Search results for: auto-correlation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 39

Search results for: auto-correlation

39 Power Efficient OFDM Signals with Reduced Symbol's Aperiodic Autocorrelation

Authors: Ibrahim M. Hussain

Abstract:

Three new algorithms based on minimization of autocorrelation of transmitted symbols and the SLM approach which are computationally less demanding have been proposed. In the first algorithm, autocorrelation of complex data sequence is minimized to a value of 1 that results in reduction of PAPR. Second algorithm generates multiple random sequences from the sequence generated in the first algorithm with same value of autocorrelation i.e. 1. Out of these, the sequence with minimum PAPR is transmitted. Third algorithm is an extension of the second algorithm and requires minimum side information to be transmitted. Multiple sequences are generated by modifying a fixed number of complex numbers in an OFDM data sequence using only one factor. The multiple sequences represent the same data sequence and the one giving minimum PAPR is transmitted. Simulation results for a 256 subcarrier OFDM system show that significant reduction in PAPR is achieved using the proposed algorithms.

Keywords: Aperiodic autocorrelation, OFDM, PAPR, SLM, wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
38 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods

Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow

Abstract:

 A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.

Keywords: Forecasting model, Steel demand uncertainty, Hierarchical Bayesian framework, Exponential smoothing method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535
37 Edge Detection with the Parametric Filtering Method (Comparison with Canny Method)

Authors: Yacine Ait Ali Yahia, Abderazak Guessoum

Abstract:

In this paper, a new method of image edge-detection and characterization is presented. “Parametric Filtering method" uses a judicious defined filter, which preserves the signal correlation structure as input in the autocorrelation of the output. This leads, showing the evolution of the image correlation structure as well as various distortion measures which quantify the deviation between two zones of the signal (the two Hamming signals) for the protection of an image edge.

Keywords: Edge detection, parametrable recursive filter, autocorrelation structure, distortion measurements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287
36 Unambiguous Signal Acquisition Based On Recombination of Sub-Correlations of BOC Signals

Authors: Hongdeuk Kim, Youngpo Lee, Seokho Yoon

Abstract:

Due to side-peaks of autocorrelation function, the binary offset carrier (BOC) signal acquisition suffers from an ambiguity when one of the side-peaks is acquired. In this paper, we first analyze that the BOC autocorrelation is made up of the sum of subcorrelations, and then, remove the side-peaks causing the ambiguity by recombining the sub-correlations. The proposed scheme is shown to remove the side-peaks completely. From numerical results, it is confirmed that the proposed scheme outperforms the conventional schemes in terms of the receiver operating characteristic and mean acquisition time.

Keywords: Binary offset carrier (BOC), acquisition, ambiguity problem, side-peak.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
35 Empirical Study of Real Retail Trade Turnover

Authors: J. Arneric, E. Jurun, L. Kordic

Abstract:

This paper deals with econometric analysis of real retail trade turnover. It is a part of an extensive scientific research about modern trends in Croatian national economy. At the end of the period of transition economy, Croatia confronts with challenges and problems of high consumption society. In such environment as crucial economic variables: real retail trade turnover, average monthly real wages and household loans are chosen for consequence analysis. For the purpose of complete procedure of multiple econometric analysis data base adjustment has been provided. Namely, it has been necessary to deflate original national statistics data of retail trade turnover using consumer price indices, as well as provide process of seasonally adjustment of its contemporary behavior. In model establishment it has been necessary to involve the overcoming procedure for the autocorrelation and colinearity problems. Moreover, for case of time-series shift a specific appropriate econometric instrument has been applied. It would be emphasize that the whole methodology procedure is based on the real Croatian national economy time-series.

Keywords: Consumption society, multiple econometric model, real retail trade turnover, second order autocorrelation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
34 Energy Detection Based Sensing and Primary User Traffic Classification for Cognitive Radio

Authors: Urvee B. Trivedi, U. D. Dalal

Abstract:

As wireless communication services grow quickly; the seriousness of spectrum utilization has been on the rise gradually. An emerging technology, cognitive radio has come out to solve today’s spectrum scarcity problem. To support the spectrum reuse functionality, secondary users are required to sense the radio frequency environment, and once the primary users are found to be active, the secondary users are required to vacate the channel within a certain amount of time. Therefore, spectrum sensing is of significant importance. Once sensing is done, different prediction rules apply to classify the traffic pattern of primary user. Primary user follows two types of traffic patterns: periodic and stochastic ON-OFF patterns. A cognitive radio can learn the patterns in different channels over time. Two types of classification methods are discussed in this paper, by considering edge detection and by using autocorrelation function. Edge detection method has a high accuracy but it cannot tolerate sensing errors. Autocorrelation-based classification is applicable in the real environment as it can tolerate some amount of sensing errors.

Keywords: Cognitive radio (CR), probability of detection (PD), probability of false alarm (PF), primary User (PU), secondary user (SU), Fast Fourier transform (FFT), signal to noise ratio (SNR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
33 Experimental Testing of Statistical Size Effect in Civil Engineering Structures

Authors: Jana Kaděrová, Miroslav Vořechovský

Abstract:

The presented paper copes with an experimental evaluation of a model based on modified Weibull size effect theory. Classical statistical Weibull theory was modified by introducing a new parameter (correlation length lp) representing the spatial autocorrelation of a random mechanical properties of material. This size effect modification was observed on two different materials used in civil engineering: unreinforced (plain) concrete and multi-filament yarns made of alkaliresistant (AR) glass which are used for textile-reinforced concrete. The behavior under flexural, resp. tensile loading was investigated by laboratory experiments. A high number of specimens of different sizes was tested to obtain statistically significant data which were subsequently corrected and statistically processed. Due to a distortion of the measured displacements caused by the unstiff experiment device, only the maximal load values were statistically evaluated. Results of the experiments showed a decreasing strength with an increasing sample length. Size effect curves were obtained and the correlation length was fitted according to measured data. Results did not exclude the existence of the proposed new parameter lp.

Keywords: Statistical size effect, concrete, multi filaments yarns, experiment, autocorrelation length.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
32 A Preliminary Study on the Suitability of Data Driven Approach for Continuous Water Level Modeling

Authors: Muhammad Aqil, Ichiro Kita, Moses Macalinao

Abstract:

Reliable water level forecasts are particularly important for warning against dangerous flood and inundation. The current study aims at investigating the suitability of the adaptive network based fuzzy inference system for continuous water level modeling. A hybrid learning algorithm, which combines the least square method and the back propagation algorithm, is used to identify the parameters of the network. For this study, water levels data are available for a hydrological year of 2002 with a sampling interval of 1-hour. The number of antecedent water level that should be included in the input variables is determined by two statistical methods, i.e. autocorrelation function and partial autocorrelation function between the variables. Forecasting was done for 1-hour until 12-hour ahead in order to compare the models generalization at higher horizons. The results demonstrate that the adaptive networkbased fuzzy inference system model can be applied successfully and provide high accuracy and reliability for river water level estimation. In general, the adaptive network-based fuzzy inference system provides accurate and reliable water level prediction for 1-hour ahead where the MAPE=1.15% and correlation=0.98 was achieved. Up to 12-hour ahead prediction, the model still shows relatively good performance where the error of prediction resulted was less than 9.65%. The information gathered from the preliminary results provide a useful guidance or reference for flood early warning system design in which the magnitude and the timing of a potential extreme flood are indicated.

Keywords: Neural Network, Fuzzy, River, Forecasting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289
31 Simulation of Sample Paths of Non Gaussian Stationary Random Fields

Authors: Fabrice Poirion, Benedicte Puig

Abstract:

Mathematical justifications are given for a simulation technique of multivariate nonGaussian random processes and fields based on Rosenblatt-s transformation of Gaussian processes. Different types of convergences are given for the approaching sequence. Moreover an original numerical method is proposed in order to solve the functional equation yielding the underlying Gaussian process autocorrelation function.

Keywords: Simulation, nonGaussian, random field, multivariate, stochastic process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
30 Malaria Prone Zones of West Bengal: A Spatio-Temporal Scenario

Authors: Meghna Maiti, Utpal Roy

Abstract:

In India, till today, malaria is considered to be one of the significant infectious diseases. Most of the cases regional geographical factors are the principal elements to let the places a unique identity. The incidence and intensity of infectious diseases are quite common and affect different places differently across the nation. The present study aims to identify spatial clusters of hot spots and cold spots of malaria incidence and their seasonal variation during the three periods of 2012-2014, 2015-2017 and 2018-20 in the state of West Bengal in India. As malaria is a vector-borne disease, numbers of positive test results are to be reported by the laboratories to the Department of Health, West Bengal (through the National Vector Borne Disease Control Programme). Data on block-wise monthly malaria positive cases are collected from Health Management Information System (HMIS), Ministry of Health and Family Welfare, Government of India. Moran’s I statistic is performed to assess the spatial autocorrelation of malaria incidence. The spatial statistical analysis mainly Local Indicators of Spatial Autocorrelation (LISA) cluster and Local Geary Cluster are applied to find the spatial clusters of hot spots and cold spots and seasonal variability of malaria incidence over the three periods. The result indicates that the spatial distribution of malaria is clustered during each of the three periods of 2012-2014, 2015-2017 and 2018-20. The analysis shows that in all the cases, high-high clusters are primarily concentrated in the western (Purulia, Paschim Medinipur districts), central (Maldah, Murshidabad districts) and the northern parts (Jalpaiguri, Kochbihar districts) and low-low clusters are found in the lower Gangetic plain (central-south) mainly and northern parts of West Bengal during the stipulated period. Apart from this seasonal variability inter-year variation is also visible. The results from different methods of this study indicate significant variation in the spatial distribution of malaria incidence in West Bengal and high incidence clusters are primarily persistently concentrated over the western part during 2012-2020 along with a strong seasonal pattern with a peak in rainy and autumn. By applying the different techniques in identifying the different degrees of incidence zones of malaria across West Bengal, some specific pockets or malaria hotspots are marked and identified where the incidence rates are quite harmonious over the different periods. From this analysis, it is clear that malaria is not a disease that is distributed uniformly across the state; some specific pockets are more prone to be affected in particular seasons of each year. Disease ecology and spatial patterns must be the factors in explaining the real factors for the higher incidence of this issue within those affected districts. The further study mainly by applying empirical approach is needed for discerning the strong relationship between communicable disease and other associated affecting factors.

Keywords: Malaria, infectious diseases, spatial statistics, spatial autocorrelation, LISA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 536
29 An Incomplete Factorization Preconditioner for LMS Adaptive Filter

Authors: Shazia Javed, Noor Atinah Ahmad

Abstract:

In this paper an efficient incomplete factorization preconditioner is proposed for the Least Mean Squares (LMS) adaptive filter. The proposed preconditioner is approximated from a priori knowledge of the factors of input correlation matrix with an incomplete strategy, motivated by the sparsity patter of the upper triangular factor in the QRD-RLS algorithm. The convergence properties of IPLMS algorithm are comparable with those of transform domain LMS(TDLMS) algorithm. Simulation results show efficiency and robustness of the proposed algorithm with reduced computational complexity.

Keywords: Autocorrelation matrix, Cholesky's factor, eigenvalue spread, Markov input.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
28 A Side-Peak Cancellation Scheme for CBOC Code Acquisition

Authors: Youngpo Lee, Seokho Yoon

Abstract:

In this paper, we propose a side-peak cancellation scheme for code acquisition of composite binary offset carrier (CBOC) signals. We first model the family of CBOC signals in a generic form, and then, propose a side-peak cancellation scheme by combining correlation functions between the divided sub-carrier and received signals. From numerical results, it is shown that the proposed scheme removes the side-peak completely, and moreover, the resulting correlation function demonstrates the better power ratio performance than the CBOC autocorrelation.

Keywords: CBOC, side-peak, ambiguity problem, synchronization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
27 Modeling of Statistically Multiplexed Non Uniform Activity VBR Video

Authors: J. P. Dubois

Abstract:

This paper reports the feasibility of the ARMA model to describe a bursty video source transmitting over a AAL5 ATM link (VBR traffic). The traffic represents the activity of the action movie "Lethal Weapon 3" transmitted over the ATM network using the Fore System AVA-200 ATM video codec with a peak rate of 100 Mbps and a frame rate of 25. The model parameters were estimated for a single video source and independently multiplexed video sources. It was found that the model ARMA (2, 4) is well-suited for the real data in terms of average rate traffic profile, probability density function, autocorrelation function, burstiness measure, and the pole-zero distribution of the filter model.

Keywords: ARMA, ATM networks, burstiness, multimediatraffic, VBR video.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
26 Noise Analysis of Single-Ended Input Differential Amplifier using Stochastic Differential Equation

Authors: Tarun Kumar Rawat, Abhirup Lahiri, Ashish Gupta

Abstract:

In this paper, we analyze the effect of noise in a single- ended input differential amplifier working at high frequencies. Both extrinsic and intrinsic noise are analyzed using time domain method employing techniques from stochastic calculus. Stochastic differential equations are used to obtain autocorrelation functions of the output noise voltage and other solution statistics like mean and variance. The analysis leads to important design implications and suggests changes in the device parameters for improved noise characteristics of the differential amplifier.

Keywords: Single-ended input differential amplifier, Noise, stochastic differential equation, mean and variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
25 On the Properties of Pseudo Noise Sequences with a Simple Proposal of Randomness Test

Authors: Abhijit Mitra

Abstract:

Maximal length sequences (m-sequences) are also known as pseudo random sequences or pseudo noise sequences for closely following Golomb-s popular randomness properties: (P1) balance, (P2) run, and (P3) ideal autocorrelation. Apart from these, there also exist certain other less known properties of such sequences all of which are discussed in this tutorial paper. Comprehensive proofs to each of these properties are provided towards better understanding of such sequences. A simple test is also proposed at the end of the paper in order to distinguish pseudo noise sequences from truly random sequences such as Bernoulli sequences.

Keywords: Maximal length sequence, pseudo noise sequence, punctured de Bruijn sequence, auto-correlation, Bernoulli sequence, randomness tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6697
24 An Eigen-Approach for Estimating the Direction-of Arrival of Unknown Number of Signals

Authors: Dia I. Abu-Al-Nadi, M. J. Mismar, T. H. Ismail

Abstract:

A technique for estimating the direction-of-arrival (DOA) of unknown number of source signals is presented using the eigen-approach. The eigenvector corresponding to the minimum eigenvalue of the autocorrelation matrix yields the minimum output power of the array. Also, the array polynomial with this eigenvector possesses roots on the unit circle. Therefore, the pseudo-spectrum is found by perturbing the phases of the roots one by one and calculating the corresponding array output power. The results indicate that the DOAs and the number of source signals are estimated accurately in the presence of a wide range of input noise levels.

Keywords: Array signal processing, direction-of-arrival, antenna arrays, eigenvalues, eigenvectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379
23 Quantification of Periodicities in Fugitive Emission of Gases from Lyari Waterway

Authors: Rana Khalid Naeem, Asif Mansoor

Abstract:

Periodicities in the environmetric time series can be idyllically assessed by utilizing periodic models. In this communication fugitive emission of gases from open sewer channel Lyari which follows periodic behaviour are approximated by employing periodic autoregressive model of order p. The orders of periodic model for each season are selected through the examination of periodic partial autocorrelation or information criteria. The parameters for the selected order of season are estimated individually for each emitted air toxin. Subsequently, adequacies of fitted models are established by examining the properties of the residual for each season. These models are beneficial for schemer and administrative bodies for the improvement of implemented policies to surmount future environmental problems.

Keywords: Exchange of Gases, Goodness of Fit, Open Sewer Channel, PAR(p) Models, Periodicities, Season Wise Models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258
22 Comparing Autoregressive Moving Average (ARMA) Coefficients Determination using Artificial Neural Networks with Other Techniques

Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb

Abstract:

Autoregressive Moving average (ARMA) is a parametric based method of signal representation. It is suitable for problems in which the signal can be modeled by explicit known source functions with a few adjustable parameters. Various methods have been suggested for the coefficients determination among which are Prony, Pade, Autocorrelation, Covariance and most recently, the use of Artificial Neural Network technique. In this paper, the method of using Artificial Neural network (ANN) technique is compared with some known and widely acceptable techniques. The comparisons is entirely based on the value of the coefficients obtained. Result obtained shows that the use of ANN also gives accurate in computing the coefficients of an ARMA system.

Keywords: Autoregressive moving average, coefficients, back propagation, model parameters, neural network, weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290
21 Predicting DHF Incidence in Northern Thailand using Time Series Analysis Technique

Authors: S. Wongkoon, M. Pollar, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

This study aimed at developing a forecasting model on the number of Dengue Haemorrhagic Fever (DHF) incidence in Northern Thailand using time series analysis. We developed Seasonal Autoregressive Integrated Moving Average (SARIMA) models on the data collected between 2003-2006 and then validated the models using the data collected between January-September 2007. The results showed that the regressive forecast curves were consistent with the pattern of actual values. The most suitable model was the SARIMA(2,0,1)(0,2,0)12 model with a Akaike Information Criterion (AIC) of 12.2931 and a Mean Absolute Percent Error (MAPE) of 8.91713. The SARIMA(2,0,1)(0,2,0)12 model fitting was adequate for the data with the Portmanteau statistic Q20 = 8.98644 ( x20,95= 27.5871, P>0.05). This indicated that there was no significant autocorrelation between residuals at different lag times in the SARIMA(2,0,1)(0,2,0)12 model.

Keywords: Dengue, SARIMA, Time Series Analysis, Northern Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
20 Spatial Variability in Human Development Patterns in Assiut, Egypt

Authors: Abdel-Samad M. Ali

Abstract:

Given the motivation of maps impact in enhancing the perception of the quality of life in a region, this work examines the use of spatial analytical techniques in exploring the role of space in shaping human development patterns in Assiut governorate. Variations of human development index (HDI) of the governorate-s villages, districts and cities are mapped using geographic information systems (GIS). Global and local spatial autocorrelation measures are employed to assess the levels of spatial dependency in the data and to map clusters of human development. Results show prominent disparities in HDI between regions of Assiut. Strong patterns of spatial association were found proving the presence of clusters on the distribution of HDI. Finally, the study indicates several "hot-spots" in the governorate to be area of more investigations to explore the attributes of such levels of human development. This is very important for accomplishing the development plan of poorest regions currently adopted in Egypt.

Keywords: Human development, Egypt, GIS, Spatial analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2445
19 On the Effectivity of Different Pseudo-Noise and Orthogonal Sequences for Speech Encryption from Correlation Properties

Authors: V. Anil Kumar, Abhijit Mitra, S. R. Mahadeva Prasanna

Abstract:

We analyze the effectivity of different pseudo noise (PN) and orthogonal sequences for encrypting speech signals in terms of perceptual intelligence. Speech signal can be viewed as sequence of correlated samples and each sample as sequence of bits. The residual intelligibility of the speech signal can be reduced by removing the correlation among the speech samples. PN sequences have random like properties that help in reducing the correlation among speech samples. The mean square aperiodic auto-correlation (MSAAC) and the mean square aperiodic cross-correlation (MSACC) measures are used to test the randomness of the PN sequences. Results of the investigation show the effectivity of large Kasami sequences for this purpose among many PN sequences.

Keywords: Speech encryption, pseudo-noise codes, maximallength, Gold, Barker, Kasami, Walsh-Hadamard, autocorrelation, crosscorrelation, figure of merit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
18 A Comparative Study between Discrete Wavelet Transform and Maximal Overlap Discrete Wavelet Transform for Testing Stationarity

Authors: Amel Abdoullah Ahmed Dghais, Mohd Tahir Ismail

Abstract:

In this paper the core objective is to apply discrete wavelet transform and maximal overlap discrete wavelet transform functions namely Haar, Daubechies2, Symmlet4, Coiflet2 and discrete approximation of the Meyer wavelets in non stationary financial time series data from Dow Jones index (DJIA30) of US stock market. The data consists of 2048 daily data of closing index from December 17, 2004 to October 23, 2012. Unit root test affirms that the data is non stationary in the level. A comparison between the results to transform non stationary data to stationary data using aforesaid transforms is given which clearly shows that the decomposition stock market index by discrete wavelet transform is better than maximal overlap discrete wavelet transform for original data.

Keywords: Discrete wavelet transform, maximal overlap discrete wavelet transform, stationarity, autocorrelation function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4727
17 On Pseudo-Random and Orthogonal Binary Spreading Sequences

Authors: Abhijit Mitra

Abstract:

Different pseudo-random or pseudo-noise (PN) as well as orthogonal sequences that can be used as spreading codes for code division multiple access (CDMA) cellular networks or can be used for encrypting speech signals to reduce the residual intelligence are investigated. We briefly review the theoretical background for direct sequence CDMA systems and describe the main characteristics of the maximal length, Gold, Barker, and Kasami sequences. We also discuss about variable- and fixed-length orthogonal codes like Walsh- Hadamard codes. The equivalence of PN and orthogonal codes are also derived. Finally, a new PN sequence is proposed which is shown to have certain better properties than the existing codes.

Keywords: Code division multiple access, pseudo-noise codes, maximal length, Gold, Barker, Kasami, Walsh-Hadamard, autocorrelation, crosscorrelation, figure of merit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6054
16 Performance of Chaotic Lu System in CDMA Satellites Communications Systems

Authors: K. Kemih, M. Benslama

Abstract:

This paper investigates the problem of spreading sequence and receiver code synchronization techniques for satellite based CDMA communications systems. The performance of CDMA system depends on the autocorrelation and cross-correlation properties of the used spreading sequences. In this paper we propose the uses of chaotic Lu system to generate binary sequences for spreading codes in a direct sequence spread CDMA system. To minimize multiple access interference (MAI) we propose the use of genetic algorithm for optimum selection of chaotic spreading sequences. To solve the problem of transmitter-receiver synchronization, we use the passivity controls. The concept of semipassivity is defined to find simple conditions which ensure boundedness of the solutions of coupled Lu systems. Numerical results are presented to show the effectiveness of the proposed approach.

Keywords: About Chaotic Lu system, synchronization, Spreading sequence, Genetic Algorithm. Passive System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
15 Performance Analysis of MUSIC, Root-MUSIC and ESPRIT DOA Estimation Algorithm

Authors: N. P. Waweru, D. B. O. Konditi, P. K. Langat

Abstract:

Direction of Arrival estimation refers to defining a mathematical function called a pseudospectrum that gives an indication of the angle a signal is impinging on the antenna array. This estimation is an efficient method of improving the quality of service in a communication system by focusing the reception and transmission only in the estimated direction thereby increasing fidelity with a provision to suppress interferers. This improvement is largely dependent on the performance of the algorithm employed in the estimation. Many DOA algorithms exists amongst which are MUSIC, Root-MUSIC and ESPRIT. In this paper, performance of these three algorithms is analyzed in terms of complexity, accuracy as assessed and characterized by the CRLB and memory requirements in various environments and array sizes. It is found that the three algorithms are high resolution and dependent on the operating environment and the array size. 

Keywords: Direction of Arrival, Autocorrelation matrix, Eigenvalue decomposition, MUSIC, ESPRIT, CRLB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8761
14 Formulating the Stochastic Finite Elements for Free Vibration Analysis of Plates with Variable Elastic Modulus

Authors: Mojtaba Aghamiri Esfahani, Mohammad Karkon, Seyed Majid Hosseini Nezhad, Reza Hosseini-Ara

Abstract:

In this study, the effect of uncertainty in elastic modulus of a plate on free vibration response is investigated. For this purpose, the elastic modulus of the plate is modeled as stochastic variable with normal distribution. Moreover, the distance autocorrelation function is used for stochastic field. Then, by applying the finite element method and Monte Carlo simulation, stochastic finite element relations are extracted. Finally, with a numerical test, the effect of uncertainty in the elastic modulus on free vibration response of a plate is studied. The results show that the effect of uncertainty in elastic modulus of the plate cannot play an important role on the free vibration response.

Keywords: Stochastic finite elements, plate bending, free vibration, Monte Carlo, Neumann expansion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
13 Spatial Econometric Approaches for Count Data: An Overview and New Directions

Authors: Paula Simões, Isabel Natário

Abstract:

This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.

Keywords: Spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2704
12 On the Efficiency and Robustness of Commingle Wiener and Lévy Driven Processes for Vasciek Model

Authors: Rasaki O. Olanrewaju

Abstract:

The driven processes of Wiener and Lévy are known self-standing Gaussian-Markov processes for fitting non-linear dynamical Vasciek model. In this paper, a coincidental Gaussian density stationarity condition and autocorrelation function of the two driven processes were established. This led to the conflation of Wiener and Lévy processes so as to investigate the efficiency of estimates incorporated into the one-dimensional Vasciek model that was estimated via the Maximum Likelihood (ML) technique. The conditional laws of drift, diffusion and stationarity process was ascertained for the individual Wiener and Lévy processes as well as the commingle of the two processes for a fixed effect and Autoregressive like Vasciek model when subjected to financial series; exchange rate of Naira-CFA Franc. In addition, the model performance error of the sub-merged driven process was miniature compared to the self-standing driven process of Wiener and Lévy.

Keywords: Wiener process, Lévy process, Vasciek model, drift, diffusion, Gaussian density stationary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 666
11 Heteromolecular Structure Formation in Aqueous Solutions of Ethanol, Tetrahydrofuran and Dimethylformamide

Authors: Sh. Gofurov, O. Ismailova, U. Makhmanov, A. Kokhkharov

Abstract:

The refractometric method has been used to determine optical properties of concentration features of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide at the room temperature. Changes in dielectric permittivity of aqueous solutions of ethanol, tetrahydrofuran and dimethylformamide in a wide range of concentrations (0÷1.0 molar fraction) have been studied using molecular dynamics method. The curves depending on the concentration of experimental data on excess refractive indices and excess dielectric permittivity were compared. It has been shown that stable heteromolecular complexes in binary solutions are formed in the concentration range of 0.3÷0.4 mole fractions. The real and complex part of dielectric permittivity was obtained from dipole-dipole autocorrelation functions of molecules. At the concentrations of C = 0.3 / 0.4 m.f. the heteromolecular structures with hydrogen bonds are formed. This is confirmed by the extremum values of excessive dielectric permittivity and excessive refractive index of aqueous solutions.

Keywords: Refractometric method, dielectric constant, molecular dynamics, aqueous solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1002
10 Motor Imaginary Signal Classification Using Adaptive Recursive Bandpass Filter and Adaptive Autoregressive Models for Brain Machine Interface Designs

Authors: Vickneswaran Jeyabalan, Andrews Samraj, Loo Chu Kiong

Abstract:

The noteworthy point in the advancement of Brain Machine Interface (BMI) research is the ability to accurately extract features of the brain signals and to classify them into targeted control action with the easiest procedures since the expected beneficiaries are of disabled. In this paper, a new feature extraction method using the combination of adaptive band pass filters and adaptive autoregressive (AAR) modelling is proposed and applied to the classification of right and left motor imagery signals extracted from the brain. The introduction of the adaptive bandpass filter improves the characterization process of the autocorrelation functions of the AAR models, as it enhances and strengthens the EEG signal, which is noisy and stochastic in nature. The experimental results on the Graz BCI data set have shown that by implementing the proposed feature extraction method, a LDA and SVM classifier outperforms other AAR approaches of the BCI 2003 competition in terms of the mutual information, the competition criterion, or misclassification rate.

Keywords: Adaptive autoregressive, adaptive bandpass filter, brain machine Interface, EEG, motor imaginary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2901