Search results for: high-resolution parameter estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2020

Search results for: high-resolution parameter estimation

1750 Stature Estimation Using Foot and Shoeprint Length of Malaysian Population

Authors: M. Khairulmazidah, A. B. Nurul Nadiah, A. R. Rumiza

Abstract:

Formulation of biological profile is one of the modern roles of forensic anthropologist. The present study was conducted to estimate height using foot and shoeprint length of Malaysian population. The present work can be very useful information in the process of identification of individual in forensic cases based on shoeprint evidence. It can help to narrow down suspects and ease the police investigation. Besides, stature is important parameters in determining the partial identify of unidentified and mutilated bodies. Thus, this study can help the problem encountered in cases of mass disaster, massacre, explosions and assault cases. This is because it is very hard to identify parts of bodies in these cases where people are dismembered and become unrecognizable. Samples in this research were collected from 200 Malaysian adults (100 males and 100 females) with age ranging from 20 to 45 years old. In this research, shoeprint length were measured based on the print of the shoes made from the flat shoes. Other information like gender, foot length and height of subject were also recorded. The data was analyzed using IBM® SPSS Statistics 19 software. Results indicated that, foot length has a strong correlation with stature than shoeprint length for both sides of the feet. However, in the unknown, where the gender was undetermined have shown a better correlation in foot length and shoeprint length parameter compared to males and females analyzed separately. In addition, prediction equations are developed to estimate the stature using linear regression analysis of foot length and shoeprint length. However, foot lengths give better prediction than shoeprint length. 

Keywords: Forensic anthropology, foot length, shoeprints, stature estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3056
1749 Noise Estimation for Speech Enhancement in Non-Stationary Environments-A New Method

Authors: Ch.V.Rama Rao, Gowthami., Harsha., Rajkumar., M.B.Rama Murthy, K.Srinivasa Rao, K.AnithaSheela

Abstract:

This paper presents a new method for estimating the nonstationary noise power spectral density given a noisy signal. The method is based on averaging the noisy speech power spectrum using time and frequency dependent smoothing factors. These factors are adjusted based on signal-presence probability in individual frequency bins. Signal presence is determined by computing the ratio of the noisy speech power spectrum to its local minimum, which is updated continuously by averaging past values of the noisy speech power spectra with a look-ahead factor. This method adapts very quickly to highly non-stationary noise environments. The proposed method achieves significant improvements over a system that uses voice activity detector (VAD) in noise estimation.

Keywords: Noise estimation, Non-stationary noise, Speechenhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2341
1748 Confidence Intervals for the Difference of Two Normal Population Variances

Authors: Suparat Niwitpong

Abstract:

Motivated by the recent work of Herbert, Hayen, Macaskill and Walter [Interval estimation for the difference of two independent variances. Communications in Statistics, Simulation and Computation, 40: 744-758, 2011.], we investigate, in this paper, new confidence intervals for the difference between two normal population variances based on the generalized confidence interval of Weerahandi [Generalized Confidence Intervals. Journal of the American Statistical Association, 88(423): 899-905, 1993.] and the closed form method of variance estimation of Zou, Huo and Taleban [Simple confidence intervals for lognormal means and their differences with environmental applications. Environmetrics 20: 172-180, 2009]. Monte Carlo simulation results indicate that our proposed confidence intervals give a better coverage probability than that of the existing confidence interval. Also two new confidence intervals perform similarly based on their coverage probabilities and their average length widths.

Keywords: Confidence interval, generalized confidence interval, the closed form method of variance estimation, variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2778
1747 The Impact of Process Parameters on the Output Characteristics of an LDMOS Device

Authors: M. A. Malakoutian, V. Fathipour, M. Fathipour, A. Mojab, M. M. Allame, M. Moradinasab

Abstract:

In this paper, we have examined the effect of process parameter variation on the electrical characteristics of an LDMOS device. The rate of change in the electrical parameters such as cut off frequency, breakdown voltage and drain saturation current as a function of the process parameters is investigated

Keywords: LDMOS, Process Parameters, characteristics, parameter variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
1746 Comparison of Methods of Estimation for Use in Goodness of Fit Tests for Binary Multilevel Models

Authors: I. V. Pinto, M. R. Sooriyarachchi

Abstract:

It can be frequently observed that the data arising in our environment have a hierarchical or a nested structure attached with the data. Multilevel modelling is a modern approach to handle this kind of data. When multilevel modelling is combined with a binary response, the estimation methods get complex in nature and the usual techniques are derived from quasi-likelihood method. The estimation methods which are compared in this study are, marginal quasi-likelihood (order 1 & order 2) (MQL1, MQL2) and penalized quasi-likelihood (order 1 & order 2) (PQL1, PQL2). A statistical model is of no use if it does not reflect the given dataset. Therefore, checking the adequacy of the fitted model through a goodness-of-fit (GOF) test is an essential stage in any modelling procedure. However, prior to usage, it is also equally important to confirm that the GOF test performs well and is suitable for the given model. This study assesses the suitability of the GOF test developed for binary response multilevel models with respect to the method used in model estimation. An extensive set of simulations was conducted using MLwiN (v 2.19) with varying number of clusters, cluster sizes and intra cluster correlations. The test maintained the desirable Type-I error for models estimated using PQL2 and it failed for almost all the combinations of MQL. Power of the test was adequate for most of the combinations in all estimation methods except MQL1. Moreover, models were fitted using the four methods to a real-life dataset and performance of the test was compared for each model.

Keywords: Goodness-of-fit test, marginal quasi-likelihood, multilevel modelling, type-I error, penalized quasi-likelihood, power, quasi-likelihood.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
1745 A Quantification Method of Attractiveness of Stations and an Estimation Method of Number of Passengers Taking into Consideration the Attractiveness of the Station

Authors: Naoya Ozaki, Takuya Watanabe, Ryosuke Matsumoto, Noriko Fukasawa

Abstract:

In the metropolitan areas in Japan, in many stations, shopping areas are set up, and escalators and elevators are installed to make the stations be barrier-free. Further, many areas around the stations are being redeveloped. Railway business operators want to know how much effect these circumstances have on attractiveness of the station or number of passengers using the station. So, we performed a questionnaire survey of the station users in the metropolitan areas for finding factors to affect the attractiveness of stations. Then, based on the analysis of the survey, we developed a method to quantitatively evaluate attractiveness of the stations. We also developed an estimation method for number of passengers based on combination of attractiveness of the station quantitatively evaluated and the residential and labor population around the station. Then, we derived precise linear regression models estimating the attractiveness of the station and number of passengers of the station.

Keywords: Attractiveness of the station, estimation method, number of passengers of the station, redevelopment around the station, renovation of the station.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 904
1744 Software Effort Estimation Using Soft Computing Techniques

Authors: Parvinder S. Sandhu, Porush Bassi, Amanpreet Singh Brar

Abstract:

Various models have been derived by studying large number of completed software projects from various organizations and applications to explore how project sizes mapped into project effort. But, still there is a need to prediction accuracy of the models. As Neuro-fuzzy based system is able to approximate the non-linear function with more precision. So, Neuro-Fuzzy system is used as a soft computing approach to generate model by formulating the relationship based on its training. In this paper, Neuro-Fuzzy technique is used for software estimation modeling of on NASA software project data and performance of the developed models are compared with the Halstead, Walston-Felix, Bailey-Basili and Doty Models mentioned in the literature.

Keywords: Effort Estimation, Neural-Fuzzy Model, Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
1743 Distortion Estimation in Digital Image Watermarking using Genetic Programming

Authors: Labiba Gilani, Asifullah Khan, Anwar M. Mirza

Abstract:

This paper introduces a technique of distortion estimation in image watermarking using Genetic Programming (GP). The distortion is estimated by considering the problem of obtaining a distorted watermarked signal from the original watermarked signal as a function regression problem. This function regression problem is solved using GP, where the original watermarked signal is considered as an independent variable. GP-based distortion estimation scheme is checked for Gaussian attack and Jpeg compression attack. We have used Gaussian attacks of different strengths by changing the standard deviation. JPEG compression attack is also varied by adding various distortions. Experimental results demonstrate that the proposed technique is able to detect the watermark even in the case of strong distortions and is more robust against attacks.

Keywords: Blind Watermarking, Genetic Programming (GP), Fitness Function, Discrete Cosine Transform (DCT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
1742 On the Parameter Optimization of Fuzzy Inference Systems

Authors: Erika Martinez Ramirez, Rene V. Mayorga

Abstract:

Nowadays, more engineering systems are using some kind of Artificial Intelligence (AI) for the development of their processes. Some well-known AI techniques include artificial neural nets, fuzzy inference systems, and neuro-fuzzy inference systems among others. Furthermore, many decision-making applications base their intelligent processes on Fuzzy Logic; due to the Fuzzy Inference Systems (FIS) capability to deal with problems that are based on user knowledge and experience. Also, knowing that users have a wide variety of distinctiveness, and generally, provide uncertain data, this information can be used and properly processed by a FIS. To properly consider uncertainty and inexact system input values, FIS normally use Membership Functions (MF) that represent a degree of user satisfaction on certain conditions and/or constraints. In order to define the parameters of the MFs, the knowledge from experts in the field is very important. This knowledge defines the MF shape to process the user inputs and through fuzzy reasoning and inference mechanisms, the FIS can provide an “appropriate" output. However an important issue immediately arises: How can it be assured that the obtained output is the optimum solution? How can it be guaranteed that each MF has an optimum shape? A viable solution to these questions is through the MFs parameter optimization. In this Paper a novel parameter optimization process is presented. The process for FIS parameter optimization consists of the five simple steps that can be easily realized off-line. Here the proposed process of FIS parameter optimization it is demonstrated by its implementation on an Intelligent Interface section dealing with the on-line customization / personalization of internet portals applied to E-commerce.

Keywords: Artificial Intelligence, Fuzzy Logic, Fuzzy InferenceSystems, Nonlinear Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
1741 Adomian’s Decomposition Method to Functionally Graded Thermoelastic Materials with Power Law

Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi

Abstract:

This paper presents an iteration method for the numerical solutions of a one-dimensional problem of generalized thermoelasticity with one relaxation time under given initial and boundary conditions. The thermoelastic material with variable properties as a power functional graded has been considered. Adomian’s decomposition techniques have been applied to the governing equations. The numerical results have been calculated by using the iterations method with a certain algorithm. The numerical results have been represented in figures, and the figures affirm that Adomian’s decomposition method is a successful method for modeling thermoelastic problems. Moreover, the empirical parameter of the functional graded, and the lattice design parameter have significant effects on the temperature increment, the strain, the stress, the displacement.

Keywords: Adomian, Decomposition Method, Generalized Thermoelasticity, algorithm, empirical parameter, lattice design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 553
1740 Boundary Layer Flow of a Casson Nanofluid past a Vertical Exponentially Stretching Cylinder in the Presence of a Transverse Magnetic Field with Internal Heat Generation/Absorption

Authors: G. Sarojamma, K. Vendabai

Abstract:

An analysis is carried out to investigate the effect of magnetic field and heat source on the steady boundary layer flow and heat transfer of a Casson nanofluid over a vertical cylinder stretching exponentially along its radial direction. Using a similarity transformation, the governing mathematical equations, with the boundary conditions are reduced to a system of coupled, non –linear ordinary differential equations. The resulting system is solved numerically by the fourth order Runge – Kutta scheme with shooting technique. The influence of various physical parameters such as Reynolds number, Prandtl number, magnetic field, Brownian motion parameter, thermophoresis parameter, Lewis number and the natural convection parameter are presented graphically and discussed for non – dimensional velocity, temperature and nanoparticle volume fraction. Numerical data for the skin – friction coefficient, local Nusselt number and the local Sherwood number have been tabulated for various parametric conditions. It is found that the local Nusselt number is a decreasing function of Brownian motion parameter Nb and the thermophoresis parameter Nt.

Keywords: Casson nanofluid, Boundary layer flow, Internal heat generation/absorption, Exponentially stretching cylinder, Heat transfer, Brownian motion, Thermophoresis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2822
1739 Networks with Unreliable Nodes and Edges: Monte Carlo Lifetime Estimation

Authors: Y. Shpungin

Abstract:

Estimating the lifetime distribution of computer networks in which nodes and links exist in time and are bound for failure is very useful in various applications. This problem is known to be NP-hard. In this paper we present efficient combinatorial approaches to Monte Carlo estimation of network lifetime distribution. We also present some simulation results.

Keywords: Combinatorial spectrum, Monte Carlo, Networklifetime, Unreliable nodes and edges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
1738 Estimating Frequency, Amplitude and Phase of Two Sinusoids with Very Close Frequencies

Authors: Jayme G. A. Barbedo, Amauri Lopes

Abstract:

This paper presents an algorithm to estimate the parameters of two closely spaced sinusoids, providing a frequency resolution that is more than 800 times greater than that obtained by using the Discrete Fourier Transform (DFT). The strategy uses a highly optimized grid search approach to accurately estimate frequency, amplitude and phase of both sinusoids, keeping at the same time the computational effort at reasonable levels. The proposed method has three main characteristics: 1) a high frequency resolution; 2) frequency, amplitude and phase are all estimated at once using one single package; 3) it does not rely on any statistical assumption or constraint. Potential applications to this strategy include the difficult task of resolving coincident partials of instruments in musical signals.

Keywords: Closely spaced sinusoids, high-resolution parameter estimation, optimized grid search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2872
1737 A Mixing Matrix Estimation Algorithm for Speech Signals under the Under-Determined Blind Source Separation Model

Authors: Jing Wu, Wei Lv, Yibing Li, Yuanfan You

Abstract:

The separation of speech signals has become a research hotspot in the field of signal processing in recent years. It has many applications and influences in teleconferencing, hearing aids, speech recognition of machines and so on. The sounds received are usually noisy. The issue of identifying the sounds of interest and obtaining clear sounds in such an environment becomes a problem worth exploring, that is, the problem of blind source separation. This paper focuses on the under-determined blind source separation (UBSS). Sparse component analysis is generally used for the problem of under-determined blind source separation. The method is mainly divided into two parts. Firstly, the clustering algorithm is used to estimate the mixing matrix according to the observed signals. Then the signal is separated based on the known mixing matrix. In this paper, the problem of mixing matrix estimation is studied. This paper proposes an improved algorithm to estimate the mixing matrix for speech signals in the UBSS model. The traditional potential algorithm is not accurate for the mixing matrix estimation, especially for low signal-to noise ratio (SNR).In response to this problem, this paper considers the idea of an improved potential function method to estimate the mixing matrix. The algorithm not only avoids the inuence of insufficient prior information in traditional clustering algorithm, but also improves the estimation accuracy of mixing matrix. This paper takes the mixing of four speech signals into two channels as an example. The results of simulations show that the approach in this paper not only improves the accuracy of estimation, but also applies to any mixing matrix.

Keywords: Clustering algorithm, potential function, speech signal, the UBSS model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 680
1736 Analysis of Sonographic Images of Breast

Authors: M. Bastanfard, S. Jafari, B.Jalaeian

Abstract:

Ultrasound images are very useful diagnostic tool to distinguish benignant from malignant masses of the breast. However, there is a considerable overlap between benignancy and malignancy in ultrasonic images which makes it difficult to interpret. In this paper, a new noise removal algorithm was used to improve the images and classification process. The masses are classified by wavelet transform's coefficients, morphological and textural features as a novel feature set for this goal. The Bayesian estimation theory is used to classify the tissues in three classes according to their features.

Keywords: Bayesian estimation theory, breast, ultrasound, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
1735 Radar Hydrology: New Z/R Relationships for Klang River Basin Malaysia based on Rainfall Classification

Authors: R. Suzana, T. Wardah, A.B. Sahol Hamid

Abstract:

The use of radar in Quantitative Precipitation Estimation (QPE) for radar-rainfall measurement is significantly beneficial. Radar has advantages in terms of high spatial and temporal condition in rainfall measurement and also forecasting. In Malaysia, radar application in QPE is still new and needs to be explored. This paper focuses on the Z/R derivation works of radarrainfall estimation based on rainfall classification. The works developed new Z/R relationships for Klang River Basin in Selangor area for three different general classes of rain events, namely low (<10mm/hr), moderate (>10mm/hr, <30mm/hr) and heavy (>30mm/hr) and also on more specific rain types during monsoon seasons. Looking at the high potential of Doppler radar in QPE, the newly formulated Z/R equations will be useful in improving the measurement of rainfall for any hydrological application, especially for flood forecasting.

Keywords: Radar, Quantitative Precipitation Estimation, Z/R development, flood forecasting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151
1734 Dispersion of a Solute in Peristaltic Motion of a Couple Stress Fluid in the Presence of Magnetic Field

Authors: Habtu Alemayehu, G. Radhakrishnamacharya

Abstract:

An analytical solution for dispersion of a solute in the peristaltic motion of a couple stress fluid in the presence of magnetic field with both homogeneous and heterogeneous chemical reactions is presented. The average effective dispersion coefficient has been found using Taylor-s limiting condition and long wavelength approximation. The effects of various relevant parameters on the average effective coefficient of dispersion have been studied. The average effective dispersion coefficient tends to decrease with magnetic field parameter, homogeneous chemical reaction rate parameter and amplitude ratio but tends to increase with heterogeneous chemical reaction rate parameter.

Keywords: Dispersion, Peristalsis, Couple stress fluid, Chemicalreaction, Magnetic field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
1733 Effects of Different Meteorological Variables on Reference Evapotranspiration Modeling: Application of Principal Component Analysis

Authors: Akinola Ikudayisi, Josiah Adeyemo

Abstract:

The correct estimation of reference evapotranspiration (ETₒ) is required for effective irrigation water resources planning and management. However, there are some variables that must be considered while estimating and modeling ETₒ. This study therefore determines the multivariate analysis of correlated variables involved in the estimation and modeling of ETₒ at Vaalharts irrigation scheme (VIS) in South Africa using Principal Component Analysis (PCA) technique. Weather and meteorological data between 1994 and 2014 were obtained both from South African Weather Service (SAWS) and Agricultural Research Council (ARC) in South Africa for this study. Average monthly data of minimum and maximum temperature (°C), rainfall (mm), relative humidity (%), and wind speed (m/s) were the inputs to the PCA-based model, while ETₒ is the output. PCA technique was adopted to extract the most important information from the dataset and also to analyze the relationship between the five variables and ETₒ. This is to determine the most significant variables affecting ETₒ estimation at VIS. From the model performances, two principal components with a variance of 82.7% were retained after the eigenvector extraction. The results of the two principal components were compared and the model output shows that minimum temperature, maximum temperature and windspeed are the most important variables in ETₒ estimation and modeling at VIS. In order words, ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity are less important and cannot be used to provide enough information about ETₒ estimation at VIS. The outcome of this study has helped to reduce input variable dimensionality from five to the three most significant variables in ETₒ modelling at VIS, South Africa.

Keywords: Irrigation, principal component analysis, reference evapotranspiration, Vaalharts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1061
1732 The Effects of Peristalsis on Dispersion of a Micropolar Fluid in the Presence of Magnetic Field

Authors: Habtu Alemayehu, G. Radhakrishnamacharya

Abstract:

The paper presents an analytical solution for dispersion of a solute in the peristaltic motion of a micropolar fluid in the presence of magnetic field and both homogeneous and heterogeneous chemical reactions. The average effective dispersion coefficient has been found using Taylor-s limiting condition under long wavelength approximation. The effects of various relevant parameters on the average coefficient of dispersion have been studied. The average effective dispersion coefficient increases with amplitude ratio, cross viscosity coefficient and heterogeneous chemical reaction rate parameter. But it decreases with magnetic field parameter and homogeneous chemical reaction rate parameter. It can be noted that the presence of peristalsis enhances dispersion of a solute.

Keywords: Peristalsis, Dispersion, Chemical reaction, Magneticfield, Micropolar fluid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
1731 Hall Effect on MHD Mixed Convection Flow of Viscous-Elastic Incompressible Fluid Past of an Infinite Porous Medium

Authors: T. K. Das, N. Senapatil, R. K. Dhal

Abstract:

An unsteady mixed free convection MHD flow of elastic-viscous incompressible fluid past an infinite vertical porous flat plate is investigated when the presence of heat Source/sink, temperature and concentration are assumed to be oscillating with time and hall effect. The governing equations are solved by complex variable technique. The expressions for the velocity field, temperature field and species concentration are demonstrated in graphs. The effects of the Prandtl number, the Grashof number, modified Grashof number, the Schimidt number, the Hall parameter, Elastic parameter & Magnetic parameter are discussed.

Keywords: MHD, Mixed convective, Elastic-viscous incompressible, rotational, heat transfer, mass transfer, suction and injection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
1730 Autonomously Determining the Parameters for SVDD with RBF Kernel from a One-Class Training Set

Authors: Andreas Theissler, Ian Dear

Abstract:

The one-class support vector machine “support vector data description” (SVDD) is an ideal approach for anomaly or outlier detection. However, for the applicability of SVDD in real-world applications, the ease of use is crucial. The results of SVDD are massively determined by the choice of the regularisation parameter C and the kernel parameter  of the widely used RBF kernel. While for two-class SVMs the parameters can be tuned using cross-validation based on the confusion matrix, for a one-class SVM this is not possible, because only true positives and false negatives can occur during training. This paper proposes an approach to find the optimal set of parameters for SVDD solely based on a training set from one class and without any user parameterisation. Results on artificial and real data sets are presented, underpinning the usefulness of the approach.

Keywords: Support vector data description, anomaly detection, one-class classification, parameter tuning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2935
1729 Mathematical Programming on Multivariate Calibration Estimation in Stratified Sampling

Authors: Dinesh Rao, M.G.M. Khan, Sabiha Khan

Abstract:

Calibration estimation is a method of adjusting the original design weights to improve the survey estimates by using auxiliary information such as the known population total (or mean) of the auxiliary variables. A calibration estimator uses calibrated weights that are determined to minimize a given distance measure to the original design weights while satisfying a set of constraints related to the auxiliary information. In this paper, we propose a new multivariate calibration estimator for the population mean in the stratified sampling design, which incorporates information available for more than one auxiliary variable. The problem of determining the optimum calibrated weights is formulated as a Mathematical Programming Problem (MPP) that is solved using the Lagrange multiplier technique.

Keywords: Calibration estimation, Stratified sampling, Multivariate auxiliary information, Mathematical programming problem, Lagrange multiplier technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
1728 Normalizing Logarithms of Realized Volatility in an ARFIMA Model

Authors: G. L. C. Yap

Abstract:

Modelling realized volatility with high-frequency returns is popular as it is an unbiased and efficient estimator of return volatility. A computationally simple model is fitting the logarithms of the realized volatilities with a fractionally integrated long-memory Gaussian process. The Gaussianity assumption simplifies the parameter estimation using the Whittle approximation. Nonetheless, this assumption may not be met in the finite samples and there may be a need to normalize the financial series. Based on the empirical indices S&P500 and DAX, this paper examines the performance of the linear volatility model pre-treated with normalization compared to its existing counterpart. The empirical results show that by including normalization as a pre-treatment procedure, the forecast performance outperforms the existing model in terms of statistical and economic evaluations.

Keywords: Long-memory, Gaussian process, Whittle estimator, normalization, volatility, value-at-risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
1727 Estimation of the Spent Fuel Pool Water Temperature at a Loss-of-Pool-Cooling Accident

Authors: Chan Hee Park, Arim Lee, Jung Min Lee, Joo Hyun Moon

Abstract:

Accident in spent fuel pool (SFP) of Fukushima Daiichi Unit 4 showed the importance of continuous monitoring of the key environmental parameters such as water temperature, water level, and radiation level in the SFP at accident conditions. Because the SFP water temperature is one of the key parameters indicating SFP conditions, its behavior at accident conditions shall be understood to prepare appropriate measures. This study estimated temporal change in the SFP water temperature at Kori Unit 1 with 587 MWe for 1 hour after initiation of a loss-of-pool-cooling accident. For the estimation, ANSYS CFX 13.0 code was used. The estimation showed that the increasing rate of the water temperature was 3.90C per hour and the SFP water temperature could reach 1000C in 25.6 hours after the initiation of loss-of-pool-cooling accident.

Keywords: Spent fuel pool, water temperature, Kori Unit 1, a loss-of-pool-cooling accident.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2689
1726 A Method for Identifying Physical Parameters with Linear Fractional Transformation

Authors: Ryosuke Ito, Goro Obinata, Chikara Nagai, Youngwoo Kim

Abstract:

This paper proposes a new parameter identification method based on Linear Fractional Transformation (LFT). It is assumed that the target linear system includes unknown parameters. The parameter deviations are separated from a nominal system via LFT, and identified by organizing I/O signals around the separated deviations of the real system. The purpose of this paper is to apply LFT to simultaneously identify the parameter deviations in systems with fewer outputs than unknown parameters. As a fundamental example, this method is implemented to one degree of freedom vibratory system. Via LFT, all physical parameters were simultaneously identified in this system. Then, numerical simulations were conducted for this system to verify the results. This study shows that all the physical parameters of a system with fewer outputs than unknown parameters can be effectively identified simultaneously using LFT.

Keywords: Identification, Linear Fractional Transformation, Right inverse system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1317
1725 An Energy Detection-Based Algorithm for Cooperative Spectrum Sensing in Rayleigh Fading Channel

Authors: H. Bakhshi, E. Khayyamian

Abstract:

Cognitive radios have been recognized as one of the most promising technologies dealing with the scarcity of the radio spectrum. In cognitive radio systems, secondary users are allowed to utilize the frequency bands of primary users when the bands are idle. Hence, how to accurately detect the idle frequency bands has attracted many researchers’ interest. Detection performance is sensitive toward noise power and gain fluctuation. Since signal to noise ratio (SNR) between primary user and secondary users are not the same and change over the time, SNR and noise power estimation is essential. In this paper, we present a cooperative spectrum sensing algorithm using SNR estimation to improve detection performance in the real situation.

Keywords: Cognitive radio, cooperative spectrum sensing, energy detection, SNR estimation, spectrum sensing, Rayleigh fading channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
1724 Fuzzy Estimation of Parameters in Statistical Models

Authors: A. Falsafain, S. M. Taheri, M. Mashinchi

Abstract:

Using a set of confidence intervals, we develop a common approach, to construct a fuzzy set as an estimator for unknown parameters in statistical models. We investigate a method to derive the explicit and unique membership function of such fuzzy estimators. The proposed method has been used to derive the fuzzy estimators of the parameters of a Normal distribution and some functions of parameters of two Normal distributions, as well as the parameters of the Exponential and Poisson distributions.

Keywords: Confidence interval. Fuzzy number. Fuzzy estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2272
1723 Forecast of the Small Wind Turbines Sales with Replacement Purchases and with or without Account of Price Changes

Authors: V. Churkin, M. Lopatin

Abstract:

The purpose of the paper is to estimate the US small wind turbines market potential and forecast the small wind turbines sales in the US. The forecasting method is based on the application of the Bass model and the generalized Bass model of innovations diffusion under replacement purchases. In the work an exponential distribution is used for modeling of replacement purchases. Only one parameter of such distribution is determined by average lifetime of small wind turbines. The identification of the model parameters is based on nonlinear regression analysis on the basis of the annual sales statistics which has been published by the American Wind Energy Association (AWEA) since 2001 up to 2012. The estimation of the US average market potential of small wind turbines (for adoption purchases) without account of price changes is 57080 (confidence interval from 49294 to 64866 at P = 0.95) under average lifetime of wind turbines 15 years, and 62402 (confidence interval from 54154 to 70648 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 90,7%, while in the second - 91,8%. The effect of the wind turbines price changes on their sales was estimated using generalized Bass model. This required a price forecast. To do this, the polynomial regression function, which is based on the Berkeley Lab statistics, was used. The estimation of the US average market potential of small wind turbines (for adoption purchases) in that case is 42542 (confidence interval from 32863 to 52221 at P = 0.95) under average lifetime of wind turbines 15 years, and 47426 (confidence interval from 36092 to 58760 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 95,3%, while in the second – 95,3%.

Keywords: Bass model, generalized Bass model, replacement purchases, sales forecasting of innovations, statistics of sales of small wind turbines in the United States.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
1722 Mathematical Modeling of Human Cardiovascular System: A Lumped Parameter Approach and Simulation

Authors: Ketan Naik, P. H. Bhathawala

Abstract:

The purpose of this work is to develop a mathematical model of Human Cardiovascular System using lumped parameter method. The model is divided in three parts: Systemic Circulation, Pulmonary Circulation and the Heart. The established mathematical model has been simulated by MATLAB software. The innovation of this study is in describing the system based on the vessel diameters and simulating mathematical equations with active electrical elements. Terminology of human physical body and required physical data like vessel’s radius, thickness etc., which are required to calculate circuit parameters like resistance, inductance and capacitance, are proceeds from well-known medical books. The developed model is useful to understand the anatomic of human cardiovascular system and related syndromes. The model is deal with vessel’s pressure and blood flow at certain time.

Keywords: Cardiovascular system, lumped parameter method, mathematical modeling, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3361
1721 Effect of Injection Moulding Process Parameter on Tensile Strength Using Taguchi Method

Authors: Gurjeet Singh, M. K. Pradhan, Ajay Verma

Abstract:

The plastic industry plays very important role in the economy of any country. It is generally among the leading share of the economy of the country. Since metals and their alloys are very rarely available on the earth. Therefore, to produce plastic products and components, which finds application in many industrial as well as household consumer products is beneficial. Since 50% plastic products are manufactured by injection moulding process. For production of better quality product, we have to control quality characteristics and performance of the product. The process parameters plays a significant role in production of plastic, hence the control of process parameter is essential. In this paper the effect of the parameters selection on injection moulding process has been described. It is to define suitable parameters in producing plastic product. Selecting the process parameter by trial and error is neither desirable nor acceptable, as it is often tends to increase the cost and time. Hence, optimization of processing parameter of injection moulding process is essential. The experiments were designed with Taguchi’s orthogonal array to achieve the result with least number of experiments. Plastic material polypropylene is studied. Tensile strength test of material is done on universal testing machine, which is produced by injection moulding machine. By using Taguchi technique with the help of MiniTab-14 software the best value of injection pressure, melt temperature, packing pressure and packing time is obtained. We found that process parameter packing pressure contribute more in production of good tensile plastic product.

Keywords: Injection moulding, tensile strength, Taguchi method, poly-propylene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3764