano regime. Consequently, accurate analysis of gate tunneling current is very important especially in context of low power application. In this paper, a simple and efficient analytical model has been developed for channel and source/drain overlap region gate tunneling current through ultra thin gate oxide n-channel MOSFET with inevitable deep submicron effect (DSME).The results obtained have been verified with simulated and reported experimental results for the purpose of validation. It is shown that the calculated tunnel current is well fitted to the measured one over the entire oxide thickness range. The proposed model is suitable enough to be used in circuit simulator due to its simplicity. It is observed that neglecting deep sub-micron effect may lead to large error in the calculated gate tunneling current. It is found that temperature has almost negligible effect on gate tunneling current. It is also reported that gate tunneling current reduces with the increase of gate oxide thickness. The impact of source/drain overlap length is also assessed on gate tunneling current.
Keywords: Gate tunneling current, analytical model, gate dielectrics, non uniform poly gate doping, MOSFET, fringing field effect and image charges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736165 Physiological Effects during Aerobatic Flights on Science Astronaut Candidates
Authors: Pedro Llanos, Diego García
Abstract:
Spaceflight is considered the last frontier in terms of science, technology, and engineering. But it is also the next frontier in terms of human physiology and performance. After more than 200,000 years humans have evolved under earth’s gravity and atmospheric conditions, spaceflight poses environmental stresses for which human physiology is not adapted. Hypoxia, accelerations, and radiation are among such stressors, our research involves suborbital flights aiming to develop effective countermeasures in order to assure sustainable human space presence. The physiologic baseline of spaceflight participants is subject to great variability driven by age, gender, fitness, and metabolic reserve. The objective of the present study is to characterize different physiologic variables in a population of STEM practitioners during an aerobatic flight. Cardiovascular and pulmonary responses were determined in Science Astronaut Candidates (SACs) during unusual attitude aerobatic flight indoctrination. Physiologic data recordings from 20 subjects participating in high-G flight training were analyzed. These recordings were registered by wearable sensor-vest that monitored electrocardiographic tracings (ECGs), signs of dysrhythmias or other electric disturbances during all the flight. The same cardiovascular parameters were also collected approximately 10 min pre-flight, during each high-G/unusual attitude maneuver and 10 min after the flights. The ratio (pre-flight/in-flight/post-flight) of the cardiovascular responses was calculated for comparison of inter-individual differences. The resulting tracings depicting the cardiovascular responses of the subjects were compared against the G-loads (Gs) during the aerobatic flights to analyze cardiovascular variability aspects and fluid/pressure shifts due to the high Gs. In-flight ECG revealed cardiac variability patterns associated with rapid Gs onset in terms of reduced heart rate (HR) and some scattered dysrhythmic patterns (15% premature ventricular contractions-type) that were considered as triggered physiological responses to high-G/unusual attitude training and some were considered as instrument artifact. Variation events were observed in subjects during the +Gz and –Gz maneuvers and these may be due to preload and afterload, sudden shift. Our data reveal that aerobatic flight influenced the breathing rate of the subject, due in part by the various levels of energy expenditure due to the increased use of muscle work during these aerobatic maneuvers. Noteworthy was the high heterogeneity in the different physiological responses among a relatively small group of SACs exposed to similar aerobatic flights with similar Gs exposures. The cardiovascular responses clearly demonstrated that SACs were subjected to significant flight stress. Routine ECG monitoring during high-G/unusual attitude flight training is recommended to capture pathology underlying dangerous dysrhythmias in suborbital flight safety. More research is currently being conducted to further facilitate the development of robust medical screening, medical risk assessment approaches, and suborbital flight training in the context of the evolving commercial human suborbital spaceflight industry. A more mature and integrative medical assessment method is required to understand the physiology state and response variability among highly diverse populations of prospective suborbital flight participants.
Keywords: Aerobatic maneuvers, G force, hypoxia, suborbital flight, commercial astronauts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 560164 Evaluation of Chiller Power Consumption Using Grey Prediction
Authors: Tien-Shun Chan, Yung-Chung Chang, Cheng-Yu Chu, Wen-Hui Chen, Yuan-Lin Chen, Shun-Chong Wang, Chang-Chun Wang
Abstract:
98% of the energy needed in Taiwan has been imported. The prices of petroleum and electricity have been increasing. In addition, facility capacity, amount of electricity generation, amount of electricity consumption and number of Taiwan Power Company customers have continued to increase. For these reasons energy conservation has become an important topic. In the past linear regression was used to establish the power consumption models for chillers. In this study, grey prediction is used to evaluate the power consumption of a chiller so as to lower the total power consumption at peak-load (so that the relevant power providers do not need to keep on increasing their power generation capacity and facility capacity). In grey prediction, only several numerical values (at least four numerical values) are needed to establish the power consumption models for chillers. If PLR, the temperatures of supply chilled-water and return chilled-water, and the temperatures of supply cooling-water and return cooling-water are taken into consideration, quite accurate results (with the accuracy close to 99% for short-term predictions) may be obtained. Through such methods, we can predict whether the power consumption at peak-load will exceed the contract power capacity signed by the corresponding entity and Taiwan Power Company. If the power consumption at peak-load exceeds the power demand, the temperature of the supply chilled-water may be adjusted so as to reduce the PLR and hence lower the power consumption.Keywords: Gery system theory, grey prediction, chller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2582163 Triple Intercell Bar for Electrometallurgical Processes: A Design to Increase PV Energy Utilization
Authors: Eduardo P. Wiechmann, Jorge A. Henríquez, Pablo E. Aqueveque, Luis G. Muñoz
Abstract:
PV energy prices are declining rapidly. To take advantage of the benefits of those prices and lower the carbon footprint, operational practices must be modified. Undoubtedly, it challenges the electrowinning practice to operate at constant current throughout the day. This work presents a technology that contributes in providing modulation capacity to the electrode current distribution system. This is to raise the day time dc current and lower it at night. The system is a triple intercell bar that operates in current-source mode. The design is a capping board free dogbone type of bar that ensures an operation free of short circuits, hot swapability repairs and improved current balance. This current-source system eliminates the resetting currents circulating in equipotential bars. Twin auxiliary connectors are added to the main connectors providing secure current paths to bypass faulty or impaired contacts. All system conductive elements are positioned over a baseboard offering a large heat sink area to the ventilation of a facility. The system works with lower temperature than a conventional busbar. Of these attributes, the cathode current balance property stands out and is paramount for day/night modulation and the use of photovoltaic energy. A design based on a 3D finite element method model predicting electric and thermal performance under various industrial scenarios is presented. Preliminary results obtained in an electrowinning facility with industrial prototypes are included.
Keywords: Electrowinning, intercell bars, PV energy, current modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 625162 Automation of Heat Exchanger using Neural Network
Authors: Sudhir Agashe, Ashok Ghatol, Sujata Agashe
Abstract:
In this paper the development of a heat exchanger as a pilot plant for educational purpose is discussed and the use of neural network for controlling the process is being presented. The aim of the study is to highlight the need of a specific Pseudo Random Binary Sequence (PRBS) to excite a process under control. As the neural network is a data driven technique, the method for data generation plays an important role. In light of this a careful experimentation procedure for data generation was crucial task. Heat exchange is a complex process, which has a capacity and a time lag as process elements. The proposed system is a typical pipe-in- pipe type heat exchanger. The complexity of the system demands careful selection, proper installation and commissioning. The temperature, flow, and pressure sensors play a vital role in the control performance. The final control element used is a pneumatically operated control valve. While carrying out the experimentation on heat exchanger a welldrafted procedure is followed giving utmost attention towards safety of the system. The results obtained are encouraging and revealing the fact that if the process details are known completely as far as process parameters are concerned and utilities are well stabilized then feedback systems are suitable, whereas neural network control paradigm is useful for the processes with nonlinearity and less knowledge about process. The implementation of NN control reinforces the concepts of process control and NN control paradigm. The result also underlined the importance of excitation signal typically for that process. Data acquisition, processing, and presentation in a typical format are the most important parameters while validating the results.Keywords: Process identification, neural network, heat exchanger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576161 Characterisation of Fractions Extracted from Sorghum Byproducts
Authors: Prima Luna, Afroditi Chatzifragkou, Dimitris Charalampopoulos
Abstract:
Sorghum byproducts, namely bran, stalk, and panicle are examples of lignocellulosic biomass. These raw materials contain large amounts of polysaccharides, in particular hemicelluloses, celluloses, and lignins, which if efficiently extracted, can be utilised for the development of a range of added value products with potential applications in agriculture and food packaging sectors. The aim of this study was to characterise fractions extracted from sorghum bran and stalk with regards to their physicochemical properties that could determine their applicability as food-packaging materials. A sequential alkaline extraction was applied for the isolation of cellulosic, hemicellulosic and lignin fractions from sorghum stalk and bran. Lignin content, phenolic content and antioxidant capacity were also investigated in the case of the lignin fraction. Thermal analysis using differential scanning calorimetry (DSC) and X-Ray Diffraction (XRD) revealed that the glass transition temperature (Tg) of cellulose fraction of the stalk was ~78.33 oC at amorphous state (~65%) and water content of ~5%. In terms of hemicellulose, the Tg value of stalk was slightly lower compared to bran at amorphous state (~54%) and had less water content (~2%). It is evident that hemicelluloses generally showed a lower thermal stability compared to cellulose, probably due to their lack of crystallinity. Additionally, bran had higher arabinose-to-xylose ratio (0.82) than the stalk, a fact that indicated its low crystallinity. Furthermore, lignin fraction had Tg value of ~93 oC at amorphous state (~11%). Stalk-derived lignin fraction contained more phenolic compounds (mainly consisting of p-coumaric and ferulic acid) and had higher lignin content and antioxidant capacity compared to bran-derived lignin fraction.
Keywords: Alkaline extraction, bran, cellulose, hemicellulose, lignin, sorghum, stalk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391160 Using Dynamic Glazing to Eliminate Mechanical Cooling in Multi-family Highrise Buildings
Authors: Ranojoy Dutta, Adam Barker
Abstract:
Multifamily residential buildings are increasingly being built with large glazed areas to provide tenants with greater daylight and outdoor views. However, traditional double-glazed window assemblies can lead to significant thermal discomfort from high radiant temperatures as well as increased cooling energy use to address solar gains. Dynamic glazing provides an effective solution by actively controlling solar transmission to maintain indoor thermal comfort, without compromising the visual connection to outdoors. This study uses thermal simulations across three Canadian cities (Toronto, Vancouver and Montreal) to verify if dynamic glazing along with operable windows and ceiling fans can maintain the indoor operative temperature of a prototype southwest facing high-rise apartment unit within the ASHRAE 55 adaptive comfort range for a majority of the year, without any mechanical cooling. Since this study proposes the use of natural ventilation for cooling and the typical building life cycle is 30-40 years, the typical weather files have been modified based on accepted global warming projections for increased air temperatures by 2050. Results for the prototype apartment confirm that thermal discomfort with dynamic glazing occurs only for less than 0.7% of the year. However, in the baseline scenario with low-E glass there are up to 7% annual hours of discomfort despite natural ventilation with operable windows and improved air movement with ceiling fans.
Keywords: Electrochromic, operable windows, thermal comfort, natural ventilation, adaptive comfort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 574159 A β-mannanase from Fusarium oxysporum SS-25 via Solid State Fermentation on Brewer’s Spent Grain: Medium Optimization by Statistical Tools, Kinetic Characterization and Its Applications
Authors: S. S. Rana, C. Janveja, S. K. Soni
Abstract:
This study is concerned with the optimization of fermentation parameters for the hyper production of mannanase from Fusarium oxysporum SS-25 employing two step statistical strategy and kinetic characterization of crude enzyme preparation. The Plackett-Burman design used to screen out the important factors in the culture medium revealed 20% (w/w) wheat bran, 2% (w/w) each of potato peels, soyabean meal and malt extract, 1% tryptone, 0.14% NH4SO4, 0.2% KH2PO4, 0.0002% ZnSO4, 0.0005% FeSO4, 0.01% MnSO4, 0.012% SDS, 0.03% NH4Cl, 0.1% NaNO3 in brewer’s spent grain based medium with 50% moisture content, inoculated with 2.8×107 spores and incubated at 30oC for 6 days to be the main parameters influencing the enzyme production. Of these factors, four variables including soyabean meal, FeSO4, MnSO4 and NaNO3 were chosen to study the interactive effects and their optimum levels in central composite design of response surface methodology with the final mannanase yield of 193 IU/gds. The kinetic characterization revealed the crude enzyme to be active over broader temperature and pH range. This could result in 26.6% reduction in kappa number with 4.93% higher tear index and 1% increase in brightness when used to treat the wheat straw based kraft pulp. The hydrolytic potential of enzyme was also demonstrated on both locust bean gum and guar gum.
Keywords: Brewer’s Spent Grain, Fusarium oxysporum, Mannanase, Response Surface Methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5176158 Biodiversity and Climate Change: Consequences for Norway Spruce Mountain Forests in Slovakia
Authors: Jozef Mindas, Jaroslav Skvarenina, Jana Skvareninova
Abstract:
Study of the effects of climate change on Norway Spruce (Picea abies) forests has mainly focused on the diversity of tree species diversity of tree species as a result of the ability of species to tolerate temperature and moisture changes as well as some effects of disturbance regime changes. The tree species’ diversity changes in spruce forests due to climate change have been analyzed via gap model. Forest gap model is a dynamic model for calculation basic characteristics of individual forest trees. Input ecological data for model calculations have been taken from the permanent research plots located in primeval forests in mountainous regions in Slovakia. The results of regional scenarios of the climatic change for the territory of Slovakia have been used, from which the values are according to the CGCM3.1 (global) model, KNMI and MPI (regional) models. Model results for conditions of the climate change scenarios suggest a shift of the upper forest limit to the region of the present subalpine zone, in supramontane zone. N. spruce representation will decrease at the expense of beech and precious broadleaved species (Acer sp., Sorbus sp., Fraxinus sp.). The most significant tree species diversity changes have been identified for the upper tree line and current belt of dwarf pine (Pinus mugo) occurrence. The results have been also discussed in relation to most important disturbances (wind storms, snow and ice storms) and phenological changes which consequences are little known. Special discussion is focused on biomass production changes in relation to carbon storage diversity in different carbon pools.Keywords: Biodiversity, climate change, Norway spruce forests, gap model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650157 Predictions and Comparisons of Thermohydrodynamic State for Single and Three Pads Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer-Aided Engineering Simulations
Authors: Tai Yuan Yu, Pei-Jen Wang
Abstract:
Oil-free turbomachinery is considered one of the critical technologies for future green power generation systems as rotor machinery systems. Oil-free technology allows clean, compact, and maintenance-free working, and gas foil bearings (GFBs) are important for the technology. Since the first applications in the auxiliary power units and air cycle machines in the 1970s, obvious improvement has been created to the computational models for dynamic rotor behavior. However, many technical issues are still poorly understood or remain unsolved, and some of those are thermal management and the pattern of how pressure will be distributed in bearing clearance. This paper presents a three-dimensional (3D) fluid-structure interaction model of single pad foil bearings and three pad foil bearings to predict bearing working behavior that researchers could compare characteristics of those. The coupling analysis model involves dynamic working characteristics applied to all the gas film and mechanical structures. Therefore, the elastic deformation of foil structure and the hydrodynamic pressure of gas film can both be calculated by a finite element method program. As a result, the temperature distribution pattern could also be iteratively solved by coupling analysis. In conclusion, the working fluid state in a gas film of various pad forms of bearings working characteristic at constant rotational speed for both can be solved for comparisons with the experimental results.
Keywords: Fluid structure interaction multi-physics simulations, gas foil bearing, oil-free, transient thermohydrodynamic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 467156 Evaluation of Electro-Flocculation for Biomass Production of Marine Microalgae Phaodactylum tricornutum
Authors: Luciana C. Ramos, Leandro J. Sousa, Antônio Ferreira da Silva, Valéria Gomes Oliveira Falcão, Suzana T. Cunha Lima
Abstract:
The commercial production of biodiesel using microalgae demands a high-energy input for harvesting biomass, making production economically unfeasible. Methods currently used involve mechanical, chemical, and biological procedures. In this work, a flocculation system is presented as a cost and energy effective process to increase biomass production of Phaeodactylum tricornutum. This diatom is the only species of the genus that present fast growth and lipid accumulation ability that are of great interest for biofuel production. The algae, selected from the Bank of Microalgae, Institute of Biology, Federal University of Bahia (Brazil), have been bred in tubular reactor with photoperiod of 12 h (clear/dark), providing luminance of about 35 μmol photons m-2s-1, and temperature of 22 °C. The medium used for growing cells was the Conway medium, with addition of silica. The seaweed growth curve was accompanied by cell count in Neubauer camera and by optical density in spectrophotometer, at 680 nm. The precipitation occurred at the end of the stationary phase of growth, 21 days after inoculation, using two methods: centrifugation at 5000 rpm for 5 min, and electro-flocculation at 19 EPD and 95 W. After precipitation, cells were frozen at -20 °C and, subsequently, lyophilized. Biomass obtained by electro-flocculation was approximately four times greater than the one achieved by centrifugation. The benefits of this method are that no addition of chemical flocculants is necessary and similar cultivation conditions can be used for the biodiesel production and pharmacological purposes. The results may contribute to improve biodiesel production costs using marine microalgae.
Keywords: Biomass, diatom, flocculation, microalgae.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366155 Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials
Authors: Masoud Mohammadpour, Blair Carlson, Radovan Kovacevic
Abstract:
The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.
Keywords: Laser welding-brazing, finite element, response surface methodology, multi-response optimization, cross-beam laser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 966154 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran
Authors: Saba Gachpaz, Hamid Reza Heidari
Abstract:
The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. This necessitates increased resource consumption and underscores the importance of addressing sustainable agriculture development along with other environmental considerations. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for 10 different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.
Keywords: Land suitability, machine learning, random forest, sustainable agriculture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 296153 Effect of Segregation on the Reaction Rate of Sewage Sludge Pyrolysis in a Bubbling Fluidized Bed
Authors: A. Soria-Verdugo, A. Morato-Godino, L. M. García-Gutiérrez, N. García-Hernando
Abstract:
The evolution of the pyrolysis of sewage sludge in a fixed and a fluidized bed was analyzed using a novel measuring technique. This original measuring technique consists of installing the whole reactor over a precision scale, capable of measuring the mass of the complete reactor with enough precision to detect the mass released by the sewage sludge sample during its pyrolysis. The inert conditions required for the pyrolysis process were obtained supplying the bed with a nitrogen flowrate, and the bed temperature was adjusted to either 500 ºC or 600 ºC using a group of three electric resistors. The sewage sludge sample was supplied through the top of the bed in a batch of 10 g. The measurement of the mass released by the sewage sludge sample was employed to determine the evolution of the reaction rate during the pyrolysis, the total amount of volatile matter released, and the pyrolysis time. The pyrolysis tests of sewage sludge in the fluidized bed were conducted using two different bed materials of the same size but different densities: silica sand and sepiolite particles. The higher density of silica sand particles induces a flotsam behavior for the sewage sludge particles which move close to the bed surface. In contrast, the lower density of sepiolite produces a neutrally-buoyant behavior for the sewage sludge particles, which shows a proper circulation throughout the whole bed in this case. The analysis of the evolution of the pyrolysis process in both fluidized beds show that the pyrolysis is faster when buoyancy effects are negligible, i.e. in the bed conformed by sepiolite particles. Moreover, sepiolite was found to show an absorbent capability for the volatile matter released during the pyrolysis of sewage sludge.
Keywords: Bubbling fluidized bed, pyrolysis time, segregation effects, sewage sludge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130