Search results for: Real Coded Genetic Algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5451

Search results for: Real Coded Genetic Algorithm

2451 A Trends Analysis of Image Processing in Unmanned Aerial Vehicle

Authors: Jae-Neung Lee, Keun-Chang Kwak

Abstract:

This paper describes an analysis of domestic and international trends of image processing for data in UAV (unmanned aerial vehicle) and also explains about UAV and Quadcopter. Overseas examples of image processing using UAV include image processing for totaling the total numberof vehicles, edge/target detection, detection and evasion algorithm, image processing using SIFT(scale invariant features transform) matching, and application of median filter and thresholding. In Korea, many studies are underway including visualization of new urban buildings.

Keywords: Image Processing, UAV, Quadcopter, Target detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7675
2450 OFDM and Fingerprint Authentication for Efficient Airport Security

Authors: K.Amrithavarshini, S.Chandrachudeswaran

Abstract:

This paper presents an idea to improve the efficiency of security checks in airports through the active tracking and monitoring of passengers and staff using OFDM modulation technique and Finger print authentication. The details of the passenger are multiplexed using OFDM .To authenticate the passenger, the fingerprint along with important identification information is collected. The details of the passenger can be transmitted after necessary modulation, and received using various transceivers placed within the premises of the airport, and checked at the appropriate check points, thereby increasing the efficiency of checking. OFDM has been employed for spectral efficiency.

Keywords: Orthogonal Frequency Division Multiplexing, FFT Algorithm, Fingerprint Authentication, Airport Security

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
2449 Study of Sickle Cell Syndromes in the Population of the Region of Batna

Authors: K .Belhadi, H. Bousselsela, M. Yahia, A. Zidani, S. Benbia

Abstract:

Sickle cell anemia is a recessive genetic disease caused by the presence in the red blood cell, of abnormal hemoglobin called hemoglobin S. It results from the replacement in the beta chain of the acid glutamic acid by valin at position 6. Topics may be homozygous (SS) or heterozygous (AS) most often asymptomatic. Other mutations result in compound heterozygous: - Synthesis of hemoglobin C mutation in the sixth leucin codon (heterozygous SC); - ß-thalassemia (heterozygous S-ß thalassemia). SS homozygous, heterozygous SC and S- ß -thalassemia are grouped under the major sickle cell syndromes. To make a laboratory diagnosis of hemoglobinopathies in a portion of the population in region of Batna, our study was conducted on 115 patients with suspected sickle cell anemia, all cases have benefited from hematological tests as blood count (count RBC, calculated erythrocyte indices, MCV and MCHC, measuring the hemoglobin concentration) and a biochemical test in this case electrophoresis CAPILLARYS HEMOGLOBIN (E). The results showed: 27 cases of sickle cell anemia were found on 115 suspected cases, 73,03% homozygous sickle cell disease and 59,25% sickle cell trait. Finally, the double heterozygous S/C, represent the incidence rate of 3, 70%.

Keywords: Hemoglobin, sickle cell syndromes, laboratory diagnosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
2448 Holistic Approach to Teaching Mathematics in Secondary School as a Means of Improving Students’ Comprehension of Study Material

Authors: Natalia Podkhodova, Olga Sheremeteva, Mariia Soldaeva

Abstract:

Creating favourable conditions for students’ comprehension of mathematical content is one of the primary problems in teaching mathematics in secondary school. The fact of comprehension includes the ability to build a working situational model and thus becomes an important means of solving mathematical problems. This paper describes a holistic approach to teaching mathematics designed to address the primary challenges of such teaching; specifically, the challenge of students’ comprehension. Essentially, this approach consists of (1) establishing links between the attributes of the notion: the sense, the meaning, and the term; (2) taking into account the components of student’s subjective experience—value-based emotions, contextual, procedural and communicative—during the educational process; (3) linking together different ways to present mathematical information; (4) identifying and leveraging the relationships between real, perceptual and conceptual (scientific) mathematical spaces by applying real-life situational modelling. The article describes approaches to the practical use of these foundational concepts. Identifying how proposed methods and techniques influence understanding of material used in teaching mathematics was the primary goal. The study included an experiment in which 256 secondary school students took part: 142 in the study group and 114 in the control group. All students in these groups had similar levels of achievement in math and studied math under the same curriculum. In the course of the experiment, comprehension of two topics — “Derivative” and “Trigonometric functions”—was evaluated. Control group participants were taught using traditional methods. Students in the study group were taught using the holistic method: under teacher’s guidance, they carried out assignments designed to establish linkages between notion’s characteristics, to convert information from one mode of presentation to another, as well as assignments that required the ability to operate with all modes of presentation. Identification, accounting for and transformation of subjective experience were associated with methods of stimulating the emotional value component of the studied mathematical content (discussions of lesson titles, assignments aimed to create study dominants, performing theme-related physical exercise ...) The use of techniques that forms inter-subject notions based on linkages between, perceptual real and mathematical conceptual spaces proved to be of special interest to the students. Results of the experiment were analysed by presenting students in each of the groups with a final test in each of the studied topics. The test included assignments that required building real situational models. Statistical analysis was used to aggregate test results. Pierson criterion x2 was used to reveal statistics significance of results (pass-fail the modelling test). Significant difference of results was revealed (p < 0.001), which allowed to conclude that students in the study group showed better comprehension of mathematical information than those in the control group. The total number of completed assignments of each student was analysed as well, with average results calculated for each group. Statistical significance of result differences against the quantitative criterion (number of completed assignments) was determined using Student’s t-test, which showed that students in the study group completed significantly more assignments than those in the control group (p = 0.0001). Authors thus come to the conclusion that suggested increase in the level of comprehension of study material took place as a result of applying implemented methods and techniques.

Keywords: Comprehension of mathematical content, holistic approach to teaching mathematics in secondary school, subjective experience, technology of the formation of inter-subject notions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 607
2447 A Learning Agent for Knowledge Extraction from an Active Semantic Network

Authors: Simon Thiel, Stavros Dalakakis, Dieter Roller

Abstract:

This paper outlines the development of a learning retrieval agent. Task of this agent is to extract knowledge of the Active Semantic Network in respect to user-requests. Based on a reinforcement learning approach, the agent learns to interpret the user-s intention. Especially, the learning algorithm focuses on the retrieval of complex long distant relations. Increasing its learnt knowledge with every request-result-evaluation sequence, the agent enhances his capability in finding the intended information.

Keywords: Reinforcement learning, learning retrieval agent, search in semantic networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
2446 Face Recognition Using Eigen face Coefficients and Principal Component Analysis

Authors: Parvinder S. Sandhu, Iqbaldeep Kaur, Amit Verma, Samriti Jindal, Inderpreet Kaur, Shilpi Kumari

Abstract:

Face Recognition is a field of multidimensional applications. A lot of work has been done, extensively on the most of details related to face recognition. This idea of face recognition using PCA is one of them. In this paper the PCA features for Feature extraction are used and matching is done for the face under consideration with the test image using Eigen face coefficients. The crux of the work lies in optimizing Euclidean distance and paving the way to test the same algorithm using Matlab which is an efficient tool having powerful user interface along with simplicity in representing complex images.

Keywords: Eigen Face, Multidimensional, Matching, PCA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2870
2445 Journals Subheadlines Text Extraction Using Wavelet Thresholding and New Projection Profile

Authors: Davod Zaravi, Habib Rostami, Alireza Malahzaheh, S. S. Mortazavi

Abstract:

In this paper a new robust and efficient algorithm to automatic text extraction from colored book and journal cover sheets is proposed. First, we perform wavelet transform. Next for edge detecting from detail wavelet coefficient, we use dynamic threshold. By blurring approximate coefficients with alternative heuristic thresholding, achieve effective edge,. Afterward, with ROI technique get binary image. Finally text boxes would be extracted with new projection profile.

Keywords: Text extraction, colored cover sheet, wavelet threshold, region of interest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
2444 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: Recurrent Neural Network, players lineup, basketball data, decision making model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829
2443 A Time-Reducible Approach to Compute Determinant |I-X|

Authors: Wang Xingbo

Abstract:

Computation of determinant in the form |I-X| is primary and fundamental because it can help to compute many other determinants. This article puts forward a time-reducible approach to compute determinant |I-X|. The approach is derived from the Newton’s identity and its time complexity is no more than that to compute the eigenvalues of the square matrix X. Mathematical deductions and numerical example are presented in detail for the approach. By comparison with classical approaches the new approach is proved to be superior to the classical ones and it can naturally reduce the computational time with the improvement of efficiency to compute eigenvalues of the square matrix.

Keywords: Algorithm, determinant, computation, eigenvalue, time complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
2442 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand

Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan

Abstract:

This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.

Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3230
2441 Relevant LMA Features for Human Motion Recognition

Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier

Abstract:

Motion recognition from videos is actually a very complex task due to the high variability of motions. This paper describes the challenges of human motion recognition, especially motion representation step with relevant features. Our descriptor vector is inspired from Laban Movement Analysis method. We propose discriminative features using the Random Forest algorithm in order to remove redundant features and make learning algorithms operate faster and more effectively. We validate our method on MSRC-12 and UTKinect datasets.

Keywords: Human motion recognition, Discriminative LMA features, random forest, features reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773
2440 Fast Extraction of Edge Histogram in DCT Domain based on MPEG7

Authors: Minyoung Eom, Yoonsik Choe

Abstract:

In these days, multimedia data is transmitted and processed in compressed format. Due to the decoding procedure and filtering for edge detection, the feature extraction process of MPEG-7 Edge Histogram Descriptor is time-consuming as well as computationally expensive. To improve efficiency of compressed image retrieval, we propose a new edge histogram generation algorithm in DCT domain in this paper. Using the edge information provided by only two AC coefficients of DCT coefficients, we can get edge directions and strengths directly in DCT domain. The experimental results demonstrate that our system has good performance in terms of retrieval efficiency and effectiveness.

Keywords: DCT, Descriptor, EHD, MPEG7.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
2439 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System

Authors: Cheima Ben Soltane, Ittansa Yonas Kelbesa

Abstract:

Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.

Keywords: Feature Extraction, Speaker Modeling, Feature Matching, Mel Frequency Cepstrum Coefficient (MFCC), Gaussian mixture model (GMM), Vector Quantization (VQ), Linde-Buzo-Gray (LBG), Expectation Maximization (EM), pre-processing, Voice Activity Detection (VAD), Short Time Energy (STE), Background Noise Statistical Modeling, Closed-Set Tex-Independent Speaker Identification System (CISI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887
2438 A New Decision Making Approach based on Possibilistic Influence Diagrams

Authors: Wided Guezguez, Nahla Ben Amor

Abstract:

This paper proposes a new decision making approch based on quantitative possibilistic influence diagrams which are extension of standard influence diagrams in the possibilistic framework. We will in particular treat the case where several expert opinions relative to value nodes are available. An initial expert assigns confidence degrees to other experts and fixes a similarity threshold that provided possibility distributions should respect. To illustrate our approach an evaluation algorithm for these multi-source possibilistic influence diagrams will also be proposed.

Keywords: influnece diagram, decision making, graphical decision models, influence diagrams, possibility theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301
2437 VoIP Networks Performance Analysis with Encryption Systems

Authors: Edward Paul Guillen, Diego Alejandro Chacon

Abstract:

The VoIP networks as alternative method to traditional PSTN system has been implemented in a wide variety of structures with multiple protocols, codecs, software and hardware–based distributions. The use of cryptographic techniques let the users to have a secure communication, but the calculate throughput as well as the QoS parameters are affected according to the used algorithm. This paper analyzes the VoIP throughput and the QoS parameters with different commercial encryption methods. The measurement–based approach uses lab scenarios to simulate LAN and WAN environments. Security mechanisms such as TLS, SIAX2, SRTP, IPSEC and ZRTP are analyzed with μ-LAW and GSM codecs.

Keywords: VoIP, Secure VoIP, Throughput Analysis, VoIP QoS evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2894
2436 Analysis of Combined Use of NN and MFCC for Speech Recognition

Authors: Safdar Tanweer, Abdul Mobin, Afshar Alam

Abstract:

The performance and analysis of speech recognition system is illustrated in this paper. An approach to recognize the English word corresponding to digit (0-9) spoken by 2 different speakers is captured in noise free environment. For feature extraction, speech Mel frequency cepstral coefficients (MFCC) has been used which gives a set of feature vectors from recorded speech samples. Neural network model is used to enhance the recognition performance. Feed forward neural network with back propagation algorithm model is used. However other speech recognition techniques such as HMM, DTW exist. All experiments are carried out on Matlab.

Keywords: Speech Recognition, MFCC, Neural Network, classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3268
2435 A Method for Measurement and Evaluation of Drape of Textiles

Authors: L. Fridrichova, R. Knížek, V. Bajzík

Abstract:

Drape is one of the important visual characteristics of the fabric. This paper is introducing an innovative method of measurement and evaluation of the drape shape of the fabric. The measuring principle is based on the possibility of multiple vertical strain of the fabric. This method more accurately simulates the real behavior of the fabric in the process of draping. The method is fully automated, so the sample can be measured by using any number of cycles in any time horizon. Using the present method of measurement, we are able to describe the viscoelastic behavior of the fabric.

Keywords: Drape, drape shape, automated drape meter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 877
2434 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.

Keywords: Time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
2433 Clinical Benefits of an Embedded Decision Support System in Anticoagulant Control

Authors: Tony Austin, Shanghua Sun, Nathan Lea, Steve Iliffe, Dipak Kalra, David Ingram, David Patterson

Abstract:

Computer-based decision support (CDSS) systems can deliver real patient care and increase chances of long-term survival in areas of chronic disease management prone to poor control. One such CDSS, for the management of warfarin, is described in this paper and the outcomes shown. Data is derived from the running system and show a performance consistently around 20% better than the applicable guidelines.

Keywords: "Decision Support", "Anticoagulant Control"

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
2432 A New Implementation of PCA for Fast Face Detection

Authors: Hazem M. El-Bakry

Abstract:

Principal Component Analysis (PCA) has many different important applications especially in pattern detection such as face detection / recognition. Therefore, for real time applications, the response time is required to be as small as possible. In this paper, new implementation of PCA for fast face detection is presented. Such new implementation is designed based on cross correlation in the frequency domain between the input image and eigenvectors (weights). Simulation results show that the proposed implementation of PCA is faster than conventional one.

Keywords: Fast Face Detection, PCA, Cross Correlation, Frequency Domain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
2431 A Blind Digital Watermark in Hadamard Domain

Authors: Saeid Saryazdi, Hossein Nezamabadi-pour

Abstract:

A new blind gray-level watermarking scheme is described. In the proposed method, the host image is first divided into 4*4 non-overlapping blocks. For each block, two first AC coefficients of its Hadamard transform are then estimated using DC coefficients of its neighbor blocks. A gray-level watermark is then added into estimated values. Since embedding watermark does not change the DC coefficients, watermark extracting could be done by estimating AC coefficients and comparing them with their actual values. Several experiments are made and results suggest the robustness of the proposed algorithm.

Keywords: Digital Watermarking, Image watermarking, Information Hiden, Steganography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263
2430 Comparison between LQR and ANN Active Anti-Roll Control of a Single Unit Heavy Vehicle

Authors: Babesse Saad, Ameddah Djameleddine

Abstract:

In this paper, a learning algorithm using neuronal networks to improve the roll stability and prevent the rollover in a single unit heavy vehicle is proposed. First, LQR control to keep balanced normalized rollovers, between front and rear axles, below the unity, then a data collected from this controller is used as a training basis of a neuronal regulator. The ANN controller is thereafter applied for the nonlinear side force model, and gives satisfactory results than the LQR one.

Keywords: Rollover, single unit heavy vehicle, neural networks, nonlinear side force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1043
2429 Routing Algorithm for a Clustered Network

Authors: Hemanth KumarA.R, Sudhakara G., Satyanarayana B.S.

Abstract:

The Cluster Dimension of a network is defined as, which is the minimum cardinality of a subset S of the set of nodes having the property that for any two distinct nodes x and y, there exist the node Si, s2 (need not be distinct) in S such that ld(x,s1) — d(y, s1)1 > 1 and d(x,s2) < d(x,$) for all s E S — {s2}. In this paper, strictly non overlap¬ping clusters are constructed. The concept of LandMarks for Unique Addressing and Clustering (LMUAC) routing scheme is developed. With the help of LMUAC routing scheme, It is shown that path length (upper bound)PLN,d < PLD, Maximum memory space requirement for the networkMSLmuAc(Az) < MSEmuAc < MSH3L < MSric and Maximum Link utilization factor MLLMUAC(i=3) < MLLMUAC(z03) < M Lc

Keywords: Metric dimension, Cluster dimension, Cluster.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
2428 A Network Traffic Prediction Algorithm Based On Data Mining Technique

Authors: D. Prangchumpol

Abstract:

This paper is a description approach to predict incoming and outgoing data rate in network system by using association rule discover, which is one of the data mining techniques. Information of incoming and outgoing data in each times and network bandwidth are network performance parameters, which needed to solve in the traffic problem. Since congestion and data loss are important network problems. The result of this technique can predicted future network traffic. In addition, this research is useful for network routing selection and network performance improvement.

Keywords: Traffic prediction, association rule, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3669
2427 Comparing Interval Estimators for Reliability in a Dependent Set-up

Authors: Alessandro Barbiero

Abstract:

In this paper some procedures for building confidence intervals for the reliability in stress-strength models are discussed and empirically compared. The particular case of a bivariate normal setup is considered. The confidence intervals suggested are obtained employing approximations or asymptotic properties of maximum likelihood estimators. The coverage and the precision of these intervals are empirically checked through a simulation study. An application to real paired data is also provided.

Keywords: Approximate estimators, asymptotic theory, confidence interval, Monte Carlo simulations, stress-strength, variance estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
2426 Analysis of Direct Current Motor in LabVIEW

Authors: E. Ramprasath, P. Manojkumar, P. Veena

Abstract:

DC motors have been widely used in the past centuries which are proudly known as the workhorse of industrial systems until the invention of the AC induction motors which makes a huge revolution in industries. Since then, the use of DC machines has been decreased due to enormous factors such as reliability, robustness and complexity but it lost its fame due to the losses. In this paper a new methodology is proposed to construct a DC motor through the simulation in LabVIEW to get an idea about its real time performances, if a change in parameter might have bigger improvement in losses and reliability.

Keywords: Direct Current motor, LabVIEW software, modelling and analysis, overall characteristics of Direct Current motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3070
2425 On the Strong Solutions of the Nonlinear Viscous Rotating Stratified Fluid

Authors: A. Giniatoulline

Abstract:

A nonlinear model of the mathematical fluid dynamics which describes the motion of an incompressible viscous rotating fluid in a homogeneous gravitational field is considered. The model is a generalization of the known Navier-Stokes system with the addition of the Coriolis parameter and the equations for changeable density. An explicit algorithm for the solution is constructed, and the proof of the existence and uniqueness theorems for the strong solution of the nonlinear problem is given. For the linear case, the localization and the structure of the spectrum of inner waves are also investigated.

Keywords: Galerkin method, Navier-Stokes equations, nonlinear partial differential equations, Sobolev spaces, stratified fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
2424 Grid Artifacts Suppression in Computed Radiographic Images

Authors: Igor Belykh

Abstract:

Anti-scatter grids used in radiographic imaging for the contrast enhancement leave specific artifacts. Those artifacts may be visible or may cause Moiré effect when digital image is resized on a diagnostic monitor. In this paper we propose an automated grid artifactsdetection and suppression algorithm which is still an actual problem. Grid artifacts detection is based on statistical approach in spatial domain. Grid artifacts suppression is based on Kaiser bandstop filter transfer function design and application avoiding ringing artifacts. Experimental results are discussed and concluded with description of advantages over existing approaches.

Keywords: Computed radiography, grid artifacts, image filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4292
2423 Hierarchical Operation Strategies for Grid Connected Building Microgrid with Energy Storage and Photovoltatic Source

Authors: Seon-Ho Yoon, Jin-Young Choi, Dong-Jun Won

Abstract:

This paper presents hierarchical operation strategies which are minimizing operation error between day ahead operation plan and real time operation. Operating power systems between centralized and decentralized approaches can be represented as hierarchical control scheme, featured as primary control, secondary control and tertiary control. Primary control is known as local control, featuring fast response. Secondary control is referred to as microgrid Energy Management System (EMS). Tertiary control is responsible of coordinating the operations of multi-microgrids. In this paper, we formulated 3 stage microgrid operation strategies which are similar to hierarchical control scheme. First stage is to set a day ahead scheduled output power of Battery Energy Storage System (BESS) which is only controllable source in microgrid and it is optimized to minimize cost of exchanged power with main grid using Particle Swarm Optimization (PSO) method. Second stage is to control the active and reactive power of BESS to be operated in day ahead scheduled plan in case that State of Charge (SOC) error occurs between real time and scheduled plan. The third is rescheduling the system when the predicted error is over the limited value. The first stage can be compared with the secondary control in that it adjusts the active power. The second stage is comparable to the primary control in that it controls the error in local manner. The third stage is compared with the secondary control in that it manages power balancing. The proposed strategies will be applied to one of the buildings in Electronics and Telecommunication Research Institute (ETRI). The building microgrid is composed of Photovoltaic (PV) generation, BESS and load and it will be interconnected with the main grid. Main purpose of that is minimizing operation cost and to be operated in scheduled plan. Simulation results support validation of proposed strategies.

Keywords: Battery energy storage system, energy management system, microgrid, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1093
2422 Swarm Navigation in a Complex Environment

Authors: Jai Raj, Jito Vanualailai, Bibhya Sharma, Shonal Singh

Abstract:

This paper proposes a solution to the motion planning and control problem of car-like mobile robots which is required to move safely to a designated target in a priori known workspace cluttered with swarm of boids exhibiting collective emergent behaviors. A generalized algorithm for target convergence and swarm avoidance is proposed that will work for any number of swarms. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the proposed control laws are demonstrated via computer simulations of an emergent behavior.

Keywords: Swarm, practical stability, motion planning, emergent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396