Search results for: unsteady heat conduction
1454 Unsteady Temperature Distribution in a Finite Functionally Graded Cylinder
Authors: A. Amiri Delouei
Abstract:
In the current study, two-dimensional unsteady heat conduction in a functionally graded cylinder is studied analytically. The temperature distribution is in radial and longitudinal directions. Heat conduction coefficients are considered a power function of radius both in radial and longitudinal directions. The proposed solution can exactly satisfy the boundary conditions. Analytical unsteady temperature distribution for different parameters of functionally graded cylinder is investigated. The achieved exact solution is useful for thermal stress analysis of functionally graded cylinders. Regarding the analytical approach, this solution can be used to understand the concepts of heat conduction in functionally graded materials.
Keywords: Functionally graded materials, unsteady heat conduction, cylinder, Temperature distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12051453 Transient Combined Conduction and Radiation in a Two-Dimensional Participating Cylinder in Presence of Heat Generation
Authors: Raoudha Chaabane, Faouzi Askri, Sassi Ben Nasrallah
Abstract:
Simultaneous transient conduction and radiation heat transfer with heat generation is investigated. Analysis is carried out for both steady and unsteady situations. two-dimensional gray cylindrical enclosure with an absorbing, emitting, and isotropically scattering medium is considered. Enclosure boundaries are assumed at specified temperatures. The heat generation rate is considered uniform and constant throughout the medium. The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The control volume finite element method (CVFEM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the CVFEM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 2-D cylindrical geometries were considered. In order to establish the suitability of the LBM, the energy equation of the present problem was also solved using the the finite difference method (FDM) of the computational fluid dynamics. The CVFEM used in the radiative heat transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FDM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the CVFEM for the radiative information, results were analyzed for the effects of various parameters such as the boundary emissivity. The results of the LBMCVFEM combination were found to be in excellent agreement with the FDM-CVFEM combination. The number of iterations and the steady state temperature in both of the combinations were found comparable. Results are found for situations with and without heat generation. Heat generation is found to have significant bearing on temperature distribution.Keywords: heat generation, cylindrical coordinates; RTE;transient; coupled conduction radiation; heat transfer; CVFEM; LBM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22031452 Streamwise Conduction of Nanofluidic Flow in Microchannels
Authors: Yew Mun Hung, Ching Sze Lim, Tiew Wei Ting, Ningqun Guo
Abstract:
The effect of streamwise conduction on the thermal characteristics of forced convection for nanofluidic flow in rectangular microchannel heat sinks under isothermal wall has been investigated. By applying the fin approach, models with and without streamwise conduction term in the energy equation were developed for hydrodynamically and thermally fully-developed flow. These two models were solved to obtain closed form analytical solutions for the nanofluid and solid wall temperature distributions and the analysis emphasized details of the variations induced by the streamwise conduction on the nanofluid heat transport characteristics. The effects of the Peclet number, nanoparticle volume fraction, thermal conductivity ratio on the thermal characteristics of forced convection in microchannel heat sinks are analyzed. Due to the anomalous increase in the effective thermal conductivity of nanofluid compared to its base fluid, the effect of streamwise conduction is expected to be more significant. This study reveals the significance of the effect of streamwise conduction under certain conditions of which the streamwise conduction should not be neglected in the forced convective heat transfer analysis of microchannel heat sinks.Keywords: fin approach, microchannel heat sink, nanofluid, streamwise conduction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17371451 Solution of Two Dimensional Quasi-Harmonic Equations with CA Approach
Authors: F. Rezaie Moghaddam, J. Amani, T. Rezaie Moghaddam
Abstract:
Many computational techniques were applied to solution of heat conduction problem. Those techniques were the finite difference (FD), finite element (FE) and recently meshless methods. FE is commonly used in solution of equation of heat conduction problem based on the summation of stiffness matrix of elements and the solution of the final system of equations. Because of summation process of finite element, convergence rate was decreased. Hence in the present paper Cellular Automata (CA) approach is presented for the solution of heat conduction problem. Each cell considered as a fixed point in a regular grid lead to the solution of a system of equations is substituted by discrete systems of equations with small dimensions. Results show that CA can be used for solution of heat conduction problem.Keywords: Heat conduction, Cellular automata, convergencerate, discrete system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17741450 Developing a Conjugate Heat Transfer Solver
Authors: Mansour A. Al Qubeissi
Abstract:
The current paper presents a numerical approach in solving the conjugate heat transfer problems. A heat conduction code is coupled internally with a computational fluid dynamics solver for developing a couple conjugate heat transfer solver. Methodology of treating non-matching meshes at interface has also been proposed. The validation results of 1D and 2D cases for the developed conjugate heat transfer code have shown close agreement with the solutions given by analysis.
Keywords: Computational Fluid Dynamics, Conjugate Heat transfer, Heat Conduction, Heat Transfer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15591449 Heat Transfer Characteristics on Blade Tip with Unsteady Wake
Authors: Minho Bang, Seok Min Choi, Jun Su Park, Hokyu Moon, Hyung Hee Cho
Abstract:
Present study investigates the effect of unsteady wakes on heat transfer in blade tip. Heat/mass transfer was measured in blade tip region depending on a variety of strouhal number by naphthalene sublimation technique. Naphthalene sublimation technique measures heat transfer using a heat/mass transfer analogy. Experiments are performed in linear cascade which is composed of five turbine blades and rotating rods. Strouhal number of inlet flow are changed ranging from 0 to 0.22. Reynolds number is 100,000 based on 11.4 m/s of outlet flow and axial chord length. Three different squealer tip geometries such as base squealer tip, vertical rib squealer tip, and camber line squealer tip are used to study how unsteady wakes affect heat transfer on a blade tip. Depending on squealer tip geometry, different flow patterns occur on a blade tip. Also, unsteady wakes cause reduced tip leakage flow and turbulent flow. As a result, as strouhal number increases, heat/mass transfer coefficients decrease due to the reduced leakage flow. As strouhal number increases, heat/ mass transfer coefficients on a blade tip increase in vertical rib squealer tip.
Keywords: Gas turbine, blade tip, heat transfer, unsteady wakes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16771448 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source
Authors: Z. Veselý, M. Honner, J. Mach
Abstract:
The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. Complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts.Keywords: Computer simulation, unsteady model, heat treatment, complex boundary condition, moving heat source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20381447 Unsteady Flow and Heat Transfer of Nanofluid from Circular Tube in Cross-Flow
Authors: H. Bayat, M. Majidi, M. Bolhasani, A. Karbalaie Alilou, A. Mirabdolah Lavasani
Abstract:
Unsteady flow and heat transfer from a circular cylinder in cross-flow is studied numerically. The governing equations are solved by using finite volume method. Reynolds number varies in range of 50 to 200; in this range flow is considered to be laminar and unsteady. Al2O3 nanoparticle with volume fraction in range of 5% to 20% is added to pure water. Effects of adding nanoparticle to pure water on lift and drag coefficient and Nusselt number is presented. Addition of Al2O3 has inconsiderable effect on the value of drags and lift coefficient. However, it has significant effect on heat transfer; results show that heat transfer of Al2O3 nanofluid is about 9% to 36% higher than pure water.
Keywords: Nanofluid, heat transfer, unsteady flow, forced convection, cross-flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25221446 Solving the Nonlinear Heat Conduction in a Spherical Coordinate with Electrical Simulation
Authors: A. M. Gheitaghy, H. Saffari, G. Q. Zhang
Abstract:
Numerical approach based on the electrical simulation method is proposed to solve a nonlinear transient heat conduction problem with nonlinear boundary for a spherical body. This problem represents a strong nonlinearity in both the governing equation for temperature dependent thermal property and the boundary condition for combined convective and radiative cooling. By analysing the equivalent electrical model using the electrical circuit simulation program HSPICE, transient temperature and heat flux distributions at sphere can be obtained easily and fast. The solutions clearly illustrate the effect of the radiation-conduction parameter Nrc, the Biot number and the linear coefficient of temperature dependent conductivity and heat capacity. On comparing the results with corresponding numerical solutions, the accuracy and efficiency of this computational method is found to be good.Keywords: Convective boundary, radiative boundary, electrical simulation method, nonlinear heat conduction, spherical coordinate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13901445 Unsteady Stagnation-Point Flow towards a Shrinking Sheet with Radiation Effect
Authors: F. M. Ali, R. Nazar, N. M. Arifin, I. Pop
Abstract:
In this paper, the problem of unsteady stagnation-point flow and heat transfer induced by a shrinking sheet in the presence of radiation effect is studied. The transformed boundary layer equations are solved numerically by the shooting method. The influence of radiation, unsteadiness and shrinking parameters, and the Prandtl number on the reduced skin friction coefficient and the heat transfer coefficient, as well as the velocity and temperature profiles are presented and discussed in detail. It is found that dual solutions exist and the temperature distribution becomes less significant with radiation parameter.
Keywords: Heat transfer, Radiation effect, Shrinking sheet Unsteady flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19531444 Study of Heat Transfer in the Absorber Plates of a Flat-Plate Solar Collector Using Dual-Phase-Lag Model
Authors: Yu-Ching Yang, Haw-Long Lee, Win-Jin Chang
Abstract:
The present work numerically analyzes the transient heat transfer in the absorber plates of a flat-plate solar collector based on the dual-phase-lag (DPL) heat conduction model. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods is used to solve the linear hyperbolic heat conduction equation. This work also examines the effect of different medium parameters on the behavior of heat transfer. Results show that, while the heat-flux phase lag induces thermal waves in the medium, the temperature-gradient phase lag smoothens the thermal waves by promoting non-Fourier diffusion-like conduction into the medium.
Keywords: Absorber plates, dual-phase-lag, non-Fourier, solar collector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13161443 Transient Hydrodynamic and Thermal Behaviors of Fluid Flow in a Vertical Porous Microchannel under the Effect of Hyperbolic Heat Conduction Model
Authors: A. F. Khadrawi
Abstract:
The transient hydrodynamics and thermal behaviors of fluid flow in open-ended vertical parallel-plate porous microchannel are investigated semi-analytically under the effect of the hyperbolic heat conduction model. The model that combines both the continuum approach and the possibility of slip at the boundary is adopted in the study. The Effects of Knudsen number , Darcy number , and thermal relaxation time on the microchannel hydrodynamics and thermal behaviors are investigated using the hyperbolic heat conduction models. It is found that as increases the slip in the hydrodynamic and thermal boundary condition increases. This slip in the hydrodynamic boundary condition increases as increases. Also, the slip in the thermal boundary condition increases as decreases especially the early stage of time.Keywords: free convection, hyperbolic heat conduction, macroscopic heat conduction models in microchannel, porous media, vertical microchannel, microchannel thermal, hydrodynamic behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19271442 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non-Uniform Heat Source/Sink
Authors: Bandaris Shankar, Yohannes Yirga
Abstract:
In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreement.
Keywords: Manetohydrodynamics, nanofluid, non-uniform heat source/sink, unsteady.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32221441 Conjugate Heat transfer over an Unsteady Stretching Sheet Mixed Convection with Magnetic Effect
Authors: Kai-Long Hsiao
Abstract:
A conjugate heat transfer for steady two-dimensional mixed convection with magnetic hydrodynamic (MHD) flow of an incompressible quiescent fluid over an unsteady thermal forming stretching sheet has been studied. A parameter, M, which is used to represent the dominance of the magnetic effect has been presented in governing equations. The similar transformation and an implicit finite-difference method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, the wall unknown values of f''(0) and '(θ (0) for calculating the heat transfer of the similar boundary-layer flow are carried out as functions of the unsteadiness parameter (S), the Prandtl number (Pr), the space-dependent parameter (A) and temperature-dependent parameter (B) for heat source/sink and the magnetic parameter (M). The effects of these parameters have also discussed. At the results, it will produce greater heat transfer effect with a larger Pr and M, S, A, B will reduce heat transfer effects. At last, conjugate heat transfer for the free convection with a larger G has a good heat transfer effect better than a smaller G=0.Keywords: Finite-difference method, Conjugate heat transfer, Unsteady Stretching Sheet, MHD, Mixed convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15841440 Transient Heat Conduction in Nonuniform Hollow Cylinders with Time Dependent Boundary Condition at One Surface
Authors: Sen Yung Lee, Chih Cheng Huang, Te Wen Tu
Abstract:
A solution methodology without using integral transformation is proposed to develop analytical solutions for transient heat conduction in nonuniform hollow cylinders with time-dependent boundary condition at the outer surface. It is shown that if the thermal conductivity and the specific heat of the medium are in arbitrary polynomial function forms, the closed solutions of the system can be developed. The influence of physical properties on the temperature distribution of the system is studied. A numerical example is given to illustrate the efficiency and the accuracy of the solution methodology.Keywords: Analytical solution, nonuniform hollow cylinder, time-dependent boundary condition, transient heat conduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28591439 Two-dimensional Heat Conduction of Direct Cooling in the Rotor of an Electrical Generator(Numerical Analysis)
Authors: A. Kargar, A. Kianifar, H. Mohammadiun
Abstract:
Two-dimensional heat conduction within a composed solid material with a constant internal heat generation has been investigated numerically in a sector of the rotor a generator. The heat transfer between two adjacent materials is assumed to be purely conduction. Boundary conditions are assumed to be forced convection on the fluid side and adiabatic on symmetry lines. The control volume method is applied for the diffusion energy equation. Physical coordinates are transformed to the general curvilinear coordinates. Then by using a line-by-line method, the temperature distribution in a sector of the rotor has been determined. Finally, the results are normalized and the effect of cooling fluid on the maximum temperature of insulation is investigated.
Keywords: general curvilinear coordinates , jacobian, controlvolume.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18151438 An Accurate Prediction of Surface Temperature History in a Supersonic Flight
Authors: A. M. Tahsini, S. A. Hosseini
Abstract:
In the present study, the surface temperature history of the adaptor part in a two-stage supersonic launch vehicle is accurately predicted. The full Navier-Stokes equations are used to estimate the aerodynamic heat flux and the one-dimensional heat conduction in solid phase is used to compute the temperature history. The instantaneous surface temperature is used to improve the applied heat flux, to improve the accuracy of the results.
Keywords: Aerodynamic heating, Heat conduction, Numerical simulation, Supersonic flight, Launch vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17091437 Solving Transient Conduction and Radiation Using Finite Volume Method
Authors: Ashok K. Satapathy, Prerana Nashine
Abstract:
Radiative heat transfer in participating medium was carried out using the finite volume method. The radiative transfer equations are formulated for absorbing and anisotropically scattering and emitting medium. The solution strategy is discussed and the conditions for computational stability are conferred. The equations have been solved for transient radiative medium and transient radiation incorporated with transient conduction. Results have been obtained for irradiation and corresponding heat fluxes for both the cases. The solutions can be used to conclude incident energy and surface heat flux. Transient solutions were obtained for a slab of heat conducting in slab and by thermal radiation. The effect of heat conduction during the transient phase is to partially equalize the internal temperature distribution. The solution procedure provides accurate temperature distributions in these regions. A finite volume procedure with variable space and time increments is used to solve the transient radiation equation. The medium in the enclosure absorbs, emits, and anisotropically scatters radiative energy. The incident radiations and the radiative heat fluxes are presented in graphical forms. The phase function anisotropy plays a significant role in the radiation heat transfer when the boundary condition is non-symmetric.
Keywords: Participating media, finite volume method, radiation coupled with conduction, heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29571436 Unsteady Free Convection Flow Over a Three-Dimensional Stagnation Point With Internal Heat Generation or Absorption
Authors: Mohd Ariff Admon, Abdul Rahman Mohd Kasim, Sharidan Shafie
Abstract:
This paper considers the effect of heat generation proportional l to (T - T∞ )p , where T is the local temperature and T∞ is the ambient temperature, in unsteady free convection flow near the stagnation point region of a three-dimensional body. The fluid is considered in an ambient fluid under the assumption of a step change in the surface temperature of the body. The non-linear coupled partial differential equations governing the free convection flow are solved numerically using an implicit finite-difference method for different values of the governing parameters entering these equations. The results for the flow and heat characteristics when p ≤ 2 show that the transition from the initial unsteady-state flow to the final steadystate flow takes place smoothly. The behavior of the flow is seen strongly depend on the exponent p.Keywords: Free convection, Boundary layer flow, Stagnationpoint, Heat generation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22601435 Transient Heat Transfer Model for Car Body Primer Curing
Authors: D. Zabala, N. Sánchez, J. Pinto
Abstract:
A transient heat transfer mathematical model for the prediction of temperature distribution in the car body during primer baking has been developed by considering the thermal radiation and convection in the furnace chamber and transient heat conduction governing equations in the car framework. The car cockpit is considered like a structure with six flat plates, four vertical plates representing the car doors and the rear and front panels. The other two flat plates are the car roof and floor. The transient heat conduction in each flat plate is modeled by the lumped capacitance method. Comparison with the experimental data shows that the heat transfer model works well for the prediction of thermal behavior of the car body in the curing furnace, with deviations below 5%.Keywords: Transient heat transfer, car body, lumpedcapacitance, primer baking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20331434 A New Analytic Solution for the Heat Conduction with Time-Dependent Heat Transfer Coefficient
Authors: Te Wen Tu, Sen Yung Lee
Abstract:
An alternative approach is proposed to develop the analytic solution for one dimensional heat conduction with one mixed type boundary condition and general time-dependent heat transfer coefficient. In this study, the physic meaning of the solution procedure is revealed. It is shown that the shifting function takes the physic meaning of the reciprocal of Biot function in the initial time. Numerical results show the accuracy of this study. Comparing with those given in the existing literature, the difference is less than 0.3%.
Keywords: Analytic solution, heat transfer coefficient, shifting function method, time-dependent boundary condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30121433 On Discretization of Second-order Derivatives in Smoothed Particle Hydrodynamics
Authors: R. Fatehi, M.A. Fayazbakhsh, M.T. Manzari
Abstract:
Discretization of spatial derivatives is an important issue in meshfree methods especially when the derivative terms contain non-linear coefficients. In this paper, various methods used for discretization of second-order spatial derivatives are investigated in the context of Smoothed Particle Hydrodynamics. Three popular forms (i.e. "double summation", "second-order kernel derivation", and "difference scheme") are studied using one-dimensional unsteady heat conduction equation. To assess these schemes, transient response to a step function initial condition is considered. Due to parabolic nature of the heat equation, one can expect smooth and monotone solutions. It is shown, however in this paper, that regardless of the type of kernel function used and the size of smoothing radius, the double summation discretization form leads to non-physical oscillations which persist in the solution. Also, results show that when a second-order kernel derivative is used, a high-order kernel function shall be employed in such a way that the distance of inflection point from origin in the kernel function be less than the nearest particle distance. Otherwise, solutions may exhibit oscillations near discontinuities unlike the "difference scheme" which unconditionally produces monotone results.Keywords: Heat conduction, Meshfree methods, Smoothed ParticleHydrodynamics (SPH), Second-order derivatives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30881432 Analysis of Conduction-Radiation Heat Transfer in a Planar Medium: Application of the Lattice Boltzmann Method
Authors: Ahmed Mahmoudi, Imen Mejri, Mohamed A. Abbassi, Ahmed Omri
Abstract:
In this paper, the 1-D conduction-radiation problem is solved by the lattice Boltzmann method. The effects of various parameters such as the scattering albedo, the conduction–radiation parameter and the wall emissivity are studied. In order to check on the accuracy of the numerical technique employed for the solution of the considered problem, the present numerical code was validated with the published study. The found results are in good agreement with those published
Keywords: Conduction, lattice Boltzmann method, planar medium, radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25791431 Unsteady Water Boundary Layer Flow with Non-Uniform Mass Transfer
Authors: G. Revathi, P. Saikrishnan
Abstract:
In the present analysis an unsteady laminar forced convection water boundary layer flow is considered. The fluid properties such as viscosity and Prandtl number are taken as variables such that those are inversely proportional to temperature. By using quasi-linearization technique the nonlinear coupled partial differential equations are linearized and the numerical solutions are obtained by using implicit finite difference scheme with the appropriate selection of step sizes. Non-similar solutions have been obtained from the starting point of the stream-wise coordinate to the point where skin friction value vanishes. The effect non-uniform mass transfer along the surface of the cylinder through slot is studied on the skin friction and heat transfer coefficients.Keywords: Boundary layer, heat transfer, non-similar solution, non-uniform mass, unsteady flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19671430 Recovering the Boundary Data in the Two Dimensional Inverse Heat Conduction Problem Using the Ritz-Galerkin Method
Authors: Saeed Sarabadan, Kamal Rashedi
Abstract:
This article presents a numerical method to find the heat flux in an inhomogeneous inverse heat conduction problem with linear boundary conditions and an extra specification at the terminal. The method is based upon applying the satisfier function along with the Ritz-Galerkin technique to reduce the approximate solution of the inverse problem to the solution of a system of algebraic equations. The instability of the problem is resolved by taking advantage of the Landweber’s iterations as an admissible regularization strategy. In computations, we find the stable and low-cost results which demonstrate the efficiency of the technique.Keywords: Inverse problem, parabolic equations, heat equation, Ritz-Galerkin method, Landweber iterations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11931429 Numerical and Infrared Mapping of Temperature in Heat Affected Zone during Plasma Arc Cutting of Mild Steel
Authors: Dalvir Singh, Somnath Chattopadhyaya
Abstract:
During welding or flame cutting of metals, the prediction of heat affected zone (HAZ) is critical. There is need to develop a simple mathematical model to calculate the temperature variation in HAZ and derivative analysis can be used for this purpose. This study presents analytical solution for heat transfer through conduction in mild steel plate. The homogeneous and nonhomogeneous boundary conditions are single variables. The full field analytical solutions of temperature measurement, subjected to local heating source, are derived first by method of separation of variables followed with the experimental visualization using infrared imaging. Based on the present work, it is suggested that appropriate heat input characteristics controls the temperature distribution in and around HAZ.Keywords: Conduction Heat Transfer, Heat Affected Zone (HAZ), Infra-Red Imaging, Numerical Method, Orthogonal Function, Plasma Arc Cutting, Separation of Variables, Temperature Measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17871428 Application of Residual Correction Method on Hyperbolic Thermoelastic Response of Hollow Spherical Medium in Rapid Transient Heat Conduction
Authors: Po-Jen Su, Huann-Ming Chou
Abstract:
In this article, we used the residual correction method to deal with transient thermoelastic problems with a hollow spherical region when the continuum medium possesses spherically isotropic thermoelastic properties. Based on linear thermoelastic theory, the equations of hyperbolic heat conduction and thermoelastic motion were combined to establish the thermoelastic dynamic model with consideration of the deformation acceleration effect and non-Fourier effect under the condition of transient thermal shock. The approximate solutions of temperature and displacement distributions are obtained using the residual correction method based on the maximum principle in combination with the finite difference method, making it easier and faster to obtain upper and lower approximations of exact solutions. The proposed method is found to be an effective numerical method with satisfactory accuracy. Moreover, the result shows that the effect of transient thermal shock induced by deformation acceleration is enhanced by non-Fourier heat conduction with increased peak stress. The influence on the stress increases with the thermal relaxation time.Keywords: Maximum principle, non-Fourier heat conduction, residual correction method, thermo-elastic response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17471427 Simulation of Heat Transfer in the Multi-Layer Door of the Furnace
Authors: U. Prasopchingchana
Abstract:
The temperature distribution and the heat transfer rates through a multi-layer door of a furnace were investigated. The inside of the door was in contact with hot air and the other side of the door was in contact with room air. Radiation heat transfer from the walls of the furnace to the door and the door to the surrounding area was included in the problem. This work is a two dimensional steady state problem. The Churchill and Chu correlation was used to find local convection heat transfer coefficients at the surfaces of the furnace door. The thermophysical properties of air were the functions of the temperatures. Polynomial curve fitting for the fluid properties were carried out. Finite difference method was used to discretize for conduction heat transfer within the furnace door. The Gauss-Seidel Iteration was employed to compute the temperature distribution in the door. The temperature distribution in the horizontal mid plane of the furnace door in a two dimensional problem agrees with the one dimensional problem. The local convection heat transfer coefficients at the inside and outside surfaces of the furnace door are exhibited.Keywords: Conduction, heat transfer, multi-layer door, natural convection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20971426 Verified Experiment: Intelligent Fuzzy Weighted Input Estimation Method to Inverse Heat Conduction Problem
Authors: Chen-Yu Wang, Tsung-Chien Chen, Ming-Hui Lee, Jen-Feng Huang
Abstract:
In this paper, the innovative intelligent fuzzy weighted input estimation method (FWIEM) can be applied to the inverse heat transfer conduction problem (IHCP) to estimate the unknown time-varying heat flux efficiently as presented. The feasibility of this method can be verified by adopting the temperature measurement experiment. We would like to focus attention on the heat flux estimation to three kinds of samples (Copper, Iron and Steel/AISI 304) with the same 3mm thickness. The temperature measurements are then regarded as the inputs into the FWIEM to estimate the heat flux. The experiment results show that the proposed algorithm can estimate the unknown time-varying heat flux on-line.Keywords: Fuzzy Weighted Input Estimation Method, IHCP andHeat Flux.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15401425 Radiation Effects on the Unsteady MHD Free Convection Flow Past in an Infinite Vertical Plate with Heat Source
Authors: Tusharkanta Das, Tumbanath Samantara, Sukanta Kumar Sahoo
Abstract:
Unsteady effects of MHD free convection flow past in an infinite vertical plate with heat source in presence of radiation with reference to all critical parameters that appear in field equations are studied in this paper. The governing equations are developed by usual Boussinesq’s approximation. The problem is solved by using perturbation technique. The results are obtained for velocity, temperature, Nusselt number and skin-friction. The effects of magnetic parameter, prandtl number, Grashof number, permeability parameter, heat source/sink parameter and radiation parameter are discussed on flow characteristics and shown by means of graphs and tables.
Keywords: Heat transfer, radiation, MHD, free convection, porous medium, suction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879