Search results for: magnetic sensing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 711

Search results for: magnetic sensing

441 Heavy Metals Estimation in Coastal Areas Using Remote Sensing, Field Sampling and Classical and Robust Statistic

Authors: Elena Castillo-López, Raúl Pereda, Julio Manuel de Luis, Rubén Pérez, Felipe Piña

Abstract:

Sediments are an important source of accumulation of toxic contaminants within the aquatic environment. Bioassays are a powerful tool for the study of sediments in relation to their toxicity, but they can be expensive. This article presents a methodology to estimate the main physical property of intertidal sediments in coastal zones: heavy metals concentration. This study, which was developed in the Bay of Santander (Spain), applies classical and robust statistic to CASI-2 hyperspectral images to estimate heavy metals presence and ecotoxicity (TOC). Simultaneous fieldwork (radiometric and chemical sampling) allowed an appropriate atmospheric correction to CASI-2 images.

Keywords: Remote sensing, intertidal sediment, airborne sensors, heavy metals, ecotoxicity, robust statistic, estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
440 A Fuzzy Tumor Volume Estimation Approach Based On Fuzzy Segmentation of MR Images

Authors: Sara A.Yones, Ahmed S. Moussa

Abstract:

Quantitative measurements of tumor in general and tumor volume in particular, become more realistic with the use of Magnetic Resonance imaging, especially when the tumor morphological changes become irregular and difficult to assess by clinical examination. However, tumor volume estimation strongly depends on the image segmentation, which is fuzzy by nature. In this paper a fuzzy approach is presented for tumor volume segmentation based on the fuzzy connectedness algorithm. The fuzzy affinity matrix resulting from segmentation is then used to estimate a fuzzy volume based on a certainty parameter, an Alpha Cut, defined by the user. The proposed method was shown to highly affect treatment decisions. A statistical analysis was performed in this study to validate the results based on a manual method for volume estimation and the importance of using the Alpha Cut is further explained.

Keywords: Alpha Cut, Fuzzy Connectedness, Magnetic Resonance Imaging, Tumor volume estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2396
439 Extracting Tongue Shape Dynamics from Magnetic Resonance Image Sequences

Authors: María S. Avila-García, John N. Carter, Robert I. Damper

Abstract:

An important problem in speech research is the automatic extraction of information about the shape and dimensions of the vocal tract during real-time speech production. We have previously developed Southampton dynamic magnetic resonance imaging (SDMRI) as an approach to the solution of this problem.However, the SDMRI images are very noisy so that shape extraction is a major challenge. In this paper, we address the problem of tongue shape extraction, which poses difficulties because this is a highly deforming non-parametric shape. We show that combining active shape models with the dynamic Hough transform allows the tongue shape to be reliably tracked in the image sequence.

Keywords: Vocal tract imaging, speech production, active shapemodels, dynamic Hough transform, object tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
438 Assessment of Urban Heat Island through Remote Sensing in Nagpur Urban Area Using Landsat 7 ETM+ Satellite Images

Authors: Meenal Surawar, Rajashree Kotharkar

Abstract:

Urban Heat Island (UHI) is found more pronounced as a prominent urban environmental concern in developing cities. To study the UHI effect in the Indian context, the Nagpur urban area has been explored in this paper using Landsat 7 ETM+ satellite images through Remote Sensing and GIS techniques. This paper intends to study the effect of LU/LC pattern on daytime Land Surface Temperature (LST) variation, contributing UHI formation within the Nagpur Urban area. Supervised LU/LC area classification was carried to study urban Change detection using ENVI 5. Change detection has been studied by carrying Normalized Difference Vegetation Index (NDVI) to understand the proportion of vegetative cover with respect to built-up ratio. Detection of spectral radiance from the thermal band of satellite images was processed to calibrate LST. Specific representative areas on the basis of urban built-up and vegetation classification were selected for observation of point LST. The entire Nagpur urban area shows that, as building density increases with decrease in vegetation cover, LST increases, thereby causing the UHI effect. UHI intensity has gradually increased by 0.7°C from 2000 to 2006; however, a drastic increase has been observed with difference of 1.8°C during the period 2006 to 2013. Within the Nagpur urban area, the UHI effect was formed due to increase in building density and decrease in vegetative cover.

Keywords: Land use, land cover, land surface temperature, remote sensing, urban heat island.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2607
437 Brain MRI Segmentation and Lesions Detection by EM Algorithm

Authors: Mounira Rouaïnia, Mohamed Salah Medjram, Noureddine Doghmane

Abstract:

In Multiple Sclerosis, pathological changes in the brain results in deviations in signal intensity on Magnetic Resonance Images (MRI). Quantitative analysis of these changes and their correlation with clinical finding provides important information for diagnosis. This constitutes the objective of our work. A new approach is developed. After the enhancement of images contrast and the brain extraction by mathematical morphology algorithm, we proceed to the brain segmentation. Our approach is based on building statistical model from data itself, for normal brain MRI and including clustering tissue type. Then we detect signal abnormalities (MS lesions) as a rejection class containing voxels that are not explained by the built model. We validate the method on MR images of Multiple Sclerosis patients by comparing its results with those of human expert segmentation.

Keywords: EM algorithm, Magnetic Resonance Imaging, Mathematical morphology, Markov random model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165
436 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries

Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows

Abstract:

Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.

Keywords: Biomagnetic fluid, FHD, nonlinear stretching sheet, slip parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 820
435 Modeling and Simulations of Complex Low- Dimensional systems: Testing the Efficiency of Parallelization

Authors: Ryszard Matysiak, Grzegorz Kamieniarz

Abstract:

The deterministic quantum transfer-matrix (QTM) technique and its mathematical background are presented. This important tool in computational physics can be applied to a class of the real physical low-dimensional magnetic systems described by the Heisenberg hamiltonian which includes the macroscopic molecularbased spin chains, small size magnetic clusters embedded in some supramolecules and other interesting compounds. Using QTM, the spin degrees of freedom are accurately taken into account, yielding the thermodynamical functions at finite temperatures. In order to test the application for the susceptibility calculations to run in the parallel environment, the speed-up and efficiency of parallelization are analyzed on our platform SGI Origin 3800 with p = 128 processor units. Using Message Parallel Interface (MPI) system libraries we find the efficiency of the code of 94% for p = 128 that makes our application highly scalable.

Keywords: Deterministic simulations, low-dimensional magnets, modeling of complex systems, parallelization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
434 Radiation Effect on Unsteady MHD Flow over a Stretching Surface

Authors: Zanariah Mohd Yusof, Siti Khuzaimah Soid, Ahmad Sukri Abd Aziz, Seripah Awang Kechil

Abstract:

Unsteady magnetohydrodynamics (MHD) boundary layer flow and heat transfer over a continuously stretching surface in the presence of radiation is examined. By similarity transformation, the governing partial differential equations are transformed to a set of ordinary differential equations. Numerical solutions are obtained by employing the Runge-Kutta-Fehlberg method scheme with shooting technique in Maple software environment. The effects of unsteadiness parameter, radiation parameter, magnetic parameter and Prandtl number on the heat transfer characteristics are obtained and discussed. It is found that the heat transfer rate at the surface increases as the Prandtl number and unsteadiness parameter increase but decreases with magnetic and radiation parameter.

Keywords: Heat transfer, magnetohydrodynamics, radiation, unsteadiness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2673
433 Performance Analysis of the Time-Based and Periodogram-Based Energy Detector for Spectrum Sensing

Authors: Sadaf Nawaz, Adnan Ahmed Khan, Asad Mahmood, Chaudhary Farrukh Javed

Abstract:

Classically, an energy detector is implemented in time domain (TD). However, frequency domain (FD) based energy detector has demonstrated an improved performance. This paper presents a comparison between the two approaches as to analyze their pros and cons. A detailed performance analysis of the classical TD energy-detector and the periodogram based detector is performed. Exact and approximate mathematical expressions for probability of false alarm (Pf) and probability of detection (Pd) are derived for both approaches. The derived expressions naturally lead to an analytical as well as intuitive reasoning for the improved performance of (Pf) and (Pd) in different scenarios. Our analysis suggests the dependence improvement on buffer sizes. Pf is improved in FD, whereas Pd is enhanced in TD based energy detectors. Finally, Monte Carlo simulations results demonstrate the analysis reached by the derived expressions.

Keywords: Cognitive radio, energy detector, periodogram, spectrum sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029
432 Nickel Electroplating in Post Supercritical CO2 Mixed Watts Bath under Different Agitations

Authors: Chun-Ying Lee, Kun-Hsien Lee, Bor-Wei Wang

Abstract:

The process of post-supercritical CO2 electroplating uses the electrolyte solution after being mixed with supercritical CO2 and released to atmospheric pressure. It utilizes the microbubbles that form when oversaturated CO2 in the electrolyte returns to gaseous state, which gives the similar effect of pulsed electroplating. Under atmospheric pressure, the CO2 bubbles gradually diffuse. Therefore, the introduction of ultrasound and/or other agitation can potentially excite the CO2 microbubbles to achieve an electroplated surface of even higher quality. In this study, during the electroplating process, three different modes of agitation: magnetic stirrer agitation, ultrasonic agitation and a combined mode (magnetic + ultrasonic) were applied, respectively, in order to obtain an optimal surface morphology and mechanical properties for the electroplated Ni coating. It is found that the combined agitation mode at a current density of 40 A/dm2 achieved the smallest grain size, lower surface roughness, and produced an electroplated Ni layer that achieved hardness of 320 HV, much higher when compared with conventional method, which were usually in the range of 160 to 300 HV. However, at the same time, the electroplating with combined agitation developed a higher internal stress of 320 MPa due to the lower current efficiency of the process and finer grain in the coating. Moreover, a new control methodology for tailoring the coating’s mechanical property through its thickness was demonstrated by the timely introduction of ultrasonic agitation during the electroplating process with post supercritical CO2 mixed electrolyte.

Keywords: Nickel electroplating, micro-bubbles, supercritical carbon dioxide, ultrasonic agitation, magnetic stirring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866
431 Structure and Morphology of Electrodeposited Nickel Nanowires at an Electrode Distance of 20mm

Authors: Mahendran Samykano, Ram Mohan, Shyam Aravamudhan

Abstract:

The objective of this work is to study the effect of two key factors - external magnetic field and applied current density during template-based electrodeposition of nickel nanowires using an electrode distance of 20 mm. Morphology, length, crystallite size and crystallographic characterization of the grown nickel nanowires at an electrode distance of 20mm are presented. For this electrode distance of 20 mm, these two key electrodeposition factors when coupled was found to reduce crystallite size with a higher growth length and preferred orientation of Ni crystals. These observed changes can be inferred to be due to coupled interaction forces induced by the intensity of applied electric field (current density) and external magnetic field known as magnetohydrodynamic (MHD) effect during the electrodeposition process.

Keywords: Anodic alumina oxide, electrodeposition, nanowires, nickel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193
430 Asymptotic Approach for Rectangular Microstrip Patch antenna With Magnetic Anisotropy and Chiral Substrate

Authors: Zebiri Chemseddine, Benabdelaziz Fatiha

Abstract:

The effect of a chiral bianisotropic substrate on the complex resonant frequency of a rectangular microstrip resonator has been studied on the basis of the integral equation formulation. The analysis is based on numerical resolution of the integral equation using Galerkin procedure for moment method in the spectral domain. This work aim first to study the effect of the chirality of a bianisotopic substrate upon the resonant frequency and the half power bandwidth, second the effect of a magnetic anisotropy via an asymptotic approach for very weak substrate upon the resonant frequency and the half power bandwidth has been investigated. The obtained results are compared with previously published work [11-9], they were in good agreement.

Keywords: Microstrip antenna, bianisotropic media, resonant frequency, moment method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
429 Study of MHD Oblique Stagnation Point Assisting Flow on Vertical Plate with Uniform Surface Heat Flux

Authors: Phool Singh, Ashok Jangid, N.S. Tomer, Deepa Sinha

Abstract:

The aim of this paper is to study the oblique stagnation point flow on vertical plate with uniform surface heat flux in presence of magnetic field. Using Stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained using Runge-Kutta Fehlberg method with the help of shooting technique. In the present work the effects of striking angle, magnetic field parameter, Grashoff number, the Prandtl number on velocity and heat transfer characteristics have been discussed. Effect of above mentioned parameter on the position of stagnation point are also studied.

Keywords: Heat flux, Oblique stagnation point, Mixedconvection, Magneto hydrodynamics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
428 Enhanced Magnetoelastic Response near Morphotropic Phase Boundary in Ferromagnetic Materials: Experimental and Theoretical Analysis

Authors: Murtaza Adil, Sen Yang, Zhou Chao, Song Xiaoping

Abstract:

The morphotropic phase boundary (MPB) recently has attracted constant interest in ferromagnetic systems for obtaining enhanced large magnetoelastic response. In the present study, structural and magnetoelastic properties of MPB involved ferromagnetic Tb1-xGdxFe2 (0≤x≤1) system has been investigated. The change of easy magnetic direction from <111> to <100> with increasing x up MPB composition of x=0.9 is detected by step-scanned [440] synchrotron X-ray diffraction reflections. The Gd substitution for Tb changes the composition for the anisotropy compensation near MPB composition of x=0.9, which was confirmed by the analysis of detailed scanned XRD, magnetization curves and the calculation of the first anisotropy constant K1. The spin configuration diagram accompanied with different crystal structures for Tb1-xGdxFe2 was designed. The calculated first anisotropy constant K1 shows a minimum value at MPB composition of x=0.9. In addition, the large ratio between magnetostriction, and the absolute values of the first anisotropy constant │λS∕K1│ appears at MPB composition, which makes it a potential material for magnetostrictive application. Based on experimental results, a theoretically approach was also proposed to signify that the facilitated magnetization rotation and enhanced magnetoelastic effect near MPB composition are a consequence of the anisotropic flattening of free energy of ferromagnetic crystal. Our work specifies the universal existence of MPB in ferromagnetic materials which is important for substantial improvement of magnetic and magnetostrictive properties and may provide a new route to develop advanced functional materials.

Keywords: Free energy, lattice distortion, magnetic anisotropy, magnetostriction, morphotropic phase boundary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251
427 Boundary Layer Flow of a Casson Nanofluid past a Vertical Exponentially Stretching Cylinder in the Presence of a Transverse Magnetic Field with Internal Heat Generation/Absorption

Authors: G. Sarojamma, K. Vendabai

Abstract:

An analysis is carried out to investigate the effect of magnetic field and heat source on the steady boundary layer flow and heat transfer of a Casson nanofluid over a vertical cylinder stretching exponentially along its radial direction. Using a similarity transformation, the governing mathematical equations, with the boundary conditions are reduced to a system of coupled, non –linear ordinary differential equations. The resulting system is solved numerically by the fourth order Runge – Kutta scheme with shooting technique. The influence of various physical parameters such as Reynolds number, Prandtl number, magnetic field, Brownian motion parameter, thermophoresis parameter, Lewis number and the natural convection parameter are presented graphically and discussed for non – dimensional velocity, temperature and nanoparticle volume fraction. Numerical data for the skin – friction coefficient, local Nusselt number and the local Sherwood number have been tabulated for various parametric conditions. It is found that the local Nusselt number is a decreasing function of Brownian motion parameter Nb and the thermophoresis parameter Nt.

Keywords: Casson nanofluid, Boundary layer flow, Internal heat generation/absorption, Exponentially stretching cylinder, Heat transfer, Brownian motion, Thermophoresis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2820
426 Electromagnetic Field Modeling in Human Tissue

Authors: Iliana Marinova, Valentin Mateev

Abstract:

For investigations of electromagnetic field distributions in biological structures by Finite Element Method (FEM), a method for automatic 3D model building of human anatomical objects is developed. Models are made by meshed structures and specific electromagnetic material properties for each tissue type. Mesh is built according to specific FEM criteria for achieving good solution accuracy. Several FEM models of anatomical objects are built. Formulation using magnetic vector potential and scalar electric potential (A-V, A) is used for modeling of electromagnetic fields in human tissue objects. The developed models are suitable for investigations of electromagnetic field distributions in human tissues exposed in external fields during magnetic stimulation, defibrillation, impedance tomography etc.

Keywords: electromagnetic field, finite element method, humantissue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5294
425 Enhancement Effect of Superparamagnetic Iron Oxide Nanoparticle-Based MRI Contrast Agent at Different Concentrations and Magnetic Field Strengths

Authors: Bimali Sanjeevani Weerakoon, Toshiaki Osuga, Takehisa Konishi

Abstract:

Magnetic Resonance Imaging Contrast Agents (MRI-CM) are significant in the clinical and biological imaging as they have the ability to alter the normal tissue contrast, thereby affecting the signal intensity to enhance the visibility and detectability of images. Superparamagnetic Iron Oxide (SPIO) nanoparticles, coated with dextran or carboxydextran are currently available for clinical MR imaging of the liver. Most SPIO contrast agents are T2 shortening agents and Resovist (Ferucarbotran) is one of a clinically tested, organ-specific, SPIO agent which has a low molecular carboxydextran coating. The enhancement effect of Resovist depends on its relaxivity which in turn depends on factors like magnetic field strength, concentrations, nanoparticle properties, pH and temperature. Therefore, this study was conducted to investigate the impact of field strength and different contrast concentrations on enhancement effects of Resovist. The study explored the MRI signal intensity of Resovist in the physiological range of plasma from T2-weighted spin echo sequence at three magnetic field strengths: 0.47 T (r1=15, r2=101), 1.5 T (r1=7.4, r2=95), and 3 T (r1=3.3, r2=160) and the range of contrast concentrations by a mathematical simulation. Relaxivities of r1 and r2 (L mmol-1 Sec-1) were obtained from a previous study and the selected concentrations were 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 mmol/L. T2-weighted images were simulated using TR/TE ratio as 2000 ms /100 ms. According to the reference literature, with increasing magnetic field strengths, the r1 relaxivity tends to decrease while the r2 did not show any systematic relationship with the selected field strengths. In parallel, this study results revealed that the signal intensity of Resovist at lower concentrations tends to increase than the higher concentrations. The highest reported signal intensity was observed in the low field strength of 0.47 T. The maximum signal intensities for 0.47 T, 1.5 T and 3 T were found at the concentration levels of 0.05, 0.06 and 0.05 mmol/L, respectively. Furthermore, it was revealed that, the concentrations higher than the above, the signal intensity was decreased exponentially. An inverse relationship can be found between the field strength and T2 relaxation time, whereas, the field strength was increased, T2 relaxation time was decreased accordingly. However, resulted T2 relaxation time was not significantly different between 0.47 T and 1.5 T in this study. Moreover, a linear correlation of transverse relaxation rates (1/T2, s–1) with the concentrations of Resovist can be observed. According to these results, it can conclude that the concentration of SPIO nanoparticle contrast agents and the field strengths of MRI are two important parameters which can affect the signal intensity of T2-weighted SE sequence. Therefore, when MR imaging those two parameters should be considered prudently.

Keywords: Concentration, Resovist, Field strength, Relaxivity, Signal intensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996
424 A Novel Switched Reluctance Motor with U-type Segmental Rotor Pairs: Design, Analysis and Simulation Results

Authors: G. Bal, D. Uygun

Abstract:

This paper describes the design and modeling procedure of a novel 5-phase segment type switched reluctance motor (ST-SRM) under simultaneous two-phase (bipolar) excitation of windings. The rotor cores of ST-SRM are embedded in an aluminum block as well as to improve the performance characteristics. The magnetic circuit of the produced ST-SRM is constructed so that the magnetic flux paths are short and exclusive to each phase, thereby minimizing the commutation switching and eddy current losses in the laminations. The design and simulation principles presented apply primarily to conventional SRM and ST-SRM. It is proved that the novel 5-phase switched reluctance motor under two-phase excitation is superior among the criteria used in comparison. The purposed model is particularly well suited for high torque and weight constrained applications such as automobiles, aerospace and military applications.

Keywords: Segmental Rotor Pairs, Two-phase Excitation, Commutation Switching, Aluminum Block.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3262
423 Development of a Fiber based Interferometric Sensor for Non-contact Displacement Measurement

Authors: S. Pullteap

Abstract:

In this paper, a fiber based Fabry-Perot interferometer is proposed and demonstrated for a non-contact displacement measurement. A piece of micro-prism which attached to the mechanical vibrator is served as the target reflector. Interference signal is generated from the superposition between the sensing beam and the reference beam within the sensing arm of the fiber sensor. This signal is then converted to the displacement value by using a developed program written in visual Cµ programming with a resolution of λ/8. A classical function generator is operated for controlling the vibrator. By fixing an excitation frequency of 100 Hz and varying the excitation amplitude range of 0.1 – 3 Volts, the output displacements measured by the fiber sensor are obtained from 1.55 μm to 30.225 μm. A reference displacement sensor with a sensitivity of ~0.4 μm is also employed for comparing the displacement errors between both sensors. We found that over the entire displacement range, a maximum and average measurement error are obtained of 0.977% and 0.44% respectively.

Keywords: Non-contact displacement measurement, extrinsicfiber based Fabry-Perot interferometer, interference signal, zerocrossingfringe counting technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
422 Synthesis and Characterization of PEG-Silane Functionalized Iron Oxide Nanoparticle as MRI T2 Contrast Agent

Authors: Mu-Jen Young, Cheng-Yen Wu, Wen-Yuan Hsieh

Abstract:

Iron oxide nanoparticle was synthesized by reactive-precipitation method followed by high speed centrifuge and phase transfer in order to stabilized nanoparticles in the solvent. Particle size of SPIO was 8.2 nm by SEM, and the hydraulic radius was 17.5 nm by dynamic light scattering method. Coercivity and saturated magnetism were determined by VSM (vibrating sample magnetometer), coercivity of nanoparticle was lower than 10 Hc, and the saturated magnetism was higher than 65 emu/g. Stabilized SPIO was then transferred to aqueous phase by reacted with excess amount of poly (ethylene glycol) (PEG) silane. After filtration and dialysis, the SPIO T2 contrast agent was ready to use. The hydraulic radius of final product was about 70~100 nm, the relaxation rates R2 (1/T2) measured by magnetic resonance imaging (MRI) was larger than 200(sec-1).

Keywords: Contrast Agent, Iron Oxide Nanoparticle, Magnetic Resonance Imaging, Nanoparticle Stabilization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3211
421 Modeling Non-Darcy Natural Convection Flow of a Micropolar Dusty Fluid with Convective Boundary Condition

Authors: F. M. Hady, A. Mahdy, R. A. Mohamed, Omima A. Abo Zaid

Abstract:

A numerical approach of the effectiveness of numerous parameters on magnetohydrodynamic (MHD) natural convection heat and mass transfer problem of a dusty micropolar fluid in a non-Darcy porous regime is prepared in the current paper. In addition, a convective boundary condition is scrutinized into the micropolar dusty fluid model. The governing boundary layer equations are converted utilizing similarity transformations to a system of dimensionless equations to be convenient for numerical treatment. The resulting equations for fluid phase and dust phases of momentum, angular momentum, energy, and concentration with the appropriate boundary conditions are solved numerically applying the Runge-Kutta method of fourth-order. In accordance with the numerical study, it is obtained that the magnitude of the velocity of both fluid phase and particle phase reduces with an increasing magnetic parameter, the mass concentration of the dust particles, and Forchheimer number. While rises due to an increment in convective parameter and Darcy number. Also, the results refer that high values of the magnetic parameter, convective parameter, and Forchheimer number support the temperature distributions. However, deterioration occurs as the mass concentration of the dust particles and Darcy number increases. The angular velocity behavior is described by progress when studying the effect of the magnetic parameter and microrotation parameter.

Keywords: Micropolar dusty fluid, convective heating, natural convection, MHD, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 939
420 Artificial Neural Networks and Multi-Class Support Vector Machines for Classifying Magnetic Measurements in Tokamak Reactors

Authors: A. Greco, N. Mammone, F.C. Morabito, M.Versaci

Abstract:

This paper is mainly concerned with the application of a novel technique of data interpretation for classifying measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artificial Neural Networks and Multi-Class Support Vector Machines have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compared with earlier methods.

Keywords: Tokamak, Classification, Artificial Neural Network, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277
419 Free Convection in a MHD Porous Cavity with using Lattice Boltzmann Method

Authors: H.A. Ashorynejad, M. Farhadi, K.Sedighi, A.Hasanpour

Abstract:

We report the results of an lattice Boltzmann simulation of magnetohydrodynamic damping of sidewall convection in a rectangular enclosure filled with a porous medium. In particular we investigate the suppression of convection when a steady magnetic field is applied in the vertical direction. The left and right vertical walls of the cavity are kept at constant but different temperatures while both the top and bottom horizontal walls are insulated. The effects of the controlling parameters involved in the heat transfer and hydrodynamic characteristics are studied in detail. The heat and mass transfer mechanisms and the flow characteristics inside the enclosure depended strongly on the strength of the magnetic field and Darcy number. The average Nusselt number decreases with rising values of the Hartmann number while this increases with increasing values of the Darcy number.

Keywords: Lattice Boltzmann method , Natural convection , Magnetohydrodynamic , Porous medium

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
418 Mechanism of Dual Ferroic Properties Formation in Substituted M-Type Hexaferrites

Authors: A. V. Trukhanov, S. V. Trukhanov, L. V. Panina, V. G. Kostishin, V. A. Turchenko

Abstract:

It has been shown that BaFe12O19 is a perspective room-temperature multiferroic material. A large spontaneous polarization was observed for the BaFe12O19 ceramics revealing a clear ferroelectric hysteresis loop. The maximum polarization was estimated to be approximately 11.8 μC/cm2. The FeO6 octahedron in its perovskite-like hexagonal unit cell and the shift of Fe3+ off the center of octahedron are suggested to be the origin of the polarization in BaFe12O19. The magnetic field induced electric polarization has been also observed in the doped BaFe12-x-δScxMδO19 (δ=0.05) at 10 K and in the BaScxFe12−xO19 and SrScxFe12−xO19 (x = 1.3–1.7) M-type hexaferrites. The investigated BaFe12-xDxO19 (x=0.1, D-Al3+, In3+) samples have been obtained by two-step “topotactic” reactions. The powder neutron investigations of the samples were performed by neutron time of flight method at High Resolution Fourier Diffractometer.

Keywords: Substituted hexaferrites, ferrimagnetics, ferroelectrics, neutron powder diffraction, crystal and magnetic structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
417 Assessing the Theoretical Suitability of Sentinel-2 and WorldView-3 Data for Hydrocarbon Mapping of Spill Events, Using HYSS

Authors: K. Tunde Olagunju, C. Scott Allen, F.D. (Freek) van der Meer

Abstract:

Identification of hydrocarbon oil in remote sensing images is often the first step in monitoring oil during spill events. Most remote sensing methods adopt techniques for hydrocarbon identification to achieve detection in order to model an appropriate cleanup program. Identification on optical sensors does not only allow for detection but also for characterization and quantification. Until recently, in optical remote sensing, quantification and characterization were only potentially possible using high-resolution laboratory and airborne imaging spectrometers (hyperspectral data). Unlike multispectral, hyperspectral data are not freely available, as this data category is mainly obtained via airborne survey at present. In this research, two operational high-resolution multispectral satellites (WorldView-3 and Sentinel-2) are theoretically assessed for their suitability for hydrocarbon characterization, using the Hydrocarbon Spectra Slope model (HYSS). This method utilized the two most persistent hydrocarbon diagnostic/absorption features at 1.73 µm and 2.30 µm for hydrocarbon mapping on multispectral data. In this research, spectra measurement of seven different hydrocarbon oils (crude and refined oil) taken on 10 different substrates with the use of laboratory ASD Fieldspec were convolved to Sentinel-2 and WorldView-3 resolution, using their full width half maximum (FWHM) parameter. The resulting hydrocarbon slope values obtained from the studied samples enable clear qualitative discrimination of most hydrocarbons, despite the presence of different background substrates, particularly on WorldView-3. Due to close conformity of central wavelengths and narrow bandwidths to key hydrocarbon bands used in HYSS, the statistical significance for qualitative analysis on WorldView-3 sensors for all studied hydrocarbon oil returned with 95% confidence level (P-value ˂ 0.01), except for Diesel. Using multifactor analysis of variance (MANOVA), the discriminating power of HYSS is statistically significant for most hydrocarbon-substrate combinations on Sentinel-2 and WorldView-3 FWHM, revealing the potential of these two operational multispectral sensors as rapid response tools for hydrocarbon mapping. One notable exception is highly transmissive hydrocarbons on Sentinel-2 data due to the non-conformity of spectral bands with key hydrocarbon absorptions and the relatively coarse bandwidth (> 100 nm).

Keywords: hydrocarbon, oil spill, remote sensing, hyperspectral, multispectral, hydrocarbon – substrate combination, Sentinel-2, WorldView-3

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 704
416 A Rigid Point Set Registration of Remote Sensing Images Based on Genetic Algorithms and Hausdorff Distance

Authors: F. Meskine, N. Taleb, M. Chikr El-Mezouar, K. Kpalma, A. Almhdie

Abstract:

Image registration is the process of establishing point by point correspondence between images obtained from a same scene. This process is very useful in remote sensing, medicine, cartography, computer vision, etc. Then, the task of registration is to place the data into a common reference frame by estimating the transformations between the data sets. In this work, we develop a rigid point registration method based on the application of genetic algorithms and Hausdorff distance. First, we extract the feature points from both images based on the algorithm of global and local curvature corner. After refining the feature points, we use Hausdorff distance as similarity measure between the two data sets and for optimizing the search space we use genetic algorithms to achieve high computation speed for its inertial parallel. The results show the efficiency of this method for registration of satellite images.

Keywords: Feature extraction, Genetic algorithms, Hausdorff distance, Image registration, Point registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
415 Efficient Detection Using Sequential Probability Ratio Test in Mobile Cognitive Radio Systems

Authors: Yeon-Jea Cho, Sang-Uk Park, Won-Chul Choi, Dong-Jo Park

Abstract:

This paper proposes a smart design strategy for a sequential detector to reliably detect the primary user-s signal, especially in fast fading environments. We study the computation of the log-likelihood ratio for coping with a fast changing received signal and noise sample variances, which are considered random variables. First, we analyze the detectability of the conventional generalized log-likelihood ratio (GLLR) scheme when considering fast changing statistics of unknown parameters caused by fast fading effects. Secondly, we propose an efficient sensing algorithm for performing the sequential probability ratio test in a robust and efficient manner when the channel statistics are unknown. Finally, the proposed scheme is compared to the conventional method with simulation results with respect to the average number of samples required to reach a detection decision.

Keywords: Cognitive radio, fast fading, sequential detection, spectrum sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
414 An Experimental Study of Structural, Optical and Magnetic Properties of Lithium Ferrite

Authors: S. Malathi, P. Seenuvasakumaran

Abstract:

Nanomaterials ferrites have applications in making permanent magnets, high density information devices, color imaging etc. In the present examination, lithium ferrite is synthesized by sol-gel process. The x-ray diffraction (XRD) result shows that the structure of lithium ferrite is monoclinic structure. The average particle size 22 nm is calculated by Scherer formula. The lattice parameters and dislocation density (δ) are calculated from XRD data. Strain (ε) values are evaluated from Williamson – hall plot. The FT-IR study reveals the formation of ferrites showing the significant absorption bands. The VU-VIS spectroscopic data is used to calculate direct and indirect optical band gap (Eg) of 1.57eV and 1.01eV respectively for lithium ferrite by using Tauc plot at the edge of the absorption band. The energy dispersive x-ray analysis spectra showed that the expected elements exist in the material. The magnetic behaviour of the materials studied using vibrating sample magnetometer (VSM).

Keywords: Sol-gel, dislocation density, energy band gap, VSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
413 A Comparison Study of a Symmetry Solution of Magneto-Elastico-Viscous Fluid along a Semi- Infinite Plate with Homotopy Perturbation Method and4th Order Runge–Kutta Method

Authors: Mohamed M. Mousa, Aidarkhan Kaltayev

Abstract:

The equations governing the flow of an electrically conducting, incompressible viscous fluid over an infinite flat plate in the presence of a magnetic field are investigated using the homotopy perturbation method (HPM) with Padé approximants (PA) and 4th order Runge–Kutta method (4RKM). Approximate analytical and numerical solutions for the velocity field and heat transfer are obtained and compared with each other, showing excellent agreement. The effects of the magnetic parameter and Prandtl number on velocity field, shear stress, temperature and heat transfer are discussed as well.

Keywords: Electrically conducting elastico-viscous fluid, symmetry solution, Homotopy perturbation method, Padé approximation, 4th order Runge–Kutta, Maple

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
412 Synthesis and Characterization of ZnO and Fe3O4 Nanocrystals from Oleat-based Organometallic Compounds

Authors: PoiSim Khiew, WeeSiong Chiu, ThianKhoonTan, Shahidan Radiman, Roslan Abd-Shukor, Muhammad Azmi Abd-Hamid, ChinHua Chia

Abstract:

Magnetic and semiconductor nanomaterials exhibit novel magnetic and optical properties owing to their unique size and shape-dependent effects. With shrinking the size down to nanoscale region, various anomalous properties that normally not present in bulk start to dominate. Ability in harnessing of these anomalous properties for the design of various advance electronic devices is strictly dependent on synthetic strategies. Hence, current research has focused on developing a rational synthetic control to produce high quality nanocrystals by using organometallic approach to tune both size and shape of the nanomaterials. In order to elucidate the growth mechanism, transmission electron microscopy was employed as a powerful tool in performing real time-resolved morphologies and structural characterization of magnetic (Fe3O4) and semiconductor (ZnO) nanocrystals. The current synthetic approach is found able to produce nanostructures with well-defined shapes. We have found that oleic acid is an effective capping ligand in preparing oxide-based nanostructures without any agglomerations, even at high temperature. The oleate-based precursors and capping ligands are fatty acid compounds, which are respectively originated from natural palm oil with low toxicity. In comparison with other synthetic approaches in producing nanostructures, current synthetic method offers an effective route to produce oxide-based nanomaterials with well-defined shapes and good monodispersity. The nanocystals are well-separated with each other without any stacking effect. In addition, the as-synthesized nanopellets are stable in terms of chemically and physically if compared to those nanomaterials that are previous reported. Further development and extension of current synthetic strategy are being pursued to combine both of these materials into nanocomposite form that will be used as “smart magnetic nanophotocatalyst" for industry waste water treatment.

Keywords: Metal oxide nanomaterials, Nanophotocatalyst, Organometallic synthesis, Morphology Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2592