Search results for: shape morphing
812 A Study on Applying 3D Reconstruction to 3D Last Morphing
Authors: Shih-Wen Hsiao, Rong-Qi Chen, Chien-Yu Lin
Abstract:
When it comes to last, it is regarded as the critical foundation of shoe design and development. A computer aided methodology for various last form designs is proposed in this study. The reverse engineering is mainly applied to the process of scanning for the last form. Then with the minimum energy for revision of surface continuity, the surface reconstruction of last is rebuilt by the feature curves of the scanned last. When the surface reconstruction of last is completed, the weighted arithmetic mean method is applied to the computation on the shape morphing for the control mesh of last, thus 3D last form of different sizes is generated from its original form feature with functions remained. In the end, the result of this study is applied to an application for 3D last reconstruction system. The practicability of the proposed methodology is verified through later case studies.
Keywords: Reverse engineering, Surface reconstruction, Surface continuity, Shape morphing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749811 Structural Analysis of an Active Morphing Wing for Enhancing UAV Performance
Abstract:
A numerical study of a design concept for actively controlling wing twist is described in this paper. The concept consists of morphing elements which were designed to provide a rigid and seamless skin while maintaining structural rigidity. The wing structure is first modeled in CATIA V5 then imported into ANSYS for structural analysis. Athena Vortex Lattice method (AVL) is used to estimate aerodynamic response as well as aerodynamic loads of morphing wings, afterwards a structural optimization performed via ANSYS Static. Overall, the results presented in this paper show that the concept provides efficient wing twist while preserving an aerodynamically smooth and compliant surface. Sufficient structural rigidity in bending is also obtained. This concept is suggested as a possible alternative for morphing skin applications.Keywords: Aircraft, morphing, skin, twist.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941810 Computational Analysis of Adaptable Winglets for Improved Morphing Aircraft Performance
Abstract:
An investigation of adaptable winglets for enhancing morphing aircraft performance is described in this paper. The concepts investigated consist of various winglet configurations fundamentally centered on a baseline swept wing. The impetus for the work was to identify and optimize winglets to enhance the aerodynamic efficiency of a morphing aircraft. All computations were performed with Athena Vortex Lattice modelling with varying degrees of twist and cant angle considered. The results from this work indicate that if adaptable winglets were employed on aircraft’s improvements in aircraft performance could be achieved.Keywords: Aircraft, drag, twist, winglet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2320809 The Customization of 3D Last Form Design Based On Weighted Blending
Authors: Shih-Wen Hsiao, Chu-Hsuan Lee, Rong-Qi Chen
Abstract:
When it comes to last, it is regarded as the critical foundation of shoe design and development. Not only the last relates to the comfort of shoes wearing but also it aids the production of shoe styling and manufacturing. In order to enhance the efficiency and application of last development, a computer aided methodology for customized last form designs is proposed in this study. The reverse engineering is mainly applied to the process of scanning for the last form. Then the minimum energy is used for the revision of surface continuity, the surface of the last is reconstructed with the feature curves of the scanned last. When the surface of a last is reconstructed, based on the foundation of the proposed last form reconstruction module, the weighted arithmetic mean method is applied to the calculation on the shape morphing which differs from the grading for the control mesh of last, and the algorithm of subdivision is used to create the surface of last mesh, thus the feet-fitting 3D last form of different sizes is generated from its original form feature with functions remained. Finally, the practicability of the proposed methodology is verified through later case studies.
Keywords: 3D last design, Customization, Reverse engineering, Weighted morphing, Shape blending.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204808 Applying Kinect on the Development of a Customized 3D Mannequin
Authors: Shih-Wen Hsiao, Rong-Qi Chen
Abstract:
In the field of fashion design, 3D Mannequin is a kind of assisting tool which could rapidly realize the design concepts. While the concept of 3D Mannequin is applied to the computer added fashion design, it will connect with the development and the application of design platform and system. Thus, the situation mentioned above revealed a truth that it is very critical to develop a module of 3D Mannequin which would correspond with the necessity of fashion design. This research proposes a concrete plan that developing and constructing a system of 3D Mannequin with Kinect. In the content, ergonomic measurements of objective human features could be attained real-time through the implement with depth camera of Kinect, and then the mesh morphing can be implemented through transformed the locations of the control-points on the model by inputting those ergonomic data to get an exclusive 3D mannequin model. In the proposed methodology, after the scanned points from the Kinect are revised for accuracy and smoothening, a complete human feature would be reconstructed by the ICP algorithm with the method of image processing. Also, the objective human feature could be recognized to analyze and get real measurements. Furthermore, the data of ergonomic measurements could be applied to shape morphing for the division of 3D Mannequin reconstructed by feature curves. Due to a standardized and customer-oriented 3D Mannequin would be generated by the implement of subdivision, the research could be applied to the fashion design or the presentation and display of 3D virtual clothes. In order to examine the practicality of research structure, a system of 3D Mannequin would be constructed with JAVA program in this study. Through the revision of experiments the practicability-contained research result would come out.Keywords: 3D Mannequin, kinect scanner, interactive closest point, shape morphing, subdivision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062807 Strongly Coupled Finite Element Formulation of Electromechanical Systems with Integrated Mesh Morphing using Radial Basis Functions
Authors: D. Kriebel, J. E. Mehner
Abstract:
The paper introduces a method to efficiently simulate nonlinear changing electrostatic fields occurring in micro-electromechanical systems (MEMS). Large deflections of the capacitor electrodes usually introduce nonlinear electromechanical forces on the mechanical system. Traditional finite element methods require a time-consuming remeshing process to capture exact results for this physical domain interaction. In order to accelerate the simulation process and eliminate the remeshing process, a formulation of a strongly coupled electromechanical transducer element will be introduced which uses a combination of finite-element with an advanced mesh morphing technique using radial basis functions (RBF). The RBF allows large geometrical changes of the electric field domain while retain high element quality of the deformed mesh. Coupling effects between mechanical and electrical domains are directly included within the element formulation. Fringing field effects are described accurate by using traditional arbitrary shape functions.
Keywords: electromechanical, electric field, transducer, simulation, modeling, finite-element, mesh morphing, radial basis function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 517806 Morphing Human Faces: Automatic Control Points Selection and Color Transition
Authors: Stephen Karungaru, Minoru Fukumi, Norio Akamatsu
Abstract:
In this paper, we propose a morphing method by which face color images can be freely transformed. The main focus of this work is the transformation of one face image to another. This method is fully automatic in that it can morph two face images by automatically detecting all the control points necessary to perform the morph. A face detection neural network, edge detection and medium filters are employed to detect the face position and features. Five control points, for both the source and target images, are then extracted based on the facial features. Triangulation method is then used to match and warp the source image to the target image using the control points. Finally color interpolation is done using a color Gaussian model that calculates the color for each particular frame depending on the number of frames used. A real coded Genetic algorithm is used in both the image warping and color blending steps to assist in step size decisions and speed up the morphing. This method results in ''very smooth'' morphs and is fast to process.
Keywords: color transition, genetic algorithms morphing, warping
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2823805 Autonomous Flight Performance Improvement of Load-Carrying Unmanned Aerial Vehicles by Active Morphing
Authors: Tugrul Oktay, Mehmet Konar, Mohamed Abdallah Mohamed, Murat Aydin, Firat Sal, Murat Onay, Mustafa Soylak
Abstract:
In this paper, it is aimed to improve autonomous flight performance of a load-carrying (payload: 3 kg and total: 6kg) unmanned aerial vehicle (UAV) through active wing and horizontal tail active morphing and also integrated autopilot system parameters (i.e. P, I, D gains) and UAV parameters (i.e. extension ratios of wing and horizontal tail during flight) design. For this purpose, a loadcarrying UAV (i.e. ZANKA-II) is manufactured in Erciyes University, College of Aviation, Model Aircraft Laboratory is benefited. Optimum values of UAV parameters and autopilot parameters are obtained using a stochastic optimization method. Using this approach autonomous flight performance of UAV is substantially improved and also in some adverse weather conditions an opportunity for safe flight is satisfied. Active morphing and integrated design approach gives confidence, high performance and easy-utility request of UAV users.Keywords: Unmanned aerial vehicles, morphing, autopilots, autonomous performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2269804 Design and Validation of an Aerodynamic Model of the Cessna Citation X Horizontal Stabilizer Using both OpenVSP and Digital Datcom
Authors: Marine Segui, Matthieu Mantilla, Ruxandra Mihaela Botez
Abstract:
This research is the part of a major project at the Research Laboratory in Active Controls, Avionics and Aeroservoelasticity (LARCASE) aiming to improve a Cessna Citation X aircraft cruise performance with an application of the morphing wing technology on its horizontal tail. However, the horizontal stabilizer of the Cessna Citation X turns around its span axis with an angle between -8 and 2 degrees. Within this range, the horizontal stabilizer generates certainly some unwanted drag. To cancel this drag, the LARCASE proposes to trim the aircraft with a horizontal stabilizer equipped by a morphing wing technology. This technology aims to optimize aerodynamic performances by changing the conventional horizontal tail shape during the flight. As a consequence, this technology will be able to generate enough lift on the horizontal tail to balance the aircraft without an unwanted drag generation. To conduct this project, an accurate aerodynamic model of the horizontal tail is firstly required. This aerodynamic model will finally allow precise comparison between a conventional horizontal tail and a morphed horizontal tail results. This paper presents how this aerodynamic model was designed. In this way, it shows how the 2D geometry of the horizontal tail was collected and how the unknown airfoil’s shape of the horizontal tail has been recovered. Finally, the complete horizontal tail airfoil shape was found and a comparison between aerodynamic polar of the real horizontal tail and the horizontal tail found in this paper shows a maximum difference of 0.04 on the lift or the drag coefficient which is very good. Aerodynamic polar data of the aircraft horizontal tail are obtained from the CAE Inc. level D research aircraft flight simulator of the Cessna Citation X.
Keywords: Aerodynamic, Cessna, Citation X, coefficient, Datcom, drag, lift, longitudinal, model, OpenVSP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512803 Cessna Citation X Performances Improvement by an Adaptive Winglet during the Cruise Flight
Authors: Marine Segui, Simon Bezin, Ruxandra Mihaela Botez
Abstract:
As part of a ‘Morphing-Wing’ idea, this study consists of measuring how a winglet, which is able to change its shape during the flight, is efficient. Conventionally, winglets are fixed-vertical platforms at the wingtips, optimized for a cruise condition that the airplane should use most of the time. However, during a cruise, an airplane flies through a lot of cruise conditions corresponding to altitudes variations from 30,000 to 45,000 ft. The fixed winglets are not optimized for these variations, and consequently, they are supposed to generate some drag, and thus to deteriorate aircraft fuel consumption. This research assumes that it exists a winglet position that reduces the fuel consumption for each cruise condition. In this way, the methodology aims to find these optimal winglet positions, and to further simulate, and thus estimate the fuel consumption of an aircraft wearing this type of adaptive winglet during several cruise conditions. The adaptive winglet is assumed to have degrees of freedom given by the various changes of following surfaces: the tip chord, the sweep and the dihedral angles. Finally, results obtained during cruise simulations are presented in this paper. These results show that an adaptive winglet can reduce, thus improve up to 2.12% the fuel consumption of an aircraft during a cruise.Keywords: Aerodynamics, Cessna Citation X, optimization, winglet, adaptive, morphing, wing, aircraft.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1238802 Shape-Based Image Retrieval Using Shape Matrix
Abstract:
Retrieval image by shape similarity, given a template shape is particularly challenging, owning to the difficulty to derive a similarity measurement that closely conforms to the common perception of similarity by humans. In this paper, a new method for the representation and comparison of shapes is present which is based on the shape matrix and snake model. It is scaling, rotation, translation invariant. And it can retrieve the shape images with some missing or occluded parts. In the method, the deformation spent by the template to match the shape images and the matching degree is used to evaluate the similarity between them.Keywords: shape representation, shape matching, shape matrix, deformation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511801 Atmospheric Full Scale Testing of a Morphing Trailing Edge Flap System for Wind Turbine Blades
Authors: Thanasis K. Barlas, Helge A. Madsen
Abstract:
A novel Active Flap System (AFS) has been developed at DTU Wind Energy, as a result of a 3-year R&D project following almost 10 years of innovative research in this field. The full scale AFS comprises an active deformable trailing edge has been tested at the unique rotating test facility at the Risø Campus of DTU Wind Energy in Denmark. The design and instrumentation of the wing section and the AFS are described. The general description and objectives of the rotating test rig at the Risø campus of DTU are presented, along with an overview of sensors on the setup and the test cases. The post-processing of data is discussed and results of steady, flap step and azimuth control flap cases are presented.Keywords: morphing, adaptive, flap, smart blade, wind turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708800 Multidisciplinary and Multilevel Design Methodology of Unmanned Aerial Vehicles Using Enhanced Collaborative Optimization
Authors: Pedro F. Albuquerque, Pedro V. Gamboa, Miguel A. Silvestre
Abstract:
The present work describes the implementation of the Enhanced Collaborative Optimization (ECO) multilevel architecture with a gradient-based optimization algorithm with the aim of performing a multidisciplinary design optimization of a generic unmanned aerial vehicle with morphing technologies. The concepts of weighting coefficient and dynamic compatibility parameter are presented for the ECO architecture. A routine that calculates the aircraft performance for the user defined mission profile and vehicle’s performance requirements has been implemented using low fidelity models for the aerodynamics, stability, propulsion, weight, balance and flight performance. A benchmarking case study for evaluating the advantage of using a variable span wing within the optimization methodology developed is presented.
Keywords: Multidisciplinary, Multilevel, Morphing, Enhanced Collaborative Optimization (ECO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493799 Research and Development of a Biomorphic Robot Driven by Shape Memory Alloys
Authors: Y.J. Lai, H.Y. Peng, M.W. Wu, J. Shaw
Abstract:
In this study, we used shape memory alloys as actuators to build a biomorphic robot which can imitate the motion of an earthworm. The robot can be used to explore in a narrow space. Therefore we chose shape memory alloys as actuators. Because of the small deformation of a wire shape memory alloy, spiral shape memory alloys are selected and installed both on the X axis and Y axis (each axis having two shape memory alloys) to enable the biomorphic robot to do reciprocating motion. By the mechanism we designed, the robot can increase the distance as it moves in a duty cycle. In addition, two shape memory alloys are added to the robot head for controlling right and left turns. By sending pulses through the I/O card from the controller, the signals are then amplified by a driver to heat the shape memory alloys in order to make the SMA shrink to pull the mechanism to move.Keywords: Biomorphic Robot, Shape Memory Alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654798 Enhancement of Shape Description and Representation by Slope
Authors: Ali Salem Bin Samma, Rosalina Abdul Salam
Abstract:
Representation and description of object shapes by the slopes of their contours or borders are proposed. The idea is to capture the essence of the features that make it easier for a shape to be stored, transmitted, compared and recognized. These features must be independent of translation, rotation and scaling of the shape. A approach is proposed to obtain high performance, efficiency and to merge the boundaries into sequence of straight line segments with the fewest possible segments. Evaluation on the performance of the proposed method is based on its comparison with established method of object shape description.Keywords: Shape description, Shape representation and Slope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456797 Numerical Simulation of the Transient Shape Variation of a Rotating Liquid Droplet
Authors: Tadashi Watanabe
Abstract:
Transient shape variation of a rotating liquid dropletis simulated numerically. The three dimensional Navier-Stokes equations were solved by using the level set method. The shape variation from the sphere to the rotating ellipsoid, and to the two-robed shapeare simulated, and the elongation of the two-robed droplet is discussed. The two-robed shape after the initial transient is found to be stable and the elongation is almost the same for the cases with different initial rotation rate. The relationship between the elongation and the rotation rate is obtained by averaging the transient shape variation. It is shown that the elongation of two-robed shape is in good agreement with the existing experimental data. It is found that the transient numerical simulation is necessary for analyzing the largely elongated two-robed shape of rotating droplet.
Keywords: Droplet, rotation, two-robed shape, transient simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693796 Rheological Modeling for Shape-Memory Thermoplastic Polymers
Authors: H. Hosseini, B. V. Berdyshev, I. Iskopintsev
Abstract:
This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of shape-memory products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment.Keywords: Elastic deformation, heating, shape-memory polymers, stress-strain behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769795 Extracting Tongue Shape Dynamics from Magnetic Resonance Image Sequences
Authors: María S. Avila-García, John N. Carter, Robert I. Damper
Abstract:
An important problem in speech research is the automatic extraction of information about the shape and dimensions of the vocal tract during real-time speech production. We have previously developed Southampton dynamic magnetic resonance imaging (SDMRI) as an approach to the solution of this problem.However, the SDMRI images are very noisy so that shape extraction is a major challenge. In this paper, we address the problem of tongue shape extraction, which poses difficulties because this is a highly deforming non-parametric shape. We show that combining active shape models with the dynamic Hough transform allows the tongue shape to be reliably tracked in the image sequence.
Keywords: Vocal tract imaging, speech production, active shapemodels, dynamic Hough transform, object tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735794 Shape Error Concealment for Shape Independent Transform Coding
Authors: Sandra Ondrušová, Jaroslav Polec
Abstract:
Arbitrarily shaped video objects are an important concept in modern video coding methods. The techniques presently used are not based on image elements but rather video objects having an arbitrary shape. In this paper, spatial shape error concealment techniques to be used for object-based image in error-prone environments are proposed. We consider a geometric shape representation consisting of the object boundary, which can be extracted from the α-plane. Three different approaches are used to replace a missing boundary segment: Bézier interpolation, Bézier approximation and NURBS approximation. Experimental results on object shape with different concealment difficulty demonstrate the performance of the proposed methods. Comparisons with proposed methods are also presented.Keywords: error concealment, shape coding, object-based image, NURBS, Bézier curves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288793 Method and Experiment of Fabricating and Cutting the Burr for Y Shape Nanochannel
Authors: Zone-Ching Lin, Hao-Yuan Jheng, Shih-Hung Ma
Abstract:
The present paper proposes using atomic force microscopy (AFM) and the concept of specific down force energy (SDFE) to establish a method for fabricating and cutting the burr for Y shape nanochannel on silicon (Si) substrate. For fabricating Y shape nanochannel, it first makes the experimental cutting path planning for fabricating Y shape nanochannel until the fifth cutting layer. Using the constant down force by AFM and SDFE theory and following the experimental cutting path planning, the cutting depth and width of each pass of Y shape nanochannel can be predicted by simulation. The paper plans the path for cutting the burr at the edge of Y shape nanochannel. Then, it carries out cutting the burr along the Y nanochannel edge by using a smaller down force. The height of standing burr at the edge is required to be below the set value of 0.54 nm. The results of simulation and experiment of fabricating and cutting the burr for Y shape nanochannel is further compared.Keywords: Atomic force microscopy, nanochannel, specific down force energy, Y shape, burr, silicon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1082792 Generalized Morphological 3D Shape Decomposition Grayscale Interframe Interpolation Method
Authors: Dragos Nicolae VIZIREANU
Abstract:
One of the main image representations in Mathematical Morphology is the 3D Shape Decomposition Representation, useful for Image Compression and Representation,and Pattern Recognition. The 3D Morphological Shape Decomposition representation can be generalized a number of times,to extend the scope of its algebraic characteristics as much as possible. With these generalizations, the Morphological Shape Decomposition 's role to serve as an efficient image decomposition tool is extended to grayscale images.This work follows the above line, and further develops it. Anew evolutionary branch is added to the 3D Morphological Shape Decomposition's development, by the introduction of a 3D Multi Structuring Element Morphological Shape Decomposition, which permits 3D Morphological Shape Decomposition of 3D binary images (grayscale images) into "multiparameter" families of elements. At the beginning, 3D Morphological Shape Decomposition representations are based only on "1 parameter" families of elements for image decomposition.This paper addresses the gray scale inter frame interpolation by means of mathematical morphology. The new interframe interpolation method is based on generalized morphological 3D Shape Decomposition. This article will present the theoretical background of the morphological interframe interpolation, deduce the new representation and show some application examples.Computer simulations could illustrate results.
Keywords: 3D shape decomposition representation, mathematical morphology, gray scale interframe interpolation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744791 Study of the Cryogenically Cooled Electrode Shape in Electric Discharge Machining Process
Authors: Vineet Srivastava, Pulak M. Pandey
Abstract:
Electrical discharge machining (EDM) is well established machining technique mainly used to machine complex geometries on difficult-to-machine materials and high strength temperature resistant alloys. In the present research, the objective is to study the shape of the electrode and establish the application of liquid nitrogen in reducing distortion of the electrode during electrical discharge machining of M2 grade high speed steel using copper electrodes. Study of roundness was performed on the electrode to observe the shape of the electrode for both conventional EDM and EDM with cryogenically cooled electrode. Scanning Electron Microscope (SEM) has been used to study the shape of electrode tip. The effect of various parameters such as discharge current and pulse on time has been studied to understand the behavior of distortion of electrode. It has been concluded that the shape retention is better in case of liquid nitrogen cooled electrode.Keywords: cryogenic cooling, EDM, electrode shape, out of roundness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367790 Thermal Post-buckling of Shape Memory Alloy Composite Plates under Non-uniform Temperature Distribution
Authors: Z.A. Rasid, R. Zahari, A. Ayob, D.L. Majid, A.S.M. Rafie
Abstract:
Aerospace vehicles are subjected to non-uniform thermal loading that may cause thermal buckling. A study was conducted on the thermal post-buckling of shape memory alloy composite plates subjected to the non-uniform tent-like temperature field. The shape memory alloy wires were embedded within the laminated composite plates to add recovery stress to the plates. The non-linear finite element model that considered the recovery stress of the shape memory alloy and temperature dependent properties of the shape memory alloy and composite matrix along with its source codes were developed. It was found that the post-buckling paths of the shape memory alloy composite plates subjected to various tentlike temperature fields were stable within the studied temperature range. The addition of shape memory alloy wires to the composite plates was found to significantly improve the post-buckling behavior of laminated composite plates under non-uniform temperature distribution.Keywords: Post-buckling, shape memory alloy, temperaturedependent property, tent-like temperature distribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017789 Human Pose Estimation using Active Shape Models
Authors: Changhyuk Jang, Keechul Jung
Abstract:
Human pose estimation can be executed using Active Shape Models. The existing techniques for applying to human-body research using Active Shape Models, such as human detection, primarily take the form of silhouette of human body. This technique is not able to estimate accurately for human pose to concern two arms and legs, as the silhouette of human body represents the shape as out of round. To solve this problem, we applied the human body model as stick-figure, “skeleton". The skeleton model of human body can give consideration to various shapes of human pose. To obtain effective estimation result, we applied background subtraction and deformed matching algorithm of primary Active Shape Models in the fitting process. The images which were used to make the model were 600 human bodies, and the model has 17 landmark points which indicate body junction and key features of human pose. The maximum iteration for the fitting process was 30 times and the execution time was less than .03 sec.
Keywords: Active shape models, skeleton, pose estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2416788 3D Face Modeling based on 3D Dense Morphable Face Shape Model
Authors: Yongsuk Jang Kim, Sun-Tae Chung, Boogyun Kim, Seongwon Cho
Abstract:
Realistic 3D face model is more precise in representing pose, illumination, and expression of face than 2D face model so that it can be utilized usefully in various applications such as face recognition, games, avatars, animations, and etc. In this paper, we propose a 3D face modeling method based on 3D dense morphable shape model. The proposed 3D modeling method first constructs a 3D dense morphable shape model from 3D face scan data obtained using a 3D scanner. Next, the proposed method extracts and matches facial landmarks from 2D image sequence containing a face to be modeled, and then reconstructs 3D vertices coordinates of the landmarks using a factorization-based SfM technique. Then, the proposed method obtains a 3D dense shape model of the face to be modeled by fitting the constructed 3D dense morphable shape model into the reconstructed 3D vertices. Also, the proposed method makes a cylindrical texture map using 2D face image sequence. Finally, the proposed method generates a 3D face model by rendering the 3D dense face shape model using the cylindrical texture map. Through building processes of 3D face model by the proposed method, it is shown that the proposed method is relatively easy, fast and precise.Keywords: 3D Face Modeling, 3D Morphable Shape Model, 3DReconstruction, 3D Correspondence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428787 Real-Time 3D City Generation using Shape Grammars with LOD Variations
Authors: Pearl Goswell, Jun Jo
Abstract:
Creating3D environments, including characters and cities, is a significantly time consuming process due to a large amount of workinvolved in designing and modelling.There have been a number of attempts to automatically generate 3D objects employing shape grammars. However it is still too early to apply the mechanism to real problems such as real-time computer games.The purpose of this research is to introduce a time efficient and cost effective method to automatically generatevarious 3D objects for real-time 3D games. This Shape grammar-based real-time City Generation (RCG) model is a conceptual model for generating 3Denvironments in real-time and can be applied to 3D gamesoranimations. The RCG system can generate even a large cityby applying fundamental principles of shape grammars to building elementsin various levels of detailin real-time.Keywords: real-time city generation, shape grammars, 3D games, 3D modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326786 A Study on the Improvement of the Bond Performance of Polypropylene Macro Fiber According to Longitudinal Shape Change
Authors: Sung-yong Choi, Woo-tai Jung, Young-hwan Park
Abstract:
This study intends to improve the bond performance of the polypropylene fiber used as reinforcing fiber for concrete by changing its shape into double crimped type through the enhancement its fabrication process. The bond performance of such double crimped fiber is evaluated by applying the JCI SF-8 (dog-bone shape) testing method. The test results reveal that the double crimped fiber develops bond performance improved by more than 19% compared to the conventional crimped type fiber.
Keywords: Bond, Polypropylene, Fiber reinforcement, Macro fiber, Shape change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826785 Shape Optimization of Permanent Magnet Motors Using the Reduced Basis Technique
Authors: A. Jabbari, M. Shakeri, A. Nabavi
Abstract:
In this paper, a tooth shape optimization method for cogging torque reduction in Permanent Magnet (PM) motors is developed by using the Reduced Basis Technique (RBT) coupled by Finite Element Analysis (FEA) and Design of Experiments (DOE) methods. The primary objective of the method is to reduce the enormous number of design variables required to define the tooth shape. RBT is a weighted combination of several basis shapes. The aim of the method is to find the best combination using the weights for each tooth shape as the design variables. A multi-level design process is developed to find suitable basis shapes or trial shapes at each level that can be used in the reduced basis technique. Each level is treated as a separated optimization problem until the required objective – minimum cogging torque – is achieved. The process is started with geometrically simple basis shapes that are defined by their shape co-ordinates. The experimental design of Taguchi method is used to build the approximation model and to perform optimization. This method is demonstrated on the tooth shape optimization of a 8-poles/12-slots PM motor.Keywords: PM motor, cogging torque, tooth shape optimization, RBT, FEA, DOE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2503784 Analytical Study on the Shape of T-type Girder Modular Bridge Connection by Using Parameter
Authors: Jongho Park, Jinwoong Choi, Sungnam Hong, Seung-Kyung Kye, Sun-Kyu Park
Abstract:
Recently, to cope with the rapidly changing construction trend with aging infrastructures, modular bridge technology has been studied actively. Modular bridge is easily constructed by assembling standardized precast structure members in the field. It will be possible to construct rapidly and reduce construction cost efficiently. However, the shape of the transverse connection of T-type girder newly developed between the segmented modules is not verified. Therefore, the verification of the connection shape is needed. In this study, shape of the modular T-girder bridge transverse connection was analyzed by finite element model that was verified in study which was verified model of transverse connection using Abaqus. Connection angle was chosen as the parameter. The result of analyses showed that optimal value of angle is 130 degree.
Keywords: Modular bridge, optimal transverse shape, parameter, FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071783 Adaptive Shape Parameter (ASP) Technique for Local Radial Basis Functions (RBFs) and Their Application for Solution of Navier Strokes Equations
Authors: A. Javed, K. Djidjeli, J. T. Xing
Abstract:
The concept of adaptive shape parameters (ASP) has been presented for solution of incompressible Navier Strokes equations using mesh-free local Radial Basis Functions (RBF). The aim is to avoid ill-conditioning of coefficient matrices of RBF weights and inaccuracies in RBF interpolation resulting from non-optimized shape of basis functions for the cases where data points (or nodes) are not distributed uniformly throughout the domain. Unlike conventional approaches which assume globally similar values of RBF shape parameters, the presented ASP technique suggests that shape parameter be calculated exclusively for each data point (or node) based on the distribution of data points within its own influence domain. This will ensure interpolation accuracy while still maintaining well conditioned system of equations for RBF weights. Performance and accuracy of ASP technique has been tested by evaluating derivatives and laplacian of a known function using RBF in Finite difference mode (RBFFD), with and without the use of adaptivity in shape parameters. Application of adaptive shape parameters (ASP) for solution of incompressible Navier Strokes equations has been presented by solving lid driven cavity flow problem on mesh-free domain using RBF-FD. The results have been compared for fixed and adaptive shape parameters. Improved accuracy has been achieved with the use of ASP in RBF-FD especially at regions where larger gradients of field variables exist.
Keywords: CFD, Meshless Particle Method, Radial Basis Functions, Shape Parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2830