Search results for: voltage/frequency control.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5724

Search results for: voltage/frequency control.

5454 Power Control of DFIG in WECS Using Backstipping and Sliding Mode Controller

Authors: A. Boualouch, A. Essadki, T. Nasser, A. Boukhriss, A. Frigui

Abstract:

This paper presents a power control for a Doubly Fed Induction Generator (DFIG) using in Wind Energy Conversion System (WECS) connected to the grid. The proposed control strategy employs two nonlinear controllers, Backstipping (BSC) and slidingmode controller (SMC) scheme to directly calculate the required rotor control voltage so as to eliminate the instantaneous errors of active and reactive powers. In this paper the advantages of BSC and SMC are presented, the performance and robustness of this two controller’s strategy are compared between them. First, we present a model of wind turbine and DFIG machine, then a synthesis of the controllers and their application in the DFIG power control. Simulation results on a 1.5MW grid-connected DFIG system are provided by MATLAB/Simulink.

Keywords: Backstipping, DFIG, power control, sliding-mode, WESC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2392
5453 Design and Control of DC-DC Converter for the Military Application Fuel Cell

Authors: Tae-Yeong Lee, Eun-Ju Yoo, Won-Yeong Choi, Young-Woo Park

Abstract:

This paper presents a 24 watts SEPIC converter design and control using microprocessor. SEPIC converter has advantages of a wide input range and miniaturization caused by the low stress at elements. There is also an advantage that the input and output are isolated in MOSFET-off state. This paper presents the PID control through the SEPIC converter transfer function using a DSP and the protective circuit for fuel cell from the over-current and inverse-voltage by using the characteristic of SEPIC converter. Then it derives them through the experiments.

Keywords: DC-DC Converter, Fuel-Cell, Microprocessor Control, Military Converter, SEPIC Converter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309
5452 On-Chip Aging Sensor Circuit Based on Phase Locked Loop Circuit

Authors: Ararat Khachatryan, Davit Mirzoyan

Abstract:

In sub micrometer technology, the aging phenomenon starts to have a significant impact on the reliability of integrated circuits by bringing performance degradation. For that reason, it is important to have a capability to evaluate the aging effects accurately. This paper presents an accurate aging measurement approach based on phase-locked loop (PLL) and voltage-controlled oscillator (VCO) circuit. The architecture is rejecting the circuit self-aging effect from the characteristics of PLL, which is generating the frequency without any aging phenomena affects. The aging monitor is implemented in low power 32 nm CMOS technology, and occupies a pretty small area. Aging simulation results show that the proposed aging measurement circuit improves accuracy by about 2.8% at high temperature and 19.6% at high voltage.

Keywords: Nanoscale, aging, effect, NBTI, HCI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
5451 Extended Minimal Controller Synthesis for Voltage-Fed Induction Motor Based on the Hyperstability Theory

Authors: A. Ramdane, F.Naceri, S. Ramdane

Abstract:

in this work, we present a new strategy of direct adaptive control denoted: Extended minimal controller synthesis (EMCS). This algorithm is designed for an induction motor, which includes both electrical and mechanical dynamics under the assumptions of linear magnetic circuits. The main motivation of the EMCS control is to enhance the robustness of the MRAC algorithms, i.e. the rejection of bounded effects of rapidly varying external disturbances.

Keywords: Adaptive Control, Simple model reference adaptive control (SMRAC), Extended Minimal Controller synthesis (EMCS), Induction Motor (IM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
5450 Hybrid Pulse Width Modulation Techniques for the Reduction of Switching Losses and Voltage Harmonics in Cascaded Multilevel Inverters

Authors: Venkata Reddy Kota

Abstract:

These days, the industrial trend is moving away from heavy and bulky passive components to power converter systems that use more and more semiconductor elements. Also, it is difficult to connect the traditional converters to the high and medium voltage. For these reasons, a new family of multilevel inverters has appeared as a solution for working with higher voltage levels. Different modulation topologies like Sinusoidal Pulse Width Modulation (SPWM), Selective Harmonic Elimination Pulse Width Modulation (SHE-PWM) are available for multilevel inverters. In this work, different hybrid modulation techniques which are combination of fundamental frequency modulation and multilevel sinusoidal-modulation are compared. The main characteristic of these modulations are reduction of switching losses with good harmonic performance and balanced power loss dissipation among the device. The proposed hybrid modulation schemes are developed and simulated in Matlab/Simulink for cascaded H-bridge inverter. The results validate the applicability of the proposed schemes for cascaded multilevel inverter.

Keywords: Hybrid PWM techniques, Cascaded Multilevel Inverters, Switching loss minimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
5449 Modal Analysis of Power System with a Microgrid

Authors: Burak Yildirim, Muhsin Tunay Gençoğlu

Abstract:

A microgrid (MG) is a small power grid composed of localized medium or low level power generation, storage systems, and loads. In this paper, the effects of a MG on power systems voltage stability are shown. The MG model, designed to demonstrate the effects of the MG, was applied to the IEEE 14 bus power system which is widely used in power system stability studies. Eigenvalue and modal analysis methods were used in simulation studies. In the study results, it is seen that MGs affect system voltage stability positively by increasing system voltage instability limit value for buses of a power system in which MG are placed.

Keywords: Eigenvalue analysis, microgrid, modal analysis, voltage stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
5448 The Influence of Disturbances Generated by Arc Furnaces on the Power Quality

Authors: Z. Olczykowski

Abstract:

The paper presents the impact of work on the electric arc furnace. Arc equipment is one of the largest receivers powered by the power system. Electric arc disturbances arising during melting process occurring in these furnaces are the cause of an abrupt change of the passive power of furnaces. Currents drawn by these devices undergo an abrupt change, which in turn cause voltage fluctuations and light flicker. The quantitative evaluation of the voltage fluctuations is now the basic criterion of assessment of an influence of unquiet receiver on the supplying net. The paper presents the method of determination of range of voltage fluctuations and light flicker at parallel operation of arc devices. The results of measurements of voltage fluctuations and light flicker indicators recorded in power supply networks of steelworks were presented, with different number of parallel arc devices. Measurements of energy quality parameters were aimed at verifying the proposed method in practice. It was also analyzed changes in other parameters of electricity: the content of higher harmonics, asymmetry, voltage dips.

Keywords: Power quality, arc furnaces, propagation of voltage fluctuations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 703
5447 Voltage Sag Effect on Three Phase Five Leg Transformers

Authors: M. R. Dolatian, A. Jalilian

Abstract:

The behavior of three phase five leg transformer under voltage sag is studied in this paper. This paper proposes a simple, practical model of a three phase-five leg, saturated transformer with accurate performance. Transformer saturation is produced when the voltage sag is recovered and it causes inrush current in transformer. Effects of voltage sag depth, duration and initial point on wave have been analyzed in this paper. Initial point on wave can produce maximum inrush current in five leg transformers while comparing with three leg transformers. The magnetic circuit symmetry of five leg transformer produces the more symmetrical shape of inrush current curves versus initial point on wave and sag duration than three leg transformer. The simulations show that current peak has a periodical dependence on sag duration and linear dependence on sag depth. Inrush current that is produced in three phase five leg transformer is higher than three phase three leg transformer.

Keywords: Inrush current, three phase five leg transformer, saturation, voltage sag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2906
5446 A ±0.5V BiCMOS Class-A Current Conveyor

Authors: Subodh Thankachan, Manisha Pattanaik, S. S. Rajput

Abstract:

In this paper, a new BiCMOS CCII and CCCII, capable of operate at ±0.5V and having wide dynamic range with achieved bandwidth of 480MHz and 430MHz respectively have been proposed. The structures have been found to be insensitive to the threshold voltage variations. The proposed circuits are suitable for implementation using 0.25μm BiCMOS technology. Pspice simulations confirm the performance of the proposed structures.

Keywords: BiCMOS, Current conveyor, Compound current conveyor, Low supply voltage, Threshold voltage variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
5445 Using Support Vector Machine for Prediction Dynamic Voltage Collapse in an Actual Power System

Authors: Muhammad Nizam, Azah Mohamed, Majid Al-Dabbagh, Aini Hussain

Abstract:

This paper presents dynamic voltage collapse prediction on an actual power system using support vector machines. Dynamic voltage collapse prediction is first determined based on the PTSI calculated from information in dynamic simulation output. Simulations were carried out on a practical 87 bus test system by considering load increase as the contingency. The data collected from the time domain simulation is then used as input to the SVM in which support vector regression is used as a predictor to determine the dynamic voltage collapse indices of the power system. To reduce training time and improve accuracy of the SVM, the Kernel function type and Kernel parameter are considered. To verify the effectiveness of the proposed SVM method, its performance is compared with the multi layer perceptron neural network (MLPNN). Studies show that the SVM gives faster and more accurate results for dynamic voltage collapse prediction compared with the MLPNN.

Keywords: Dynamic voltage collapse, prediction, artificial neural network, support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
5444 Harmonic Reduction In Three-Phase Parallel Connected Inverter

Authors: M.A.A. Younis, N. A. Rahim, S. Mekhilef

Abstract:

This paper presents the design and analysis of a parallel connected inverter configuration of. The configuration consists of parallel connected three-phase dc/ac inverter. Series resistors added to the inverter output to maintain same current in each inverter of the two parallel inverters, and to reduce the circulating current in the parallel inverters to the minimum. High frequency third harmonic injection PWM (THIPWM) employed to reduce the total harmonic distortion and to make maximum use of the voltage source. DSP was used to generate the THIPWM and the control algorithm for the converter. Selected experimental results have been shown to validate the proposed system.

Keywords: Three-phase inverter, Third harmonic injection PWM, inverters parallel connection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3761
5443 Analysis of a Novel Strained Silicon RF LDMOS

Authors: V.Fathipour, M. A. Malakootian, S. Fathipour, M. Fathipour

Abstract:

In this paper we propose a novel RF LDMOS structure which employs a thin strained silicon layer at the top of the channel and the N-Drift region. The strain is induced by a relaxed Si0.8 Ge0.2 layer which is on top of a compositionally graded SiGe buffer. We explain the underlying physics of the device and compare the proposed device with a conventional LDMOS in terms of energy band diagram and carrier concentration. Numerical simulations of the proposed strained silicon laterally diffused MOS using a 2 dimensional device simulator indicate improvements in saturation and linear transconductance, current drivability, cut off frequency and on resistance. These improvements are however accompanied with a suppression in the break down voltage.

Keywords: High Frequency MOSFET, Design of RF LDMOS, Strained-Silicon, LDMOS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
5442 A Canadian Leaf Shaped Triple Band Patch Antenna with DGS for X and C-Band Applications

Authors: R. Kiruthika, T. Shanmuganantham

Abstract:

A shaped single feed microstrip antenna is realized for C-Band and X-Band applications. The frequency range of C-band and X-band varies from 4 to 8 Gigahertz and 8 to 12 Gigahertz. The antenna operates under three frequency bands, one under C band and two under X-band applications. Defect on the ground called DGS (Defected Ground Structure) is made to enhance the distinctiveness of the antenna parameters. The design consists of DGS provided to improve the antenna performance. The substrate material used is of the Flame Retardant grade-4 (FR4) epoxy having high mechanical and electrical strength. The design and analysis was done using the FEM (Finite Element Method) based Ansoft HFSS (High Frequency Structural Simulator) Version 12. For the resonant frequencies of 5.21, 9.17 and 10.45, a value of reflection coefficient obtained is of -39.0, -16.0 and -30.7 dB respectively. Other constraints of antenna such as bandwidth, gain, directivity and Voltage Standing Wave Ratio (VSWR) are also conferred.

Keywords: Flame retardant-4 epoxy, finite element method, return loss, directivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 986
5441 A Voltage Based Maximum Power Point Tracker for Low Power and Low Cost Photovoltaic Applications

Authors: Jawad Ahmad, Hee-Jun Kim

Abstract:

This paper describes the design of a voltage based maximum power point tracker (MPPT) for photovoltaic (PV) applications. Of the various MPPT methods, the voltage based method is considered to be the simplest and cost effective. The major disadvantage of this method is that the PV array is disconnected from the load for the sampling of its open circuit voltage, which inevitably results in power loss. Another disadvantage, in case of rapid irradiance variation, is that if the duration between two successive samplings, called the sampling period, is too long there is a considerable loss. This is because the output voltage of the PV array follows the unchanged reference during one sampling period. Once a maximum power point (MPP) is tracked and a change in irradiation occurs between two successive samplings, then the new MPP is not tracked until the next sampling of the PV array voltage. This paper proposes an MPPT circuit in which the sampling interval of the PV array voltage, and the sampling period have been shortened. The sample and hold circuit has also been simplified. The proposed circuit does not utilize a microcontroller or a digital signal processor and is thus suitable for low cost and low power applications.

Keywords: Maximum power point tracker, Sample and hold amplifier, Sampling interval, Sampling period.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2744
5440 Analysis of Structural and Photocatalytical Properties of Anatase, Rutile and Mixed Phase TiO2 Films Deposited by Pulsed-Direct Current and Radio Frequency Magnetron Co-Sputtering

Authors: S. Varnagiris, M. Urbonavicius, S. Tuckute, M. Lelis, K. Bockute

Abstract:

Amongst many water purification techniques, TiO2 photocatalysis is recognized as one of the most promising sustainable methods. It is known that for photocatalytical applications anatase is the most suitable TiO2 phase, however heterojunction of anatase/rutile phases could improve the photocatalytical activity of TiO2 even further. Despite the relative simplicity of TiO2 different synthesis methods lead to the highly dispersed crystal phases and photocatalytic activity of the corresponding samples. Accordingly, suggestions and investigations of various innovative methods of TiO2 synthesis are still needed. In this work structural and photocatalytical properties of TiO2 films deposited by the unconventional method of simultaneous co-sputtering from two magnetrons powered by pulsed-Direct Current (pDC) and Radio Frequency (RF) power sources with negative bias voltage have been studied. More specifically, TiO2 film thickness, microstructure, surface roughness, crystal structure, optical transmittance and photocatalytical properties were investigated by profilometer, scanning electron microscope, atomic force microscope, X-ray diffractometer and UV-Vis spectrophotometer respectively. The proposed unconventional two magnetron co-sputtering based TiO2 film formation method showed very promising results for crystalline TiO2 film formation while keeping process temperatures below 100 °C. XRD analysis revealed that by using proper combination of power source type and bias voltage various TiO2 phases (amorphous, anatase, rutile or their mixture) can be synthesized selectively. Moreover, strong dependency between power source type and surface roughness, as well as between the bias voltage and band gap value of TiO2 films was observed. Interestingly, TiO2 films deposited by two magnetron co-sputtering without bias voltage had one of the highest band gap values between the investigated films but its photocatalytic activity was superior compared to all other samples. It is suggested that this is due to the dominating nanocrystalline anatase phase with various exposed surfaces including photocatalytically the most active {001}.

Keywords: Films, magnetron co-sputtering, photocatalysis, TiO2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 629
5439 Radio Technology Frequency Identification Applied in High-Voltage Power Transmission- Line for Sag Measurement

Authors: Tlotlollo Sidwell Hlalele, Shengzhi Du

Abstract:

High-voltage power transmission lines are the back bone of electrical power utilities. The stability and continuous monitoring of this critical infrastructure is pivotal. Nine-Sigma representing Eskom Holding SOC limited, South Africa has a major problem on proactive detection of fallen power lines and real time sagging measurement together with slipping of such conductors. The main objective of this research is to innovate RFID technology to solve this challenge. Various options and technologies such as GPS, PLC, image processing, MR sensors and etc., have been reviewed and draw backs were made. The potential of RFID to give precision measurement will be observed and presented. The future research will look at magnetic and electrical interference as well as corona effect on the technology.

Keywords: Precision Measurement, RFID and Sag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2407
5438 A 4-Element Corporate Series Feed Millimeter-Wave Microstrip Antenna Array for 5G Applications

Authors: G. Viswanadh Raviteja

Abstract:

In this paper, a microstrip antenna array is designed for 5G applications. A corporate series feed is considered to operate with a center frequency between 27 to 28 GHz to be able to cover the 5G frequency bands 24.25-27.5 GHz, 26.5-29.5 GHz and 27.5-28.35 GHz. The substrate is taken to be Rogers RT/Duroid 6002. The corporate series 5G antenna array is designed stage by stage by taking into consideration a conventional antenna designed at 28 GHz, thereby constructing the 2X1 antenna array before arriving at the final design structure of 4-element corporate series feed antenna array. The discussions concerning S11 parameter, gain and voltage standing wave ratio (VSWR) for the design structures are considered and all the important findings are tabulated. The proposed antenna array’s S11 parameter was found to be -29.00 dB at a frequency of 27.39 GHz with a good directional gain of 12.12 dB.

Keywords: Corporate series feed, millimeter wave antenna array, 5G applications, millimeter-wave (mm-wave) applications

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617
5437 Power Electronic Solution for High Energetic Efficiency of a Thermo Plant

Authors: Aziza Benaboud, Alfred Rufer

Abstract:

In this paper the authors propose a flexible electronic solution, to improve the energetic efficiency of a thermo plant. This is achieved by replacing the mechanical gear box, placed traditionally between a gas turbine and a synchronous generator; by a power electronic converter. After reminding problematic of gear boxes and interest of a proposed electronic solution in high power plants, the authors describe a new control strategy for an indirect frequency converter, which is characterized by its high efficiency due to the use of SWM: Square Wave Modulation. The main advantage of this mode is the quasi absence of switching losses. A control method is also proposed to resolve some problems incurred by using square wave modulation, in particular to reduce the harmonics distortion of the output inverter voltage and current. Simulation examples as well as experimental results are included.

Keywords: Angle shift, high efficiency, indirect converter, gas turbine, NPC three level converter, square wave modulation SWM, switching angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
5436 Robustness of Hybrid Learning Acceleration Feedback Control Scheme in Flexible Manipulators

Authors: M. Z Md Zain, M. O. Tokhi, M. S. Alam

Abstract:

This paper describes a practical approach to design and develop a hybrid learning with acceleration feedback control (HLC) scheme for input tracking and end-point vibration suppression of flexible manipulator systems. Initially, a collocated proportionalderivative (PD) control scheme using hub-angle and hub-velocity feedback is developed for control of rigid-body motion of the system. This is then extended to incorporate a further hybrid control scheme of the collocated PD control and iterative learning control with acceleration feedback using genetic algorithms (GAs) to optimize the learning parameters. Experimental results of the response of the manipulator with the control schemes are presented in the time and frequency domains. The performance of the HLC is assessed in terms of input tracking, level of vibration reduction at resonance modes and robustness with various payloads.

Keywords: Flexible manipulator, iterative learning control, vibration suppression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
5435 Novel Linear Autozeroing Floating-gate Amplifier for Ultra Low-voltage Applications

Authors: Yngvar Berg, Mehdi Azadmehr

Abstract:

In this paper we present a linear autozeroing ultra lowvoltage amplifier. The autozeroing performed by all ULV circuits is important to reduce the impact of noise and especially avoid power supply noise in mixed signal low-voltage CMOS circuits. The simulated data presented is relevant for a 90nm TSMC CMOS process.

Keywords: Low-voltage, trans conductance amplifier, linearity, floating-gate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
5434 Mitigation of Flicker using STATCOM with Three-Level 12-pulse Voltage Source Inverter

Authors: Ali Z a'fari

Abstract:

Voltage flicker is a disturbance in electrical power systems. The reason for this disturbance is mainly the large nonlinear loads such as electric arc furnaces. Synchronous static compensator (STATCOM) is considered as a proper technique to mitigate the voltage flicker. Application of more suitable and precise power electronic converter leads to a more precise performance of the compensator. In this paper a three-level 12-pulse voltage source inverter (VSI) with a 12-terminal transformer connected to the ac system is studied and the obtained results are compared with the performance of a STATCOM using a simple two-level VSI and an optimal and more precise performance of the proposed scheme is achieved.

Keywords: Flicker mitigation, STATCOM, Inverter, 12-pulse, 3- level

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
5433 Comparison of Frequency-Domain Contention Schemes in Wireless LANs

Authors: Li Feng

Abstract:

In IEEE 802.11 networks, it is well known that the traditional time-domain contention often leads to low channel utilization. The first frequency-domain contention scheme, the time to frequency (T2F), has recently been proposed to improve the channel utilization and has attracted a great deal of attention. In this paper, we present the latest research progress on the weighed frequency-domain contention. We compare the basic ideas, work principles of these related schemes and point out their differences. This paper is very useful for further study on frequency-domain contention.

Keywords: 802.11, wireless LANs, frequency-domain contention, T2F.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
5432 Three-Level Converters based Generalized Unified Power Quality Conditioner

Authors: Bahr Eldin S. M, K. S. Rama Rao, N. Perumal

Abstract:

A generalized unified power quality conditioner (GUPQC) by using three single-phase three-level voltage source converters (VSCs) connected back-to-back through a common dc link is proposed in this paper as a new custom power device for a three-feeder distribution system. One of the converters is connected in shunt with one feeder for mitigation of current harmonics and reactive power compensation, while the other two VSCs are connected in series with the other two feeders to maintain the load voltage sinusoidal and at constant level. A new control scheme based on synchronous reference frame is proposed for series converters. The simulation analysis on compensation performance of GUPQC based on PSCAD/EMTDC is reported.

Keywords: Custom power device, generalized unified power quality conditioner, PSCAD/ETMDC, voltage source converter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
5431 Optimization of Control Parameters for MRR in Injection Flushing Type of EDM on Stainless Steel 304 Workpiece

Authors: M. S. Reza, M. Hamdi, A.S. Hadi

Abstract:

The operating control parameters of injection flushing type of electrical discharge machining process on stainless steel 304 workpiece with copper tools are being optimized according to its individual machining characteristic i.e. material removal rate (MRR). Lower MRR during EDM machining process may decrease its- machining productivity. Hence, the quality characteristic for MRR is set to higher-the-better to achieve the optimum machining productivity. Taguchi method has been used for the construction, layout and analysis of the experiment for each of the machining characteristic for the MRR. The use of Taguchi method in the experiment saves a lot of time and cost of preparing and machining the experiment samples. Therefore, an L18 Orthogonal array which was the fundamental component in the statistical design of experiments has been used to plan the experiments and Analysis of Variance (ANOVA) is used to determine the optimum machining parameters for this machining characteristic. The control parameters selected for this optimization experiments are polarity, pulse on duration, discharge current, discharge voltage, machining depth, machining diameter and dielectric liquid pressure. The result had shown that the higher the discharge voltage, the higher will be the MRR.

Keywords: ANOVA, EDM, Injection Flushing, L18 OrthogonalArray, MRR, Stainless Steel 304

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
5430 A Maximum Power Point Tracker for PV Panels Using SEPIC Converter

Authors: S. Ganesh, J. Janani, G. Besliya Angel

Abstract:

Photovoltaic (PV) energy is one of the most important renewable energy sources. Maximum Power Point Tracking (MPPT) techniques should be used in photovoltaic systems to maximize the PV panel output power by tracking continuously the maximum power point which depends on panel’s temperature and on irradiance conditions. Incremental conductance control method has been used as MPPT algorithm. The methodology is based on connecting a pulse width modulated dc/dc SEPIC converter, which is controlled by a microprocessor based unit. The SEPIC converter is one of the buck-boost converters which maintain the output voltage as constant irrespective of the solar isolation level. By adjusting the switching frequency of the converter the maximum power point has been achieved. The main difference between the method used in the proposed MPPT systems and other technique used in the past is that PV array output power is used to directly control the dc/dc converter thus reducing the complexity of the system. The resulting system has high efficiency, low cost and can be easily modified. The tracking capability has been verified experimentally with a 10 W solar panel under a controlled experimental setup. The SEPIC converter and their control strategies has been analyzed and simulated using Simulink/Matlab software.

Keywords: Maximum Power Point Tracking, Microprocessor, PV Module, SEPIC Converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5943
5429 Fractal Patterns for Power Quality Detection Using Color Relational Analysis Based Classifier

Authors: Chia-Hung Lin, Mei-Sung Kang, Cong-Hui Huang, Chao-Lin Kuo

Abstract:

This paper proposes fractal patterns for power quality (PQ) detection using color relational analysis (CRA) based classifier. Iterated function system (IFS) uses the non-linear interpolation in the map and uses similarity maps to construct various fractal patterns of power quality disturbances, including harmonics, voltage sag, voltage swell, voltage sag involving harmonics, voltage swell involving harmonics, and voltage interruption. The non-linear interpolation functions (NIFs) with fractal dimension (FD) make fractal patterns more distinguishing between normal and abnormal voltage signals. The classifier based on CRA discriminates the disturbance events in a power system. Compared with the wavelet neural networks, the test results will show accurate discrimination, good robustness, and faster processing time for detecting disturbing events.

Keywords: Power Quality (PQ), Color Relational Analysis(CRA), Iterated Function System (IFS), Non-linear InterpolationFunction (NIF), Fractal Dimension (FD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
5428 Influence of Insulation System Methods on Dissipation Factor and Voltage Endurance

Authors: Farzad Yavari, Hamid Chegini, Saeed Lotfi

Abstract:

This paper reviews the comparison of Resin Rich (RR) and Vacuum Pressure Impregnation (VPI) insulation system qualities for stator bar of rotating electrical machines. Voltage endurance and tangent delta are two diagnostic tests to determine the quality of insulation systems. The paper describes the trend of dissipation factor while performing voltage endurance test for different stator bar samples made with RR and VPI insulation system methods. Some samples were made with the same strands and insulation thickness but with different main wall material to prove the influence of insulation system methods on stator bar quality. Also, some of the samples were subjected to voltage at the temperature of their insulation class, and their dissipation factor changes were measured and studied.

Keywords: Vacuum pressure impregnation, resin rich, insulation, stator bar, dissipation factor, voltage endurance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 569
5427 Robust Iterative PID Controller Based on Linear Matrix Inequality for a Sample Power System

Authors: Ahmed Bensenouci

Abstract:

This paper provides the design steps of a robust Linear Matrix Inequality (LMI) based iterative multivariable PID controller whose duty is to drive a sample power system that comprises a synchronous generator connected to a large network via a step-up transformer and a transmission line. The generator is equipped with two control-loops, namely, the speed/power (governor) and voltage (exciter). Both loops are lumped in one where the error in the terminal voltage and output active power represent the controller inputs and the generator-exciter voltage and governor-valve position represent its outputs. Multivariable PID is considered here because of its wide use in the industry, simple structure and easy implementation. It is also preferred in plants of higher order that cannot be reduced to lower ones. To improve its robustness to variation in the controlled variables, H∞-norm of the system transfer function is used. To show the effectiveness of the controller, divers tests, namely, step/tracking in the controlled variables, and variation in plant parameters, are applied. A comparative study between the proposed controller and a robust H∞ LMI-based output feedback is given by its robustness to disturbance rejection. From the simulation results, the iterative multivariable PID shows superiority.

Keywords: Linear matrix inequality, power system, robust iterative PID, robust output feedback control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
5426 Unbalanced Distribution Optimal Power Flow to Minimize Losses with Distributed Photovoltaic Plants

Authors: Malinwo Estone Ayikpa

Abstract:

Electric power systems are likely to operate with minimum losses and voltage meeting international standards. This is made possible generally by control actions provide by automatic voltage regulators, capacitors and transformers with on-load tap changer (OLTC). With the development of photovoltaic (PV) systems technology, their integration on distribution networks has increased over the last years to the extent of replacing the above mentioned techniques. The conventional analysis and simulation tools used for electrical networks are no longer able to take into account control actions necessary for studying distributed PV generation impact. This paper presents an unbalanced optimal power flow (OPF) model that minimizes losses with association of active power generation and reactive power control of single-phase and three-phase PV systems. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The unbalance OPF is formulated by current balance equations and solved by primal-dual interior point method. Several simulation cases have been carried out varying the size and location of PV systems and the results show a detailed view of the impact of PV distributed generation on distribution systems.

Keywords: Distribution system, losses, photovoltaic generation, primal-dual interior point method, reactive power control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1065
5425 Wireless Neural Stimulator with Adjustable Electrical Quantity

Authors: Young-Seok Choi

Abstract:

The neural stimulation has been gaining much interest in neuromodulation research and clinical trials. For efficiency, there is a need for variable electrical stimulation such as current and voltage stimuli as well as wireless framework. In this regard, we develop the wireless neural stimulator capable of voltage and current stimuli. The system consists of ZigBee which is a wireless communication module and stimulus generator. The stimulus generator with 8-bits resolution enable both mono-polar and bi-polar waveform in voltage (-3.3~3.3V) and current(-330~330µA) stimulus mode which is controllable. The experimental results suggest that the proposed neural stimulator can play a role as an effective approach for neuromodulation.

Keywords: Neural stimulator, current stimulation, voltage stimulation, neuromodulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154