Search results for: Emissions Trading
146 Assessing Traffic Calming Measures for Safe and Accessible Emergency Routes in Norrkoping City in Sweden
Authors: Ghazwan Al-Haji
Abstract:
Most accidents occur in urban areas, and the most related casualties are vulnerable road users (pedestrians and cyclists). The traffic calming measures (TCMs) are widely used and considered to be successful in reducing speed and traffic volume. However, TCMs create unwanted effects include: noise, emissions, energy consumption, vehicle delays and emergency response time (ERT). Different vertical and horizontal TCMs have been already applied nationally (Sweden) and internationally with different impacts. It is a big challenge among traffic engineers, planners, and policy-makers to choose and priorities the best TCMs to be implemented. This study will assess the existing guidelines for TCMs in relation to safety and ERT with focus on data from Norrkoping city in Sweden. The expected results will save lives, time, and money on particularly Swedish Roads. The study will also review newly technologies and how they can improve safety and reduce ERT.
Keywords: Traffic safety, traffic calming measures, speeding, emergency response time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880145 Biodiesel as an Alternative Fuel for Diesel Engines
Authors: F. Halek, A. Kavousi, M. Banifatemi
Abstract:
There is growing interest in biodiesel (fatty acid methyl ester or FAME) because of the similarity in its properties when compared to those of diesel fuels. Diesel engines operated on biodiesel have lower emissions of carbon monoxide, unburned hydrocarbons, particulate matter, and air toxics than when operated on petroleum-based diesel fuel. Production of fatty acid methyl ester (FAME) from rapeseed (nonedible oil) fatty acid distillate having high free fatty acids (FFA) was investigated in this work. Conditions for esterification process of rapeseed oil were 1.8 % H2SO4 as catalyst, MeOH/oil of molar ratio 2 : 0.1 and reaction temperature 65 °C, for a period of 3h. The yield of methyl ester was > 90 % in 1 h. The amount of FFA was reduced from 93 wt % to less than 2 wt % at the end of the esterification process. The FAME was pureed by neutralization with 1 M sodium hydroxide in water solution at a reaction temperature of 62 °C. The final FAME product met with the biodiesel quality standard, and ASTM D 6751.Keywords: Alternative Fuels, Biodiesel, Fatty Acid, MethylEster, Seed Oil, Transesterification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108144 Intellectual Property Rights and Health Rights: A Feasible Reform Proposal to Facilitate Access to Drugs in Developing Countries
Authors: M. G. Cattaneo
Abstract:
The non-effectiveness of certain codified human rights is particularly apparent with reference to the lack of access to essential drugs in developing countries, which represents a breach of the human right to receive adequate health assistance. This paper underlines the conflict and the legal contradictions between human rights, namely health rights, international Intellectual Property Rights, in particular patent law, as well as international trade law. The paper discusses the crucial links between R&D costs for innovation, patents and new medical drugs, with the goal of reformulating the hierarchies of priorities and of interests at stake in the international intellectual property (IP) law system. Different from what happens today, International patent law should be a legal instrument apt at rebalancing an axiological asymmetry between the (conflicting) needs at stake The core argument in the paper is the proposal of an alternative pathway, namely a feasible proposal for a patent law reform. IP laws tend to balance the benefits deriving from innovation with the costs of the provided monopoly, but since developing countries and industrialized countries are in completely different political and economic situations, it is necessary to (re)modulate such exchange according to the different needs. Based on this critical analysis, the paper puts forward a proposal, called Trading Time for Space (TTS), whereby a longer time for patent exclusive life in western countries (Time) is offered to the patent holder company, in exchange for the latter selling the medical drug at cost price in developing countries (Space). Accordingly, pharmaceutical companies should sell drugs in developing countries at the cost price, or alternatively grant a free license for the sale in such countries, without any royalties or fees. However, such social service shall be duly compensated. Therefore, the consideration for such a service shall be an extension of the temporal duration of the patent’s exclusive in the country of origin that will compensate the reduced profits caused by the supply at the price cost in developing countries.
Keywords: Global health, global justice, patent law reform, access to drugs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1191143 Strategies and Compromises: Towards an Integrated Energy and Climate Policy for Egypt
Authors: S.T. El Sheltawy, A. A. Refaat
Abstract:
Until recently, energy security and climate change were considered separate issues to be dealt with by policymakers. The two issues are now converging, challenging the security and climate communities to develop a better understanding of how to deal with both issues simultaneously. Although Egypt is not a major contributor to the world's total GHG emissions, it is particularly vulnerable to the potential effects of global climate change such as rising sea levels and changed patterns of rainfall in the Nile Basin. Climate change is a major threat to sustainable growth and development in Egypt, and the achievement of the Millennium Development Goals. Egypt-s capacity to respond to the challenges of climate instability will be expanded by improving overall resilience, integrating climate change goals into sustainable development strategies, increasing the use of modern energy systems with reduced carbon intensity, and strengthening international initiatives. This study seeks to establish a framework for considering the complex and evolving links between energy security and climate change, applicable to Egypt.Keywords: climate change, climate policy, cnergy policy, energy security, sustainable development
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788142 Chilean Business Orientalism: The Role of Non-State Actors in the Frame of Asymmetric Bilateral Relations
Authors: Pablo Ampuero, Claudia Labarca
Abstract:
The current research paper assesses how the narrative of Chilean businesspeople about China shapes a new Orientalism Analyses on the role of non-state actors in foreign policy that have hitherto theorized about Orientalism as a narrative of hegemonic power. Hence, it has been instrumental to the efforts of imperialist powers to justify their mission civilisatrice. However, such conceptualization can seldom explain new complexities of international interactions at the height of globalization. Hence, we assessed the case of Chile, a small Latin American country, and its relationship with China, its largest trading partner. Through a discourse analysis of interviews with Chilean businesspeople engaged in the Chinese market, we could determine that Chile is building an Orientalist image of China. This new business Orientalism reinforces a relation of alterity based on commercial opportunities, traditional values, and natural dispositions. Hence, the perception of the Chinese Other amongst Chilean business people frames a new set of representations as part of the essentially commercial nature of current bilateral relations. It differs from previous frames, such as the racial bias frame of the early 20th century, or the anti-communist frame in reaction to Mao’s leadership. As in every narrative of alterity, there is not only a construction of the Other but also a definition of the Self. Consequently, this analysis constitutes a relevant case of the role of non-state actors in asymmetrical bilateral relations, where the non-state actors of the minor power build and act upon an Orientalist frame, which is not representative of its national status in the relation. This study emerges as a contribution on the relation amongst non-state actors in asymmetrical relations, where the smaller power’s business class acts on a negative prejudice of its interactions with its counterpart. The research builds upon the constructivist approach to international relations, linking the idea of Nation Branding with Orientalism in the case of Chile-China relations.
Keywords: New business Orientalism, small power, framing, Chile-China relations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014141 Risk Assessment Results in Biogas Production from Agriculture Biomass
Authors: Sandija Zeverte-Rivza, Irina Pilvere, Baiba Rivza
Abstract:
The use of renewable energy sources incl. biogas has become topical in accordance with the increasing demand for energy, decrease of fossil energy resources and the efforts to reduce greenhouse gas emissions as well as to increase energy independence from the territories where fossil energy resources are available.
As the technologies of biogas production from agricultural biomass develop, risk assessment and risk management become necessary for farms producing such a renewable energy. The need for risk assessments has become particularly topical when discussions on changing the biogas policy in the EU take place, which may influence the development of the sector in the future, as well as the operation of existing biogas facilities and their income level.
The current article describes results of the risk assessment for farms producing biomass from agriculture biomass in Latvia, the risk assessment system included 24 risks, that affect the whole biogas production process and the obtained results showed the high significance of political and production risks.
Keywords: Biogas production, risks, risk assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3265140 Analysis of Heat Exchanger Network of Distillation Unit of Shiraz Oil Refinery
Authors: J. Khorshidi, E. Zare, A.R. Khademi
Abstract:
The reduction of energy consumption through improvements in energy efficiency has become an important goal for all industries, in order to improve the efficiency of the economy, and to reduce the emissions of Co2 caused by power generation. The objective of this paper is to investigate opportunities to increase process energy efficiency at the distillation unit of Shiraz oil refinery in south of Iran. The main aim of the project is to locate energy savings by use of pinch technology and to assess them. At first all the required data of hot and cold streams in preheating section of distillation unit has been extracted from the available flow sheets and then pinch analysis has been conducted. The present case study is a threshold one which does not need any utilities. After running range, targeting several heat exchanger networks were designed with respect to operating conditions and different ΔTmin. The optimal value of ΔTmin was calculated to be 22.3 °C. Based on this optimal value, there will be 5% reduction in annual total cost of heat exchanger network.
Keywords: Pinch technology, heat exchanger network, operating cost.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682139 Numerical Predictionon the Influence of Mixer on the Performance of Urea-SCR System
Authors: Kyoungwoo Park, Chol-Ho Hong, Sedoo Oh, Seongjoon Moon
Abstract:
Diesel vehicle should be equipped with emission after-treatment devices as NOx reduction catalyst and particulate filtersin order to meet more stringer diesel emission standard. Urea-SCR is being developed as the most efficient method of reducing NOx emissions in the after-treatment devices of diesel engines, and recent studies have begun to mount the Urea-SCR device for diesel passenger cars and light duty vehicles. In the present study, the effects of the mixer on the efficiency of urea-SCR System (i.e., NH3uni- formityindex (NH3 UI) is investigated by predicting the transport phenomena in the urea-SCR system. The three dimensional Eulerian-Lagrangian CFD simulationfor internal flow and spray characteristics in front of SCR is carried out by using STAR-CCM+ 7.06 code. In addition, the paper proposes a method to minimize the wall-wetting around the urea injector in order to prevent injector blocks caused by solid urea loading.
Keywords: Computational fluid dynamics, Multi-phase flow, NH3 uniformity index, Urea-SCR system, Urea-water-solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3640138 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High-Speed Streams
Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous
Abstract:
Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of the solar wind using mathematical models, MHD models and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulated the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar Cycles (SC) 21, 22, 23, and most of 24.
Keywords: Artificial Neural Network, ANN, Coronal Hole Area Feed-Forward neural network models, solar High-Speed Streams, HSSs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 130137 The Linkage of Urban and Energy Planning for Sustainable Cities: The Case of Denmark and Germany
Authors: Jens-Phillip Petersen
Abstract:
The reduction of GHG emissions in buildings is a focus area of national energy policies in Europe, because buildings are responsible for a major share of the final energy consumption. It is at local scale where policies to increase the share of renewable energies and energy efficiency measures get implemented. Municipalities, as local authorities and responsible entity for land-use planning, have a direct influence on urban patterns and energy use, which makes them key actors in the transition towards sustainable cities. Hence, synchronizing urban planning with energy planning offers great potential to increase society’s energy-efficiency; this has a high significance to reach GHG-reduction targets. In this paper, the actual linkage of urban planning and energy planning in Denmark and Germany was assessed; substantive barriers preventing their integration and driving factors that lead to successful transitions towards a holistic urban energy planning procedures were identified.Keywords: Energy planning, urban planning, renewable energies, sustainable cities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698136 Traffic Congestion on Highways in Nigeria Causes, Effects and Remedies
Authors: Popoola M. O., Abiola S. O., Adeniji W. A.
Abstract:
This study investigates the causes, effects and remedies of traffic congestion which has become a common sight in most highways in Nigeria; Mowe/Ibafo section of the Lagos-Ibadan expressway was used as the case-study. 300 Structured questionnaires were distributed among the road users comprising drivers (Private and Commercial), passengers, pedestrians, traffic officers, church congregations, community leaders, Mowe/Ibafo residents, and other users of the road.
300 questionnaires were given out; the average of 276 well completed returned questionnaires formed the basis of the study and was analyzed by the Relative Importance Index (R.I.I.). The result from the study showed the causes of traffic congestion as inadequate road capacity, poor road pavement, poor traffic management, poor drainage system poor driving habit, poor parking habit, poor design junctions/round-about, presence of heavy trucks, lack of pedestrian facilities, lack of road furniture, lack of parking facilities and others. Effects of road congestion from the study are waste of time, delay movement, stress, accident, inability to forecast travel of time, fuel consumption, road rage, relocation, night driving, and environmental pollution. To drastically reduce these negative effects; there must be provision for adequate parking space, construction of proper drainage, enlarging the width of the road, rehabilitate all roads needing attention, public enlightenment, traffic education, hack down all illegal buildings/shops built on the right of way (ROW), create a separate/alternative root for trucks and heavy vehicles, provision of pedestrian facilities, In-depth training of transport/traffic personnel, ban all form of road trading/hawking, and reduce the number of bus-stop where necessary. It is hoped that this study will become the foundation of further research in the area of improve road traffic management on our major highway.
Keywords: Highways, Congestion, Traffic, Traffic congestion, traffic management, Nigeria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12425135 Improving the Performance of Gas Turbine Power Plant by Modified Axial Turbine
Authors: Hakim T. Kadhim, Faris A. Jabbar, Aldo Rona, Audrius Bagdanaviciu
Abstract:
Computer-based optimization techniques can be employed to improve the efficiency of energy conversions processes, including reducing the aerodynamic loss in a thermal power plant turbomachine. In this paper, towards mitigating secondary flow losses, a design optimization workflow is implemented for the casing geometry of a 1.5 stage axial flow turbine that improves the turbine isentropic efficiency. The improved turbine is used in an open thermodynamic gas cycle with regeneration and cogeneration. Performance estimates are obtained by the commercial software Cycle – Tempo. Design and off design conditions are considered as well as variations in inlet air temperature. Reductions in both the natural gas specific fuel consumption and in CO2 emissions are predicted by using the gas turbine cycle fitted with the new casing design. These gains are attractive towards enhancing the competitiveness and reducing the environmental impact of thermal power plant.
Keywords: Axial flow turbine, computational fluid dynamics, gas turbine power plant, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1072134 Effect of Evaporator Temperature on the Performance of Water Desalination/Refrigeration Adsorption System Using AQSOA-ZO2
Authors: Peter G. Youssef, Saad M. Mahmoud, Raya K. Al-Dadah
Abstract:
Many water desalination technologies have been developed but in general they are energy intensive and have high cost and adverse environmental impact. Recently, adsorption technology for water desalination has been investigated showing the potential of using low temperature waste heat (50-85oC) thus reducing energy consumption and CO2 emissions. This work mathematically compares the performance of an adsorption cycle that produces two useful effects namely, fresh water and cooling using two different adsorbents, silica-gel and an advanced zeolite material AQSOA-ZO2, produced by Mitsubishi plastics. It was found that at low chilled water temperatures, typically below 20oC, the AQSOA-Z02 is more efficient than silica-gel as the cycle can produce 5.8 m3 of fresh water per day and 50.1 Rton of cooling per tonne of AQSOA-ZO2. Above 20oC silica-gel is still better as the cycle production reaches 8.4 m3 per day and 62.4 Rton per tonne of silica-gel. These results show the potential of using the AQSOA-Z02 at low chilled water temperature for water desalination and cooling applications.Keywords: Adsorption, desalination, refrigeration, seawater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481133 Creeping Insulation - Hong Kong Green Wall
Authors: X. L. Zhang, K. L. Li, R. M. Skitmore
Abstract:
Hong Kong is a densely populated city suffering badly from the urban heat island effect. Green wall offers a means of ameliorating the situation but there are doubts over its suitability in Hong Kong’s unique environment. In this paper, we look at the potential for green walls in Hong Kong first by summarizing some of the Chinese green walling systems and associated vegetation in use, then by an introduction to three existing green walls in Hong Kong, and finally through a small experiment aimed at identifying the likely main effects of green walled housing.
The results indicate that green walling in Hong Kong is likely to provide enhanced internal house environment in terms of warm weather temperature reduction, stabilization and damping, with direct energy savings in air-conditioning and indirect district benefits of reduced heat island effect and carbon emissions. The green walling insulation properties also suggest the possibility of warmer homes in winter and/or energy savings in mechanical heating provision.
Keywords: Case studies, experiment, green wall, Hong Kong.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3240132 Various Information Obtained from Acoustic Emissions Owing to Discharges in XLPE Cable
Authors: Tatsuya Sakoda, Yuta Nakamura, Junichiro Kitajima, Masaki Sugiura, Satoshi Kurihara, Kenji Baba, Koichiro Kaneko, Takayoshi Yarimitsu
Abstract:
An acoustic emission (AE) technique is useful for detection of partial discharges (PDs) at a joint and a terminal section of a cross-linked polyethylene (XLPE) cable. For AE technique, it is not difficult to detect a PD using AE sensors. However, it is difficult to grasp whether the detected AE signal is owing to a single discharge or not. Additionally, when an AE technique is applied at a terminal section of a XLPE cable in salt pollution district, for example, there is possibility of detection of AE signals owing to creeping discharges on the surface of electric power apparatus. In this study, we evaluated AE signals in order to grasp what kind of information we can get from detected AE signals. The results showed that envelop detection of AE signal and a period which some AE signals were continuously detected were good indexes for estimating state-of-discharge.Keywords: acoustic emission, creeping discharge, partial discharge, XLPE cable
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644131 Effect of Fuel Lean Reburning Process on NOx Reduction and CO Emission
Authors: Changyeop Lee, Sewon Kim
Abstract:
Reburning is a useful technology in reducing nitric oxide through injection of a secondary hydrocarbon fuel. In this paper, an experimental study has been conducted to evaluate the effect of fuel lean reburning on NOx/CO reduction in LNG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LNG gas as the reburn fuel as well as the main fuel. The effects of reburn fuel fraction and injection manner of the reburn fuel were studied when the fuel lean reburning system was applied. The paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. At steady state, temperature distribution and emission formation in the furnace have been measured and compared. This paper makes clear that in order to decrease both NOx and CO concentrations in the exhaust when the pulsated fuel lean reburning system was adapted, it is important that the control of some factors such as frequency and duty ratio. Also it shows the fuel lean reburning is also effective method to reduce NOx as much as reburning.
Keywords: Fuel lean reburn, NOx, CO, LNG flame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201130 Energy Communities from Municipality Level to Province Level: A Comparison Using Autoregressive Integrated Moving Average Model
Authors: Amro Issam Hamed Attia Ramadan, Marco Zappatore, Pasquale Balena, Antonella Longo
Abstract:
Considering the energy crisis that is hitting Europe, it becomes increasingly necessary to change energy policies to depend less on fossil fuels and replace them with energy from renewable sources. This has triggered the urge to use clean energy, not only to satisfy energy needs and fulfill the required consumption, but also to decrease the danger of climatic changes due to harmful emissions. Many countries have already started creating energy communities based on renewable energy sources. The first step to understanding energy needs in any place is to perfectly know the consumption. In this work, we aim to estimate electricity consumption for a municipality that makes up part of a rural area located in southern Italy using forecast models that allow for the estimation of electricity consumption for the next 10 years, and we then apply the same model to the province where the municipality is located and estimate the future consumption for the same period to examine whether it is possible to start from the municipality level to reach the province level when creating energy communities.
Keywords: ARIMA, electricity consumption, forecasting models, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 282129 Development of NOx Emission Model for a Tangentially Fired Acid Incinerator
Authors: Elangeshwaran Pathmanathan, Rosdiazli Ibrahim, Vijanth Sagayan Asirvadam
Abstract:
This paper aims to develop a NOx emission model of an acid gas incinerator using Nelder-Mead least squares support vector regression (LS-SVR). Malaysia DOE is actively imposing the Clean Air Regulation to mandate the installation of analytical instrumentation known as Continuous Emission Monitoring System (CEMS) to report emission level online to DOE . As a hardware based analyzer, CEMS is expensive, maintenance intensive and often unreliable. Therefore, software predictive technique is often preferred and considered as a feasible alternative to replace the CEMS for regulatory compliance. The LS-SVR model is built based on the emissions from an acid gas incinerator that operates in a LNG Complex. Simulated Annealing (SA) is first used to determine the initial hyperparameters which are then further optimized based on the performance of the model using Nelder-Mead simplex algorithm. The LS-SVR model is shown to outperform a benchmark model based on backpropagation neural networks (BPNN) in both training and testing data.Keywords: artificial neural networks, industrial pollution, predictive algorithms, support vector machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975128 Performance, Emission and Combustion Characteristics of Direct Injection Diesel Engine Running on Rice Bran Oil / Diesel Fuel Blend
Authors: B.K.Venkanna, C. Venkataramana Reddy, Swati B Wadawadagi
Abstract:
Triglycerides and their derivatives are considered as viable alternatives for diesel fuels. Rice bran oil is used as diesel fuel. Highly viscous rice bran oil can be reduced by blending it with diesel fuel. The present research is aimed to investigate experimentally the performance, exhaust emission and combustion characteristics of a direct injection (DI) diesel engine, typically used in agricultural sector, over the entire load range when fuelled with rice bran oil and diesel fuel blends, RB10 (10% rice bran oil + 90% diesel fuel) to RB50. The performance, emission and combustion parameters of RB20 were found to be very close to neat diesel fuel (ND). The injector opening pressure (IOP) undoubtedly is of prime importance in diesel engine operation. Performance, emission and combustion characteristics with RB30 at enhanced IOPs are better than ND. Improved premixed heat release rate were noticed with RB30 when the IOP is enhanced.
Keywords: Rice bran oil, injector opening pressure, performance, emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2372127 Residual Modulus of Elasticity of Self-Compacting Concrete Incorporated Unprocessed Waste Fly Ash after Expose to the Elevated Temperature
Authors: Mohammed Abed, Rita Nemes, Salem Nehme
Abstract:
The present study experimentally investigated the impact of incorporating unprocessed waste fly ash (UWFA) on the residual mechanical properties of self-compacting concrete (SCC) after exposure to elevated temperature. Three mixtures of SCC have been produced by replacing the cement mass by 0%, 15% and 30% of UWFA. Generally, the fire resistance of SCC has been enhanced by replacing the cement up to 15% of UWFA, especially in case of residual modulus of elasticity which considers more sensitive than other mechanical properties at elevated temperature. However, a strong linear relationship has been observed between the residual flexural strength and modulus of elasticity, where both of them affected significantly by the cracks appearance and propagation as a result of elevated temperature. Sustainable products could be produced by incorporating unprocessed waste powder materials in the production of concrete, where the waste materials, CO2 emissions, and the energy needed for processing are reduced.
Keywords: Self-compacting high-performance concrete, unprocessed waste fly ash, fire resistance, residual modulus of elasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708126 Combustion, Emission and Performance Characteristics of a Light Duty Diesel Engine Fuelled with Methanol Diesel Blends
Authors: Mishra Chinmaya, Pal Anuj, Tomar Vishvendra Singh, Kumar Naveen
Abstract:
Combustion, emission and performance characterization of a single cylinder diesel engine using methanol diesel blends was carried out. The blends were 5% (v/v) methanol in diesel (MD05) and 10% (v/v) methanol in diesel (MD10). The problem of solubility of methanol and diesel was addressed by an agitator placed inside the fuel tank to prevent phase separation. The results indicated that total combustion duration was reduced by15.8% for MD05 and 31.27% for MD10compared to the baseline data. Ignition delay was increased with increasing methanol volume fraction in the test fuel. Total cyclic heat release was reduced by 1.5% for MD05 and 6.7% for MD10 as compared to diesel baseline. Emissions of carbon monoxide, hydrocarbons along with smoke were reduced and that of nitrogen oxides were increased with rising methanol contents in the test fuel. Full load brake thermal efficiency was marginally reduced with increased methanol composition in the blend.Keywords: Combustion, diesel engine, emission, methanol, performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3260125 An Experimental Comparative Study of SI Engine Performance and Emission Characteristics Fuelled with Various Gasoline-Alcohol Blends
Authors: M. Mourad, K. Abdelgawwad
Abstract:
This experimental investigation aimed to determine the influence of using different types of alcohol and gasoline blends such as ethanol - butanol - propanol on the performance of spark ignition engine. The experimental work studied the effect of various fuel blends such as ethanol – butanol/gasoline and propanol/gasoline with two rates of 15% and 20%, at different operating conditions (engine speed and loads), on engine performance emission characteristics. Laboratory experiments are carried out on a four-cylinder spark ignition (SI) engine. In this practical study, all considerations and precautions are taken into account to ensure the quality and accuracy of practical experiments and different measurements. The results show that the performance of the engine improved significantly in the case of ethanol/butanol-gasoline blends. The results also indicated that the engine emitted pollutants such as CO, hydrocarbon (HC) for alcohol fuel blends compared to base gasoline NOx emission increased for different fuel blends either ethanol/butanol-gasoline or propanol-gasoline fuel blend.
Keywords: Gasoline engine performance, emissions, alcohol blends.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830124 An Innovation and Development System for a New Hybrid Composite Technology in Aerospace Industry
Authors: M. Fette, J. P. Wulfsberg, A. Herrmann, R.-H. Ladstaetter
Abstract:
Lightweight design represents an important key to successful implementation of energy-saving, fuel-efficient and environmentally friendly means of transport in the aerospace and automotive industry. In this context the use of carbon fibre reinforced plastics (CFRP) which are distinguished by their outstanding mechanical properties at relatively low weight, promise significant improvements. Due to the reduction of the total mass, with the resulting lowered fuel or energy consumption and CO2 emissions during the operational phase, commercial aircraft will increasingly be made of CFRP. An auspicious technology for the efficient and economic production of high performance thermoset composites and hybrid structures for future lightweight applications is the combination of carbon fibre sheet moulding compound, tailored continuous carbon fibre reinforcements and metallic components in a one-shot pressing and curing process. This paper deals with a hybrid composite technology for aerospace industries, which was developed with the help of a special innovation and development system.
Keywords: Composite, development, hybrid, innovation, system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599123 Impact of the Transport on the Urban Heat Island
Authors: L. Haddad, Z. Aouachria
Abstract:
The development of transport systems has negative impacts on the environment although it has beneficial effects on society. The car policy caused many problems such as: - the spectacular growth of fuel consumption hence the very vast increase in urban pollution, traffic congestion in certain places and at certain times, the increase in the number of accidents. The exhaust emissions from cars and weather conditions are the main factors that determine the level of pollution in urban atmosphere. These conditions lead to the phenomenon of heat transfer and radiation occurring between the air and the soil surface of any town. These exchanges give rise, in urban areas, to the effects of heat islands that correspond to the appearance of excess air temperature between the city and its surrounding space. In this object, we perform a numerical simulation of the plume generated by the cars exhaust gases and show that these gases form a screening effect above the urban city which cause the heat island in the presence of wind flow. This study allows us: 1. To understand the different mechanisms of interactions between these phenomena.2. To consider appropriate technical solutions to mitigate the effects of the heat island.Keywords: Atmospheric pollution, impact on the health, urban transport, heat island.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3001122 A Review of Current Trends in Thin Film Solar Cell Technologies
Authors: Adekanmi M. Adeyinka, Onyedika V. Mbelu, Yaqub B. Adediji, Daniel I. Yahya
Abstract:
Growing energy demand and the world's dependence on fossil fuel-based energy systems causing greenhouse gas emissions and climate change have intensified the need for utilizing renewable energy sources. Solar energy can be converted directly into electricity via photovoltaic solar cells. Thin-film solar cells are preferred due to their cost effectiveness, less material consumption, flexibility, and rising trend in efficiency. In this paper, Gallium arsenide (GaAs), Amorphous silicon (a-Si), Copper Indium Gallium Selenide (CIGS), and Cadmium Telluride (CdTe) thin film solar cells are reviewed. The evolution, structures, fabrication methods, stability and degradation methods, and trend in the efficiency of the thin-film solar cells over the years are discussed in detail. Also, a comparison of the thin-film solar cells reviewed with crystalline silicon in terms of physical properties and performance is made.
Keywords: Climate change, conversion efficiency, solar energy, thin-film solar cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198121 Design of Wireless Readout System for Resonant Gas Sensors
Authors: S. Mohamed Rabeek, Mi Kyoung Park, M. Annamalai Arasu
Abstract:
This paper presents a design of a wireless read out system for tracking the frequency shift of the polymer coated piezoelectric micro electromechanical resonator due to gas absorption. The measure of this frequency shift indicates the percentage of a particular gas the sensor is exposed to. It is measured using an oscillator and an FPGA based frequency counter by employing the resonator as a frequency determining element in the oscillator. This system consists of a Gas Sensing Wireless Readout (GSWR) and an USB Wireless Transceiver (UWT). GSWR consists of an oscillator based on a trans-impedance sustaining amplifier, an FPGA based frequency readout, a sub 1GHz wireless transceiver and a micro controller. UWT can be plugged into the computer via USB port and function as a wireless module to transfer gas sensor data from GSWR to the computer through its USB port. GUI program running on the computer periodically polls for sensor data through UWT - GSWR wireless link, the response from GSWR is logged in a file for post processing as well as displayed on screen.
Keywords: Gas sensor, GSWR, micro-mechanical system, UWT, volatile emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496120 Electricity Power Planning: the Role of Wind Energy
Authors: Paula Ferreira, Madalena Araújo, M.E.J. O’Kelly
Abstract:
Combining energy efficiency with renewable energy sources constitutes a key strategy for a sustainable future. The wind power sector stands out as a fundamental element for the achievement of the European renewable objectives and Portugal is no exception to the increase of the wind energy for the electricity generation. This work proposes an optimization model for the long range electricity power planning in a system similar to the Portuguese one, where the expected impacts of the increasing installed wind power on the operating performance of thermal power plants are taken into account. The main results indicate that the increasing penetration of wind power in the electricity system will have significant effects on the combined cycle gas power plants operation and on the theoretically expected cost reduction and environmental gains. This research demonstrated the need to address the impact that energy sources with variable output may have, not only on the short-term operational planning, but especially on the medium to long range planning activities, in order to meet the strategic objectives for the energy sector.Keywords: Wind power, electricity planning model, cost, emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608119 Evaluation of NH3-Slip from Diesel Vehicles Equipped with Selective Catalytic Reduction Systems by Neural Networks Approach
Authors: Mona Lisa M. Oliveira, Nara A. Policarpo, Ana Luiza B. P. Barros, Carla A. Silva
Abstract:
Selective catalytic reduction systems for nitrogen oxides reduction by ammonia has been the chosen technology by most of diesel vehicle (i.e. bus and truck) manufacturers in Brazil, as also in Europe. Furthermore, at some conditions, over-stoichiometric ammonia availability is also needed that increases the NH3 slips even more. Ammonia (NH3) by this vehicle exhaust aftertreatment system provides a maximum efficiency of NOx removal if a significant amount of NH3 is stored on its catalyst surface. In the other words, the practice shows that slightly less than 100% of the NOx conversion is usually targeted, so that the aqueous urea solution hydrolyzes to NH3 via other species formation, under relatively low temperatures. This paper presents a model based on neural networks integrated with a road vehicle simulator that allows to estimate NH3-slip emission factors for different driving conditions and patterns. The proposed model generates high NH3slips which are not also limited in Brazil, but more efforts needed to be made to elucidate the contribution of vehicle-emitted NH3 to the urban atmosphere.Keywords: Ammonia slip, neural-network, vehicles emissions, SCR-NOx.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040118 A Computational Study into the Effect of Design Parameters on Ignition Timing and Emission Characteristics of HCCI Engine in Internal Combustion Engines Fuelled with Isooctane
Authors: Fridhi Hadia, Soua Wadhah, Hidouri Ammar, Omri Ahmed
Abstract:
In order to understand the auto-ignition process in a HCCI engine better, the influence of some important parameters on the auto-ignition is investigated. The inlet temperature, the inlet pressure, and the compression ratio were varied and their influence on the ignition delays and emission characteristics were studied. The inlet temperature was changed from 400 K to 460 K (in step of 15 K), the inlet pressure from 0.9 to 3 atm, while the compression ratio varied from 15 to 23. The fuel that was investigated is isooctane. The inlet temperature, the inlet pressure, and the compression ratio appeared to decrease the ignition delays, with the inlet pressure having the least influence and the compression ratio the most. The effect of these parameters on emissions’ characteristics were also investigated. Results indicate that increasing the compression ratio results in increasing the concentration of all the species.
Keywords: Compression Ratio, intake temperature, intake pressure, HCCI engine, isooctane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710117 A Simulation Study of Direct Injection Compressed Natural Gas Spark Ignition Engine Performance Utilizing Turbulent Jet Ignition with Controlled Air Charge
Authors: Siyamak Ziyaei, Siti Khalijah Mazlan, Petros Lappas
Abstract:
Compressed natural gas (CNG) is primarily composed of methane (CH4), and has a lower carbon to hydrogen ratio than other hydrocarbon fuels such as gasoline (C8H18) and diesel (C12H23). Consequently, it has the potential to reduce CO2 emissions compared to conventional fuels. Although Natural Gas (NG) has environmental advantages compared to other hydrocarbon fuels, its main component, CH4, burns at a slower rate compared to the conventional fuels. A higher pressure and leaner cylinder environment will unravel the slow burn characteristic of CH4. Lean combustion and high compression ratios are well-known methods for increasing the efficiency of internal combustion engines. In order to achieve successful a CNG lean combustion in Spark Ignition (SI) engines, a strong ignition system is essential to avoid engine misfires, especially in ultra-lean conditions. Turbulent Jet Ignition (TJI) is an ignition system that employs a pre-combustion chamber to ignite the lean fuel mixture in the main combustion chamber using a fraction of the total fuel per cycle. TJI enables ultra-lean combustion by providing distributed ignition sites through orifices. The fast burn rate provided by TJI enables the ordinary SI engine to be comparable to other combustion systems such as Homogeneous Charge Compression Ignition (HCCI) or Controlled Auto-Ignition (CAI) in terms of thermal efficiency, through the increased levels of dilution without the need of sophisticated control systems. Due to the physical geometry of TJI, which contains small orifices that connect the pre-chamber to the main chamber, providing the right mixture of fuel and air has been identified as a key challenge due to the insufficient amount of air that is pushed into the pre-chamber during each compression stroke. There is also the problem of scavenging which contributed to the factors that reduces the TJI performance. Combustion residual gases such as CO2, CO and NOx from the previous combustion cycle dilute the pre-chamber fuel-air mixture preventing rapid combustion in the pre-chamber. An air-controlled active TJI is presented in this paper in order to address these issues. By supplying air into the pre-chamber at a sufficient pressure, residual gases are exhausted, and the air-fuel ratio is controlled within the pre-chamber, thereby improving the quality of the combustion. An investigation of the 3D combustion characteristics of a CNG-fueled SI engine using a direct injection fuelling strategy employing an air channel in the prechamber is presented in this paper. Experiments and simulations were performed at the Worldwide Mapping Point (WWMP) at 1500 revolutions per minute (rpm), 3.3 bar Indicated Mean Effective Pressure (IMEP), using only conventional spark plugs as a baseline. With a validated baseline engine simulation, the settings were set for all simulation scenarios at λ=1. Following that, the pre-chambers with and without an auxiliary fuel supply were simulated. In the study of (DI-CNG) SI engine, active TJI was observed to perform better than passive TJI and conventional spark plug ignition. In conclusion, the active pre-chamber with an air channel demonstrated an improved thermal efficiency (ηth) over other counterparts and conventional spark ignition systems.
Keywords: Turbulent Jet Ignition, Active Air Control Turbulent Jet Ignition, Pre-chamber ignition system, Active and Passive Pre-chamber, thermal efficiency, methane combustion, internal combustion engine combustion emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172